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Abstract. Let E = lim supn→∞
(gn + ξn) be the random covering set on the torus T

d, where

{gn} is a sequence of ball-like sets and ξn is a sequence of independent random variables uniformly

distributed on T
d. We prove that E ∩ F 6= ∅ almost surely whenever F ⊂ T

d is an analytic set

with Hausdorff dimension, dimH(F ) > d−α, where α is the almost sure Hausdorff dimension of E.

Moreover, examples are given to show that the condition on dimH(F ) cannot be replaced by the

packing dimension of F .

1. Introduction

Let (gn) be a sequence of subsets of the d-dimensional torus T
d and (ξn) a

sequence of independent and uniformly distributed random variables on T
d. Let

(Ω,P) be the corresponding probability space and consider the random translates
Gn = gn + ξn. We are interested in the random covering set

E = lim sup
n→∞

Gn =

∞⋂

n=1

∞⋃

k=n

Gk,

that is, the set of points in T
d covered infinitely often by (Gn). Applying the Borel–

Cantelli lemma and Fubini’s theorem, the Lebesgue measure of E, L(E), is almost
surely zero or one according to the convergence or divergence of

∑∞
n=1 L(gn) (see

[Ka85]).
The random covering problem on the circle T := T

1 (d = 1), where gn are
intervals on the circle with length ln, has been extensively studied in the literature.
When

∑∞
n=1 ln < ∞, that is, L(E) = 0, Durand [Du10] (see also [FW04]) showed

that the almost sure Hausdorff dimension of the covering set is

dimH(E) = sup{0 ≤ s ≤ 1:
∞∑

n=1

lsn = ∞} := α.

Under the following extra condition (C),

(C) There exists an increasing sequence of positive integers {ki} such that

lim
i→∞

ki+1

ki
= 1 and lim

i→∞

log2 nki

ki
= α < 1,

where nk = #{n ∈ N : ln ∈ [2−k+1, 2−k+2)} (k ≥ 2),
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Li, Shieh and Xiao [LSX] (see also [KPX00]) proved that the probability of E hitting
a deterministic analytic set F ⊂ T,

(1.1) P
(
E ∩ F 6= ∅

)
=

{
0 if dimP (F ) < 1− α,

1 if dimP (F ) > 1− α,

where dimP (F ) is the packing dimension of F . Moreover, they obtained estimaties
on the Hausdorff dimension of the intersection E ∩ F ,

(1.2) dimH(F ) + α− 1 ≤ dimH(E ∩ F ) ≤ dimP (F ) + α− 1 a.s.

In fact, the probability zero part of (1.1) and the first inequality of (1.2) remain valid
even without the extra condition (C) as it is not used in the corresponding proofs in
[LSX]. It was left open whether the probability one part of (1.1) holds without the
assumption (C) and the main purpose of this note is to settle this question.

Now we return to the d-dimensional case. Let ln = diam(gn). For simplicity,
we assume that all the gn are balls; gn = B(0, ln/2). All results of this paper (with
trivial modifications in the proofs) hold for sets gn which are ball-like in the sense
that

lim
n→∞

log inrad(gn)

log ln
= 1,

where inrad(gn) denotes the maximal radius of the balls inside gn. By reordering, we
can assume that (ln) is decreasing. It is well known (see [FW04, Du10, JJKLS, Per])
that the almost sure Hausdorff dimension of E is given by the formulae

(1.3) dimH(E) = α(ln) := lim sup
n→∞

log n

− log ln
= sup{0 ≤ s ≤ d :

∞∑

n=1

lsn = ∞}.

Our main result is the following theorem concerning the probability one part of
(1.1). Here the extra condition (C) for {ln} is relaxed and the condition on dimP (F )
in (1.1) is replaced by dimH(F ).

Theorem 1.1. If F ⊂ T
d is an analytic set with dimH(F ) > d − α, then

E ∩ F 6= ∅ almost surely.

Combining Theorem 1.1 and the probability zero part of (1.1), we have the
following hitting probability result, which applies also in case the condition (C) fails.

Corollary 1.2. Let F ⊂ T be an analytic set. Then

(1.4) P
(
E ∩ F 6= ∅

)
=

{
0 if dimP (F ) < 1− α,

1 if dimH(F ) > 1− α.

Furthermore,

(1.5) dimH(F ) + α− 1 ≤ dimH(E ∩ F ) ≤ dimP (F ) + α− 1 a.s.

We give examples indicating that in general, Theorem 1.1 does not hold if
dimH(F ) is replaced by dimP (F ), thus showing the necessity of the extra assumption
(C) in [LSX].

Proposition 1.3. There are (ln) such that α(ln) = 1 and a closed set F ⊂ T

with dimP (F ) = 1 while E ∩ F = ∅ almost surely.



A note on the hitting probabilities of random covering sets 627

Proposition 1.4. For all 0 ≤ α, t ≤ 1, there are a sequence (ln) with α = α(ln)
and a closed set F ⊂ T with dimH F = t, dimP (F ) = 1 such that almost surely,
dimH(E ∩ F ) = min{α, t}. In particular, it is possible that a.s. dimH(F ) + α− 1 <
dimH(E ∩ F ) < dimP (F ) + α− 1.

Remarks 1.5. a) Proposition 1.4 shows that both of the inequalities in (1.5)
can be strict. Meanwhile, for any {gn} with 0 < α < 1, Proposition 1.4 also gives an
example of F ⊂ T satisfying dimH(F ) < 1 − α, but dimH(E ∩ F ) = α > 0 a.s., in
particular, P(E ∩ F 6= ∅) = 1, which means that probability zero part of (1.4) does
not hold if dimP (F ) is replaced by dimH(F ) in Corollary 1.2.

b) As indicated in [LSX], the hitting probabilities of the random covering sets
are closely related to the hitting probabilities of certain limsup random fractals con-
sidered e.g. in [KPX00]. Although we don’t make it explicit, it follows from the
examples in Proposition 1.3 and 1.4 that an assumption analogous to (C), called the

index assumption (Condition 4) in [KPX00], is essential for the validity of the results
of [KPX00].

c) We present Corollary 1.2 and Propositions 1.3 and 1.4 only for d = 1 since the
results (1.1) and (1.2) in [LSX] are for subsets of T. Nevertheless, when d > 1 and
gn are balls in T

d, the proofs of the Propositions generalise in a straightforward way.
Also, it would be possible to adapt the argument of [LSX] to the higher dimensional
case, thus showing that also the statement of Corollary 1.2 (1−α replaced by d−α)
holds in T

d for all d ∈ N. We do not pursue the details in this direction.
d) Although the used methods are somewhat different, there is a close concep-

tual connection between the hitting probability estimates of random sets and the
intersection estimates of F and f(G), where F,G ⊂ R

d are deterministic sets and f
is a ’typical’ element of a suitable family of transformations R

d → R
d. We refer to

[Mat95, §13] for an overview of such results.

2. Proofs

For N ∈ N, we use the notation [N ] = {1, . . . , N}. Let Qn denote the collection
of dyadic cubes of level n in T

d. For each n, we may label the elements of Qn as
{Q1, . . . , Q2nd}. We say that Q ∈ Qn is uniformly distributed, if Q = QX , where
X is a random variable with P(X = i) = 2−nd for each i ∈ [2nd]. We use similar
terminology as well when Qn is replaced by some subfamily, e.g. all the elements of
Qn that lay inside a given cube Q ∈ Qm, m ≤ n. We denote such a family by Qn(Q).

To avoid boundary effects, we assume throughout the proof of Theorem 1.1 and
the preceeding lemmata, that for each n, ∪Q∈Qn

Q is a disjoint cover and we consider
on T

d the topology induced by the dyadic cubes Q ∈ Qn, n ∈ N. This is not a
restriction of generality, since it is well known that e.g. the half-open dyadic cubes
induce the standard Borel sigma algebra on T

d, and hence the same analytic sets as
the Euclidean topology.

Theorem 1.1 is obtained as a consequence of several lemmata. The following
lemma is the main reason why we assume that the set F is analytic.

Lemma 2.1. If F ⊂ T
d is an analytic set and dimH F > s, then there is a

nonempty closed subset H ⊂ F such that dimH(Q ∩H) > s for all dyadic cubes Q
for which Q ∩H 6= ∅.
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Proof. Since F is analytic, we may find a closed set K ⊂ F with Ht(K) > 0
for some t > s (see [Ro70, Corollary 2,p. 99]). Let U = {x ∈ K : dimH(Q ∩
K) ≤ s for some dyadic cube Q ∋ x}. Then U is relatively open in K and whence
H = K \U is closed. It is clear that dimH(Q∩H) > s whenever Q is a dyadic cube
touching H . Moreover, a simple covering argument implies that Ht(U) = 0, whence
Ht(H) = Ht(K) > 0, and in particular H is nonempty. �

The following lemma is a direct consequence of the definition of the Hausdorff
measure.

Lemma 2.2. If Q ∈ Qn0
is a dyadic cube, F ⊂ T

d and dimH(F ∩Q) > s, then
there is n0 ≤ N ∈ N such that for n ≥ N , there are at least 2ns subcubes of Q in Qn

which touch F .

Lemma 2.3. Suppose that α = α(ln) > t and let Q ∈ Qn0
be given. For n ≥ n0,

and each lj with 2−n
√
d ≤ lj ≤ 2−n0

√
d, let Qj ∈ Qn be the dyadic cube containing

ξj. Consider the random variable N(Q, n) = #{j : Qj ⊂ Q}. Then,

(2.1) lim sup
n→∞

P
(
N(Q, n) ≥ 2nt

)
= 1.

Proof. Pick α > r > t. From the definition of α, it readily follows that there are
arbitrarily large n such that the number of indices j with 2−n

√
d ≤ lj ≤ 2−n0

√
d is

Ln ≥ 2nr. For each of these j, Qj is uniformly distributed among Qn, and clearly,
{Qj}2−n

√
d≤lj≤2−n0

√
d are mutually independent random variables. Write Xj for the

indicator function of {Qj ⊂ Q}. Then E(Xj) = 2−n0d. Thus

E(N(Q, n)) =
∑

j

E(Xj) = 2−n0dLn,

E(N(Q, n)2) =
∑

j

E(Xj) +
∑

j 6=i

E(XjXi) = 2−n0dLn + (L2
n − Ln)2

−2n0d.

Applying Chebyshev’s inequality, P
(
N(Q, n) < 1

2
E(N(Q, n))

)
is bounded from above

by

P

(
|N(Q, n)− E(N(Q, n))| ≥ 1

2
E(N(Q, n))

)
≤ 2n0d+2L−1

n ≤ 2−nr+n0d+2.

As 2nt ≤ 2nr−n0d−1 ≤ Ln2
−n0d−1 = 1

2
E(N(Q, n)) for arbitrarily large values of n, the

claim follows. �

Remark 2.4. It is clear from the above proof that the sequence realising the
limsup in (2.1) can be chosen to be independent of the cube Q as it only depends on
the sequence (ln)n. More precisely, there is a sequence nk → ∞ such that for each
dyadic cube Q,

lim
k→∞

P
(
N(Q, nk) ≥ 2nkt

)
= 1.

Lemma 2.5. Let Q ∈ Qn0
be a dyadic cube and let n0 ≤ n ∈ N. Suppose that

Qi, i ∈ [K], K ≥ 2ns are (deterministic) cubes in Qn(Q) and let Qj , j ∈ [L], L ≥ 2nt

be uniformly distributed independent random cubes in Qn(Q). Then

(2.2) P
(
Qj = Qi for some i ∈ [K], j ∈ [L]

)
≥ 1− ε(s, t, n)

where ε(s, t, n) → 0 as n → ∞, provided s+ t > d.
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Proof. For each Qj, we have

P(Qj 6= Qi for all i) = 1−K2(n0−n)d ≤ 1− 2n02n(s−d).

Hence, by independence,

P
(
Qj 6= Qi for all i and j

)
≤ (1− 2n02n(s−d))L ≤

(
1− 2n02n(s−d)

)2nt

and this upper bound tends to zero as n → +∞, since s+ t > d. �

Proof of Theorem 1.1. By Lemma 2.1, we may assume that F is closed and that
dimH(F ∩Q) > s > d− t > d−α for some s, t and for all dyadic cubes Q intersecting
F . Fix 0 < εk <

1
2

such that
∑

k εk < ∞.
The following notation is adapted from Lemma 2.3. Given m,n ∈ N, n ≥ m

and Q ∈ Qm we consider those ξj ∈ Q for which 2−n
√
d ≤ lj ≤ 2−m

√
d, and let

Qj ∈ Qn(Q) be the dyadic cube containing ξj. After re-enumeration, we denote by

{Qj}N(Q,m)
j=1 the random family of all such cubes.

We define a sequence of integers (nk)k in the following manner. To begin with,
we choose n1 so large that

(1) There are at least 2n1s subcubes in Qn1
intersecting F .

(2) N(Td, n1) ≥ 2n1t.

(3) The probability that at least one cube in {Qj}N(Td,n1)
j=1 intersects F is at least

1− ε1.

We observe that such a choice is possible by Lemmata 2.2–2.5 (In fact, Lemma 2.3
is not even needed for the choice of n1).

For k ∈ N, we define nk+1 inductively such that for each Q ∈ Qnk
intersecting

F , the following conditions hold:

(1) There are at least 2nk+1s cubes in Qnk+1
(Q) intersecting F .

(2) With probability at least 1− εk+1, N(Q, nk+1) ≥ 2nk+1t.
(3) Conditioned on N(Q, nk+1) ≥ 2nk+1t, the probability that at least one cube

in {Qj}N(Q,nk+1)
j=1 intersects F is at least 1− εk+1.

Again, such choices are possible by Lemmata 2.2–2.5 since there are only finitely
many such Q ∈ Qnk

(For (2) also take Remark 2.4 into account).
Let Ak denote the event that there are Q1, . . . , Qk satisfying for all i ∈ [k] the

conditions,

• Qi ∈ Qni
,

• Qi ∩ F 6= ∅,
• Qi ⊂ Qi−1,
• there is ξj ∈ Qi with 2−ni

√
d ≤ lj ≤ 2−ni−1

√
d (and consequently Qi ⊂ Gj).

These are decreasing events, and it follows from the above conditions (1)-(3) that

P (An | An−1) ≥ 1− 2εn.

Since
∑

k εk < ∞, this yields

P(∩nAn) = lim
n→∞

P(An) = lim
n→∞

P(A1)
n∏

k=2

P (Ak | Ak−1) ≥ (1− ε1)
∞∏

n=2

(1− 2εn) > 0.

Clearly

{F ∩ E 6= ∅} ⊃ ∩nAn,
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and consequently P(F ∩ E 6= ∅) > 0. Finally, {F ∩ E 6= ∅} is obviously a tail event
and the claim follows from the Kolmogorov zero-one law. �

Proof of Corollary 1.2. The equalities in (1.4) hold by Theorem 1.1 and the
probability zero part of (1.1).

The right-hand inequality of (1.5) can be obtained by the same proof as the
corresponding part of (1.2) in [LSX].

The left-hand inequality of (1.5) follows from Theorem 1.1 and Lemma 3.4 in
[KPX00]. �

Proof of Proposition 1.3. Let εk > 0 be such that
∑

k εk < +∞ and let
0 < sk < 1 be increasing to 1 as k → ∞. Also, let mk < nk be two increasing
sequences of integers to be determined later. We construct the set F ⊂ [0, 1] as
follows. First, we divide [0, 1] into 2m1 intervals of length 2−m1 and inside each of
these, we select an interval of length 2−n1. Let I1 denote the collection of all these
selected intervals (called the first level construction intervals).

We continue inductively. Assuming that Ik is a family of Nk =
∏k

i=1 2
mi disjoint

intervals of length δk =
∏k

i=1 2
−ni, we decompose each element of Ik into disjoint

subintervals of length 2−mk+1δk and inside each of these, select one interval of length
δk+1 := 2−nk+1δk. We denote these Nk+1 = 2mk+1Nk intervals of length δk+1 by Ik+1.
Let Fk =

⋃
I∈Ik I and F = ∩kFk.

We choose each mk so large (depending on the choices of mi, ni for i < k) that
2mkNk−1(2

−mkδk−1)
sk ≥ 1. This readily implies that dimP (F ) ≥ lim sup

k→∞
sk = 1 (see

[FWW97]). Thus dimP (F ) = 1.
To obtain suitable random covering sets, we set

gn = [0, δk] for 2nk−1sk−1 ≤ n < 2nksk .

and denote

Ek =
⋃

2nk−1sk−1≤n<2nksk

[ξn −
δk
2
, ξn +

δk
2
],

where ξn are independent and uniformly distributed on T. That is, ln = δk for
2nk−1sk−1 ≤ n < 2nksk . It is clear that such (ln) does not satisfy the condition (C).
It follows that α(ln) = 1 provided nk grows sufficiently fast. On the other hand, we
have the estimate

P (Ek ∩ Fk 6= ∅) ≤ 3Nk2
nkskδk = 3Nk2

nksk2−nkδk−1,

and this can be made smaller than εk by choosing nk large enough, depending on sk
and the previous choices of ni and mj for i < k, j ≤ k.

As
∑

k P (Ek ∩ Fk 6= ∅) ≤ ∑
k εk < ∞, the Borel–Cantelli lemma implies that

P (Ek ∩ Fk 6= ∅ for infinitely many k) = 0.

Thus almost surely, Ek ∩ Fk 6= ∅ for only finitely many k. Since E = lim supk→∞Ek

and F ⊂ Fk for each k, this yields E ∩ F = ∅ almost surely. �

For the proof of Proposition 1.4, we require the following elementary covering
estimate.
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Lemma 2.6. Let 0 < β < α < 1 and 0 < c ≤ C < +∞. Suppose ξn are
independent and uniformly distributed random variables on T. Then

P


T =

⋃

C<n≤cη−α

[ξn −
ηβ

2
, ξn +

ηβ

2
]


 −→ 1,

as η ↓ 0.

Proof. We may cover T with less than 3/ηβ intervals I of length ηβ/2. For each

of these I and each n ≥ C, we have P

(
I ⊂ [ξn − ηβ

2
, ξn +

ηβ

2
]
)

= ηβ/2 and since

{I ⊂ [ξn − ηβ

2
, ξn +

ηβ

2
]} are independent events,

P


I 6⊂

⋃

C≤n≤cη−α

[ξn −
ηβ

2
, ξn +

ηβ

2
]


 ≤ (1− ηβ/2)cη

−α−C .

Summing over all I yields

P


T 6=

⋃

C≤n≤η−α

[ξn −
ηβ

2
, ξn +

ηβ

2
]


 ≤ 3η−β

(
1− ηβ/2

)cη−α−C −→ 0,

as η ↓ 0. �

Proof of Proposition 1.4. Let n1 < m1 < n2 < m2 < n3 < · · · be increasing
sequences of integers (to be determined later). Denote by ⌊x⌋ the integer part of x.
We construct F by an inductive process as follows. We first decompose [0, 1] into
N1 = 2⌊n1t⌋ intervals of length 2−⌊n1t⌋ and further choose one sub-interval of length
2−n1 inside each. These form the family I1.

The construction is continued inductively. Given Ik, a family of Nk disjoint in-
tervals of length δk = 2−n1−...−nk . We decompose each element of Ik into subintervals
of length 2−⌊nk+1t⌋δk and choose one subinterval of length δk+1 = 2−nk+1δk inside each.
In total, there will be Nk+1 = ⌊2nk+1t⌋Nk such intervals with length δk+1, and these
form the family Ik+1. We let F0 = [0, 1], Fk =

⋃
I∈Ik I and finally F =

⋂
k Fk. It is

straightforward to check that dimH F = t (see [FWW97]).
To define the random covering sets, we denote ηk = 2−m1−...−mk , let

gn = [0, ηk] for 2mk−1α ≤ n < 2mkα,

and denote

Ek =
⋃

2mk−1α≤n<2mkα

[
ξn −

ηk
2
, ξn +

ηk
2

]
,

where again ξn are independent and uniformly distributed on T. Choosing mk large
enough, we can check from (1.3) that the Hausdorff dimension of E is α(ln) = α
almost surely.

Obviously, dimH(E ∩ F ) ≤ min{dimH F, dimH E}, so it remains to show that it
is possible to choose the parameters nk, mk such that also

(2.3) dimH(E ∩ F ) ≥ min{t, α}
holds almost surely. The reason why this should be true is that while the Hausdorff
dimension of F is realised on scales δk, the Hausdorff dimension of E is realised on
scales ηk, δk ≫ ηk ≫ δk+1. On scales δk, E is rather uniformly distributed (with
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high probability) and correspondingly, F looks "one dimensional" on the scales ηk.
So in order to find an efficient covering for E ∩ F one has to use intervals of size ηk
(roughly η−α

k are needed) or δk (roughly δ−t
k are needed), but since these scales are not

comparable, one essentially does not gain anything by looking at the covering formed
by intersecting the elements of these two ’natural’ coverings. For deterministic sets
with same kind of intersection behaviour, see e.g. [Mat95, Example 13.19].

Now to the detailed proof of (2.3). We would like to use the general mass trans-
ference principle of Beresnevich and Velani [BV06, Theorem 3] since it is often very
handy in this kind of situations. However, there is a monotonicity assumption for the
ratio of the gauge function in their result, which cannot be verified in the situation
at hand. Fortunately, our construction of the set F and the random sets E is regular
enough, so that we can still use the main idea from their proof.

To that end, we construct a Cantor type set G inside E ∩ F with the help of
Lemma 2.6. Pick an increasing sequence (βk) with limk→∞ βk = α and let εk > 0
such that

∑
k εk < 1. Then, by choosing each mk large enough compared to mk−1,

Lemma 2.6 guarantees that with probability at least 1− εk, we have

(2.4)
⋃

2mk−1α≤n<2mkα

[
ξn −

ηβk

k

2
, ξn +

ηβk

k

2

]
= T.

Consequently, P ((2.4) holds for all k) > 1−∑∞
k=1 εk > 0.

From now on, we pick such ω that (2.4) is valid for all k ∈ N. For each k, we

define families Ĩk,Gk such that Ĩk ⊂ Ik and
⋃

J∈Gk
J ⊂ Ek. We begin by setting

Ĩ1 = I1 and continue inductively as follows; Suppose Ĩk has been defined with

Lk := #Ĩk. Since (2.4) holds, for each I ∈ Ĩk we can choose a disjoint subfamily of

{[ξn− η
βk
k

2
, ξn+

η
βk
k

2
] ⊂ I} containing ⌊δk/(3ηβk

k )⌋ intervals (we choose mk large enough

to guarantee ηβk

k < δk/12). For each of these intervals, we choose the concentric
interval [ξn− ηk

2
, ξn+

ηk
2
] to the collection Gk. Thus, in particular

⋃
J∈Gk

J ⊂ Ek. As a

result of the construction, there are Mk := Lk⌊δk/(3ηβk

k )⌋ elements in Gk. The family

Ĩk+1 is obtained by selecting ⌊ηk2−⌊nk+1t⌋⌋ − 2 intervals in Ik+1 inside each J ∈ Gk.
Then

Lk+1 = Mk⌊ηk2−⌊nk+1t⌋⌋ − 2.

Let G =
⋂∞

k=1

⋃
I∈Ĩk I =

⋂∞
k=1

⋃
J∈Gk

J. Thus G ⊂ E ∩ F .
By choosing each mk large enough depending on δk, and further nk+1 large enough

depending on ηk, we can make sure that

lim
k→∞

logMk

− log ηk
= α,(2.5)

lim
k→∞

logLk

− log δk
= t.(2.6)

Now it is straightforward to check that dimH(G) = min{α, t}. Indeed, defining a

probability measure µ supported on G such that µ(I) = L−1
k for each I ∈ Ĩk (and

consequently also µ(J) = M−1
k for all J ∈ Gk), it follows using (2.5)–(2.6) and the fact

that the subintervals of any I ∈ Ĩk (resp. J ∈ Gk) in Gk (resp. Ĩk+1) are essentially
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uniformly distributed, that

(2.7) lim inf
r↓0

log(µ(B(x, r)))

log r
= min{α, t}

for all x ∈ G. Whence dimH(E ∩ F ) ≥ dimH(G) ≥ min{α, t}. We omit the detailed
proof of (2.7) since this kind of results are well known. See e.g. [FWW97, Lemma 2.2]
and observe that our Cantor set G is essentially a homogeneous Cantor set in the
notation of [FWW97].

We have now shown that dimH(E∩F ) ≥ min{α, t} with positive probability. Fi-
nally, dimH(E∩F ) ≥ min{α, t} is a tail event, and so it follows from the Kolmogorov
zero-one law that it has full probability. �
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