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Abstract. We prove a partial Hölder continuity result for finite energy solutions of degenerate

elliptic equations. The function that measures the degeneracy of the problem is assumed to belong

to a suitable Sobolev class. Moreover, we prove an analogous result for infinite energy solutions

provided their gradients have a suitable degree of integrability.

1. Introduction

Let us consider the equation

(1.1) divA(x,Du) = 0

in a bounded domain Ω of R
n. We suppose that A : Ω × R

n → R
n satisfies the

following growth and ellipticity conditions

|A(x, ξ)| ≤ k(x)|ξ|p−1,(1.2)

〈A(x, ξ), ξ〉 ≥
1

k(x)
|ξ|p(1.3)

for almost every x ∈ Ω, all ξ ∈ R
n and an exponent 1 < p ≤ n.

We shall say that u ∈ W
1,1
loc (Ω) is a solution of the equation (1.1) if A(x,Du) is

locally integrable in Ω and u satisfies the equation in the sense of distributions, that
is,

ˆ

Ω

〈A(x,Du), Dϕ〉 dx = 0

for every ϕ ∈ C∞
0 (Ω). A function u will be called a locally finite energy solution if,

in addition, 〈A(x,Du), Du〉 is locally integrable in Ω.
If k is bounded, the equation is uniformly elliptic and finite energy solutions

are those belonging to the class W
1,p
loc (Ω). The regularity of such solutions has been

widely investigated and, for an exhaustive treatment of the argument, we refer the
interested reader to [10, 11, 12] and references therein.

Anyway, we recall that the study of the continuity properties of the solutions
started, in the case n = 2, with the pioneering papers by Morrey [19, 20] and, in
higher dimensions, by De Giorgi [3] and Nash [18] and later on by Ladyzhenskaya
and Ural’tseva [16].
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More recently, also the regularity of infinite energy solutions attracted the interest
of many authors. It has been proven in [14, 17] that, if the gradient of a solution u is
assumed to be integrable with an exponent sufficiently close to the natural exponent
p, then it is actually a finite energy solution.

In the case k unbounded, the equation is degenerate elliptic and the study of the
regularity of (finite and infinite energy) solutions started with the celebrated paper
by Iwaniec and Sbordone ([15]) and, later on, developed in different directions by
many authors (see for example [1, 8, 13, 21]).

It is worth pointing out that the higher integrability of the gradient of the
solutions has been usually established assuming that the function k, which mea-
sures the degree of degeneracy of the equation, is exponentially integrable, that is
exp(βk) ∈ L1(Ω), for some β > 0. In fact, in this case, finite energy solutions have a
degree of integrability not too far from the natural one. More recently, the attention
has been given also to the case k subexponentially integrable, i.e., exp(P (k)) ∈ L1(Ω),
for a suitable Orlicz function P which is diverging at ∞ (see for example [6, 9]).

As far as we know, the continuity of finite energy solutions under the assumption
of exponentially integrable degeneracy, conjectured by De Giorgi in [4], is still open.
More precisely

Conjecture 1.1. (De Giorgi) Let u be a finite energy solution of the equation

div(A(x)∇u) = 0 in Ω ⊂ R
n,

where
1

k(x)
|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ |ξ|2

for almost every x ∈ Ω and all ξ ∈ R
n. If

exp(k(x)) ∈ L1(Ω),

then u is continuous.

Many authors gave their contribution to prove this conjecture, but the expo-
nentially integrability assumption on the degeneracy k has been used together with
stronger requirements. Among the others, we recall [22], where the continuity is
obtained in the case p = n = 2 and [24], where the author proves the continuity of
local solutions to the linear non uniformly elliptic equation of the type

div(a(x)∇u) = 0

assuming that ap ∈ W 1,n, n ≥ 3, for some p opportunely related to n and a(x) ≥
a0 > 0.

In this paper we establish the Hölder continuity of finite energy solutions of (1.1),
under the assumption

(1.4) k ∈ W 1,n(Ω).

In fact, our main result is the following

Theorem 1.2. Let u be a finite energy solution of equation (1.1) and suppose

that (1.2) and (1.3) hold for a function k ∈ W 1,n(Ω). Then there exists an open set

Ω0 ⊂ Ω with full measure such that

u ∈ C0,α(Ω0)

for every α ∈ (0, 1). Moreover, dimH(Ω \ Ω0) = 0.
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In order to prove Theorem 1.2, the idea is to combine the isoperimetric type
inequality, obtained in a more general setting in [7], with the methods of [9]. It is
well known that the solutions of equation (1.1) are Hölder continuous if the operator
A(x, ξ) depends continuously on the variable x. Therefore, the assumption k ∈ W 1,n

could not appear adequate. Actually, we take advantage from this assumption since,
via the isoperimetric type inequality and from the Sobolev imbedding theorem on
spheres, we deal with k as a continuous function on R

n−1.
We pay the possible discontinuity of k restricting ourselves to the set Ω0 where

the mean value of k is bounded (compare with [2]). We’d like to point out that,
with respect to the above mentioned papers, here we are able to deal with non linear
equations in any dimension n.

Since infinite energy solutions of the equation (1.1), whose degeneracy k(x) is
exponentially integrable, are actually finite energy solutions provided their degree of
integrability is not too far from Lp, as a consequence of Theorem 1.2 and by virtue
of the results in [6, 8], we have the following

Corollary 1.3. Let u be a infinite energy solution of equation (1.1) and suppose

that (1.2) and (1.3) hold for a function k ∈ W 1,n(Ω). Then there exist a positive

exponent β0 = β0(p, n, ||k||W 1,n(Ω)) and an open set Ω0 ⊂ Ω with full measure such

that if

Du ∈
Lp

logβ L
(Ω)

for every β > β0, then

u ∈ C0,α(Ω0)

for every α ∈ (0, 1). Moreover dimH(Ω \ Ω0) = 0.

We conclude by noting that the assumption k ∈ W 1,n has been previously em-
ployed in [23] where an higher differentiability result for the gradient of the solution
has been obtained. Therefore, the Hölder continuity can be deduced from the result
of [23] by the use of Sobolev imbedding theorem, if p and n are opportunely related.

2. Notation and preliminary results

In this section we recall some standard definitions and collect several results that
we will use to establish our main result. We indicate with BR(x) ≡ B(x,R) the open
ball {y ∈ R

n : |x − y| < R} centered at the point x ∈ R
n and having radius R > 0.

We omit the center of the ball when no confusion arises. All the balls considered are
concentric, unless differently specified.

If u is an integrable function defined on BR(x), we indicate with

ux,R =

 

BR(x)

u(x) dx =
1

ωnRn

ˆ

BR(x)

u(x) dx

the integral average of the function u over the ball BR(x), where ωn is the Lebesgue
measure of B1(0). We also adopt the convention of writing uR instead of ux,R when
the center of the ball is clear from the context.

Next result is a technical iteration lemma proven in [10, Lemma 2.1].



570 Flavia Giannetti and Antonia Passarelli di Napoli

Lemma 2.1. Let R̄, a, b, α, β be positive constants with β < α. There exist

A, t̄ > 0 such that if f is a nonnegative, nondecreasing function such that

f(ρ) ≤ a
[( ρ

R

)α

+ t
]

f(R) + bRβ

for some t < t̄ and for all 0 < ρ < R ≤ R̄, then we have

f(ρ) ≤ A
( ρ

R

)β

[f(R) + bRβ ]

for every 0 < ρ < R ≤ R̄.

We shall need the following Sobolev inequality on spheres as formulated by
Gehring in [5].

Theorem 2.2. Let k be a function in the Sobolev class W
1,nϑ
loc (Ω), n−1

n
< ϑ ≤ 1.

Then

(2.1) sup
∂Bt

k − inf
∂Bt

k ≤ c(n)t

(
 

∂Bt

|Dk|nϑ dHn−1

)
1
nϑ

for almost every radius t ∈ (0, R), where BR ⋐ Ω.

Next theorem relates the decay estimate for the gradient of a Sobolev function
with its Hölder regularity properties ( see [12, Theorem 7.19])

Theorem 2.3. (Morrey’s Lemma) Let u ∈ W 1,1(Ω) and suppose that there exist

two positive constants K, α, with α ≤ 1, such that
ˆ

Br

|∇u| dx ≤ Krn−1+α

for all balls Br ⊂ Ω. Then u ∈ C0,α(Ω) and for every ball Br ⊂ Ω

oscBr
u ≤ CKrα.

Next result has been proven in [9, Lemma 3.5].

Lemma 2.4. Let u be a finite energy solution of equation (1.1) and suppose

that (1.2) and (1.3) hold for a function k ∈ W 1,n(Ω). Then we have

(2.2)

ˆ

Rn

〈A(x,Du), ηDu〉 dx ≤

ˆ

Rn

|A(x,Du)||Dη||u− c| dx

for every η ∈ C∞
0 (Rn) and for every constant c.

From previous lemma we deduce the following isoperimetric type inequality, al-
ready proven in a slightly different version in [9] (see also [7]). The proof is given for
the reader’s convenience.

Proposition 2.5. Let u be a finite energy solution of equation (1.1) and suppose

that (1.2) and (1.3) hold for a function k ∈ W 1,n. Then, for every x0 ∈ Ω,

(2.3)

ˆ

B(x0,r)

1

k(x)
|Du|p dx ≤ c(n)

(
ˆ

∂B(x0,r)

k(x)|Du|p−1|u− u∂Br
| dHn−1

)

for almost every radius 0 < r < dist(x0, ∂Ω).

Proof. Let us set B(x0, t) = Bt and let us define on Br the function

ηε(x) = min
{

1,
r − |x|

ε

}

.
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Choosing η(x) = ηε(x) in (2.2), we get
ˆ

Br−ε

〈A(x,Du), Du〉 dx ≤

∣

∣

∣

∣

ˆ

Br\Br−ε

〈A(x,Du), Du〉
r − |x|

ε
dx

∣

∣

∣

∣

+

ˆ

Br\Br−ε

|A(x,Du)|

∣

∣

∣

∣

D

(

r − |x|

ε

)
∣

∣

∣

∣

|u− c| dx

If we observe that
r − |x|

ε
< 1 in Br \Br−ε and that the second integral in the right

hand side can be written as

1

ε

ˆ r

r−ε

(

ˆ

∂Bρ

|A(x,Du)| |D(r − |x|)| |u− c| dHn−1

)

dρ,

taking the limit as ε → 0, we obtain
ˆ

Br

〈A(x,Du), Du〉 dx ≤

ˆ

∂Br

|A(x,Du)||u− c| dHn−1.

Hence, by using assumption (1.2) in the right hand side and (1.3) in the left hand
side of previous estimate and choosing c = u∂Br

, we obtain
ˆ

Br

1

k(x)
|Du|p dx ≤ c(n)

(
ˆ

∂Br

k(x)|Du|p−1|u− u∂Br
| dHn−1

)

,

i.e., the conclusion. �

3. The proof of the main result

This section is devoted to the proof of Theorem 1.2. The starting point will
consist in a decay estimate for the energy integral. In order to shorten the notation,
in what follows we shall denote by

KR :=

(
ˆ

BR

|Dk|n dx

)
1
n

with BR ⋐ Ω.

Theorem 3.1. Let u be a finite energy solution of equation (1.1). Assume that

(1.2) and (1.3) hold for a function k ∈ W 1,n(Ω). Let B2R be a ball contained in the

set

(3.1) Ω0 =

{

x ∈ Ω: lim sup
r→0

 

Br

k dx < +∞

}

.

Then there exist a constant Ã > 0 and a positive exponent β = β(n,KR) such that

(3.2)

ˆ

Br

1

k
|Du|p dx ≤ Ã

( r

R

)β
ˆ

BR

1

k
|Du|p dx,

whenever 0 < r < R.

Proof. For every i ∈ N, let us consider the interval

∆i :=

(

R

2i
,

R

2(i−1)

)

and the annulus
Ai := B R

2(i−1)
\B R

2i
.
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Let us define the sets Ei = E1
i ∩ E2

i ∩ E3
i with

E1
i :=

{

t ∈ ∆i :

ˆ

∂Bt

|Dk|n dHn−1 ≤
12

|∆i|

ˆ

Ai

|Dk|n dx

}

,

E2
i :=

{

t ∈ ∆i :

ˆ

∂Bt

k dHn−1 ≤
12

|∆i|

ˆ

Ai

k dx

}

,

E3
i :=

{

t ∈ ∆i :

ˆ

∂Bt

(

1

k(x)
|Du|p

)
n−1
n

dHn−1 ≤
12

|∆i|

ˆ

Ai

(

1

k(x)
|Du|p

)
n−1
n

dx

}

.

By Fubini’s Theorem we have that

|C(E1
i )| ≤

|∆i|

12
, |C(E2

i )| ≤
|∆i|

12
and |C(E3

i )| ≤
|∆i|

12
,

and therefore

|Ei| ≥
|∆i|

4
> 0.

Choosing r ∈ Ei so that inequalities (2.3) and (2.1) hold, we get
ˆ

B R

2i

1

k(x)
|Du|p dx ≤

ˆ

Br

1

k(x)
|Du|p dx ≤ c(n)

ˆ

∂Br

k(x)|Du|p−1|u− u∂Br
| dHn−1

≤ c(n) sup
∂Br

k(x)

ˆ

∂Br

|Du|p−1|u− u∂Br
| dHn−1

≤ c(n) sup
∂Br

k(x)

(
ˆ

∂Br

|Du|
p(n−1)

n dHn−1

)
p−1
p

n
n−1

(3.3)

·

(
ˆ

∂Br

|u− u∂Br
|
p(n−1)
n−p dHn−1

)
n−p

p(n−1)

≤ c(n) sup
∂Br

k(x)

(
ˆ

∂Br

|Du|
p(n−1)

n dHn−1

)
n

n−1

,

where, in the last line, we also used Sobolev–Poincaré inequality on spheres for the
function u. From estimate (3.3) we deduce that

ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n) sup

∂Br

k(x)

(
ˆ

∂Br

|Du|
p(n−1)

n dHn−1

)
n

n−1

= c(n) sup
∂Br

k(x)

(
ˆ

∂Br

k
n−1
n

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1

≤ c(n)

(

sup
∂Br

k(x)

)2(ˆ

∂Br

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1

(3.4)

≤ c(n)

(

sup
∂Br

k(x)− inf
∂Br

k(x)

)2(ˆ

∂Br

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1

+ c(n)

(

inf
∂Br

k(x)

)2(ˆ

∂Br

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1
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Using Theorem 2.2 in (3.4), we get
ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n)r

2
n

(
ˆ

∂Br

|Dk|ndHn−1

)
2
n
(
ˆ

∂Br

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1

+ c(n)

(
 

∂Br

k dHn−1

)2(ˆ

∂Br

(1

k
|Du|p

)
n−1
n

dHn−1

)
n

n−1

,

where we used the obvious inequality

inf
∂Br

k(x) ≤

 

∂Br

k(x) dHn−1.

Since r ∈ Ei, from previous inequality we obtain
ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n)

[

r
2
n

(

1

|∆i|

ˆ

Ai

|Dk|n dx

)
2
n

+

(

1

rn−1|∆i|

ˆ

Ai

k dx

)2
]

·

(

1

|∆i|

ˆ

Ai

(1

k
|Du|p

)
n−1
n

dx

)
n

n−1

.(3.5)

In order to shorten the notation, set

Γ :=

[

r
2
n

(

1

|∆i|

ˆ

Ai

|Dk|n dx

)
2
n

+

(

1

rn−1|∆i|

ˆ

Ai

k dx

)2
]

so that (3.5) can be written as

(3.6)

ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n)Γ

(

1

|∆i|

ˆ

Ai

(1

k
|Du|p

)
n−1
n

dx

)
n

n−1

.

By using Hölder’s inequality and the fact that, since

|Ai| = C(n)
(2n − 1)Rn

2ni
, |∆i| =

R

2i
,

we have
|Ai|

1
n−1

|∆i|
n

n−1

= C(n),

from (3.6), we deduce that
ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n)Γ

(

1

|∆i|

)
n

n−1

|Ai|
1

n−1

ˆ

Ai

1

k
|Du|p dx

≤ c(n)Γ
R

2i
1

|∆i|

ˆ

Ai

1

k
|Du|p dx.(3.7)

In order to estimate Γ, we take into account that

|∆i| =
R

2i
and

R

2i
< r <

R

2i−1

and that, by virtue of the assumption B2R ⊂ Ω0, we may suppose the existence of a
constant L > 1 such that

 

BR

k dx ≤ L.
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Hence, we have

Γ ≤ 2
2
n

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in
(

1

Rn

ˆ

BR

k dx

)2

≤ c(n, L)

[

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in

]

.(3.8)

Inserting estimate (3.8) in (3.7), it follows

(3.9)

ˆ

B R

2i

1

k(x)
|Du|p dx ≤ c(n, L)

R2−i

|∆i|

[

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in

]

ˆ

Ai

1

k
|Du|p dx

Now, for t ∈ ∆i, we set

vi(t) :=

ˆ

B R

2i

1

k(x)
|Du|p dx+ c(n, L)

t− R2−i

|∆i|

ˆ

Ai

1

k(x)
|Du|p dx

and

v(t) := v1(t)χ
[R2 ,R]

(t) +
∞
∑

i=2

vi(t)χ[

R

2i
, R

2(i−1)

)(t).

Estimate (3.9) implies that

vi(t) ≤ c(n, L)
1

|∆i|

{

R

2i

[

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in

]

+ t−
R

2i

}

ˆ

Ai

1

k(x)
|Du|p dx.

Since

v′i(t) = c(n, L)
1

|∆i|

ˆ

Ai

1

k(x)
|Du|p dx,

we obtain

(3.10) vi(t) ≤

{

R

2i

[

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in

]

+ t−
R

2i

}

v′i(t)

for all t ∈ ∆i. Since t− R
2i
≤ R

2(i−1) −
R
2i
= R

2i
, from (3.10) we deduce

vi(t) ≤
R

2i

[

(
ˆ

Ai

|Dk|n dx

)
2
n

+ 22in + 1

]

v′i(t)

≤
2R

2i

[

(
ˆ

BR

|Dk|n dx

)
2
n

+ 22in

]

v′i(t).(3.11)

Using that R
2i
≤ t ≤ R

2(i−1) in (3.11), it follows that

vi(t) ≤ 22n+1t

[

K2
R +

R2n

t2n

]

v′i(t)

and hence, summing on i and observing that v(t) is a piecewise affine function, we
get

(3.12) v(t) ≤ 22n+1t

[

K2
R +

R2n

t2n

]

v′(t)
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for every 0 < t < R. Therefore

v′(t)

v(t)
≥

1

22n+1

t2n−1

K2
Rt

2n +R2n
.

Now, we easily obtain for every ρ < R
ˆ R

ρ

v′(t)

v(t)
dt ≥

1

22n+1

ˆ R

ρ

t2n−1

K2
Rt

2n +R2n
dt =

1

n22n+2K2
R

log
K2

RR
2n +R2n

K2
Rρ

2n +R2n

and therefore

(3.13) log
v(R)

v(ρ)
≥

1

n22n+2K2
R

log
K2

RR
2n +R2n

K2
Rρ

2n +R2n
= log

(

K2
RR

2n +R2n

K2
Rρ

2n +R2n

)α(n,R)

,

where we used the notation

α(n,R) :=
1

n22n+2K2
R

.

Inequality (3.13) yields

(3.14) v(ρ) ≤

(

ρ2nK2
R +R2n

R2nK2
R +R2n

)α(n,R)

v(R) ≤ c(n,R)

(

( ρ

R

)2nα(n,R)

+ 1

)

v(R),

for every 0 < ρ < R. By Lemma 2.1 and estimate (3.14), we infer that there exists
a positive constant A such that

(3.15) v(ρ) ≤ A
( ρ

R

)β

v(R)

for every ρ < R and for every

β < 2nα(n,R) =
1

22n+1K2
R

.

Since ρ < R, there exists j ∈ N such that ρ ∈ [R2−j, R2−j+1). Then, by the definition
of the function v(t), from (3.15) it follows

ˆ

B R

2j

1

k
|Du|p dx+ c(n, L)

ρ−R2−j

|∆j |

[

ˆ

Aj

1

k
|Du|p dx

]

≤ A
( ρ

R

)β
ˆ

BR

1

k
|Du|p dx

which obviously implies
ˆ

B R

2j

1

k
|Du|p dx ≤ A

( ρ

R

)β
ˆ

BR

1

k
|Du|p dx.

At this point, choosing r =
ρ

2
<

R

2
, we get

ˆ

Br

1

k
|Du|p dx ≤ Ã

( r

R

)β
ˆ

BR

1

k
|Du|p dx,

which concludes the proof. �

Now, we are ready to embark in the core of the proof of our main result.

Proof of Theorem 1.2. Let us fix a ball B2R contained in the set Ω0 defined
at (3.1). The assumption k ∈ W 1,n(Ω) implies, through the Sobolev imbedding
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Theorem that k ∈ Lq(Ω), for every q > 1. Hence, for every 0 < r < R
2
, Hölder’s

inequality yields
ˆ

Br

|Du| dx ≤

(
ˆ

Br

1

k
|Du|p dx

)
1
p
(
ˆ

Br

k
1

p−1

)
p−1
p

≤ c(||k||W 1,n(Ω))

(
ˆ

Br

1

k
|Du|p dx

)
1
p

.

Therefore, by the assumption (1.3) and estimate (3.2), we obtain
ˆ

Br

|Du| dx ≤ Cr
β
p .

In order to use Morrey’s Lemma in Theorem 2.3, we need that β satisfies

0 <
β

p
− n+ 1 ≤ 1 ⇐⇒ (n− 1)p < β ≤ np.

Since β < 1
22n+1K2

R

, such choice is possible if

K2
R <

1

p22n+1(n− 1)
.

In order to obtain the Hölder continuity, it is sufficient to choose a radius R < R0

such that
(

ˆ

BR0

|Dk|n dx

)
2
n

<
1

p22n+1(n− 1)
,

that is possible thanks to the absolute continuity of the integral.
Observe now that, for a function belonging to the Sobolev space W 1,p(Ω), with

1 < p < n, one has dimH(Ω \ Ω0) ≤ n− p, where Ω0 is the set defined at (3.1) (see
for example Theorem 3.2 in [11]). Since Dk ∈ Ln(Ω), we have dimH(Ω \Ω0) ≤ n− p

for all p < n. Hence, taking the limit as p goes to n, we have dimH(Ω \Ω0) = 0. �

We conclude with the

Proof of Corollary 1.3. It suffices to observe that, through the classical Moser
Trudinger inequality [12], the function k is exponentially integrable, i.e.,

ˆ

Ω

exp(λk
n

n−1 ) dx < +∞

for some constant λ > 0 depending on the W 1,n-norm of k. By virtue of the results
in [6, 8], we have that there exists a positive exponent β0 = β0(p, n, ||k||W 1,n(Ω)) such
that, if

Du ∈
Lp

logβ L
(Ω)

for every β > β0, then u is a finite energy solution. Once we have that u is a finite
energy solution, we may use Theorem 1.2 to conclude that there exists an open set
Ω0 ⊂ Ω with full measure such that u ∈ C0,α(Ω0), for every α ∈ (0, 1). �
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