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Abstract. We construct solutions to p-Laplace type equations in unbounded Lipschitz domains

in the plane with prescribed boundary data in appropriate fractional Sobolev spaces. Our approach

builds on a Cauchy integral representation formula for solutions.

1. Introduction

In [AAH], [AAMc], [AA], [AR], new representations and new methods for solv-
ing boundary value problems for divergence form second order, real and complex,
equations and systems were developed in domains Lipschitz diffeomorphic to the up-
per half space R

n+1
+ := {(x, t) ∈ R

n × R : t > 0}, n ≥ 1. Focusing on the case of
equations, the authors consider equations

(1.1) Lu(x, t) =

n+1
∑

i,j=1

∂i(ai,j(x, t)∂ju(x, t)) = 0, ∂n+1 = ∂t, ∂i = ∂xi
,

with A = A(x, t) = {ai,j(x, t)}
n+1
i,j=1 ∈ L∞(Rn+1

+ ,C(n+1)2), and with A being strictly

accretive on a certain subspace H of L2(R
n,C(n+1)2). The key idea/discovery in these

papers is that the equation in (1.1) becomes quite simple when expressing it in terms
of the conormal gradient f = ∇Au = [∂νAu,∇xu]

∗, ∗ denotes the transpose, ∂νAu
denotes the conormal derivative, instead of the potential u itself. Indeed, f solves a
set of generalized Cauchy–Riemann equations expressed as a first order system

(1.2) ∂tf +DBf = 0,

where D is a self-adjoint first order differential operator with constant coefficients
and B = B(x, t) is multiplication with a bounded matrix B, strictly accretive on H,
and pointwise determined by A = A(x, t). The operator DB is a bisectorial operator

on L2(R
n,C(n+1)2) and if A, and hence B, is independent of the t-coordinate, then

it is proved that DB satisfies certain square functions estimates which implies that
DB, when B is independent of the t-coordinate, has an L2-bounded holomorphic
functional calculus. When n = 1 this non-trivial fact follows from [CMcM] and for
n ≥ 2 it is a consequence of the technology developed in the context of the resolution
of the Kato conjecture, see [AHLMcT], [AKMc]. Using the holomorphic functional
calculus for DB one can then attempt to solve (1.2), when B is independent of the
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t-coordinate, by the semi-group formula f = e−t|DB|g, with g = g(x) in a suitable
trace space and f has non-tangential maximal and square function estimates. The
situation when A, and hence B, is dependent on the t-coordinate can be addressed
by perturbing the t-independent case and using a Picard iteration like argument, see
[AA], [AR].

It is in general a very interesting program to attempt to understand to what
extent the approach outlined above can be used in the context of non-linear ellip-
tic partial differential equations and in this paper we establish one such result in
the non-linear setting of operators of p-Laplace type. Note that there has recently
been significant progress concerning the boundary behaviour of non-negative solu-
tions to the p-Laplace operator, in R

n, n ≥ 1, progress which gives at hand that
many results previous established in the linear case of the Laplace operator, p = 2,
see [CFMS], [D], [JK], remain valid also in the non-linear and potentially degenerate
setting of the p-Laplace operator. Indeed, in [LN1], [LN2], [LN3], a number of results
concerning the boundary behaviour of positive p-harmonic functions, 1 < p < ∞,
in a bounded Lipschitz domain Ω ⊂ R

n were proved. In particular, the boundary
Harnack inequality and the Hölder continuity for ratios of positive p-harmonic func-
tions, 1 < p < ∞, vanishing on a portion of ∂Ω were established. Furthermore, the
p-Martin boundary problem at w ∈ ∂Ω was resolved under the assumption that Ω is
either convex, C1-regular or a Lipschitz domain with small constant. Also, in [LN4]
these questions were resolved for p-harmonic functions vanishing on a portion of cer-
tain Reifenberg flat and Ahlfors regular NTA-domains. The results and techniques
developed in [LN1]–[LN4] concerning p-harmonic functions have also been used and
further developed in [LN5], [LN6] in the context of free boundary regularity in gen-
eral two-phase free boundary problems for the p-Laplace operator and in [LN7] in
the context of regularity and free boundary regularity, below the continuous thresh-
old, for the p-Laplace equation in Reifenberg flat and Ahlfors regular NTA-domains.
These results are indications, and there are several others, that many results valid
in the linear case may still, with the right approach, be possible to prove also in the
non-linear context of the p-Laplace operator. While we here restrict ourselves to the
case n = 1, the planar case, for reasons to be discussed below, the ambition is to also
understand the case n ≥ 2 in future papers.

To outline our set-up, we let Ω ⊂ R
2 be an unbounded domain of the form

Ω = {(x, y) : x ∈ R, y > φ(x)}, where φ : R → R denotes a Lipschitz function with
constant M . Our main model equation is, given 1 < p <∞, the p-Laplace equation

(1.3) div (|∇u|p−2∇u) = 0.

Given 1 < p <∞, we denote by W 1,p(Ω) the space of equivalence classes of functions
f ∈ Lp(Ω) with distributional gradients ∇f = (∂xf, ∂yf) which are in Lp(Ω) as well.
Let ‖f‖1,p = ‖f‖p + ‖ |∇f | ‖p be the norm in W 1,p(Ω) where ‖ · ‖p denotes the usual
norm in Lp(Ω). Next, let C∞

0 (Ω) be the set of infinitely differentiable functions with
compact support in Ω, and let W 1,p

0 (Ω) be the closure of C∞
0 (Ω) in the norm of

W 1,p(Ω). We say that u is a weak solution to (1.3) in Ω provided u ∈ W 1,p(Ω) and

(1.4)

ˆ

Ω

|∇u|p−2∇u · ∇θ dx dy = 0
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whenever θ ∈ W 1,p
0 (Ω). In the special case p = 2 the equation in (1.3) reduces to the

linear Laplace equation

(1.5) div(∇u) = ∂xxu+ ∂yyu = 0 in Ω.

Let γ = {(x, φ(x)) : x ∈ R} = ∂Ω and consider, at a point (x, y) ∈ γ, the vector fields
(0, 1), (1, φ′(x)). Note that the vector field (1, φ′(x)) is tangential to γ at (x, φ(x)).
Based on these vector fields we introduce the first order differential operators

∂⊥ := (0, 1) · (∂x, ∂y) = ∂y,

∂|| := (1, φ′(x)) · (∂x, ∂y) = ∂x + φ′(x)∂y = ∂x + φ′(x)∂⊥.(1.6)

Let, given 1 < p < ∞, u be a weak solution to (1.3) in Ω. Then, using interior
regularity results for the p-Laplace operator, see [DiB], [L], [T], u is C1,ǫ-regular
locally, for some ǫ ∈ (0, 1), and hence ∇u is well-defined pointwise. To proceed
we first fix some notation. Here and below, we often identify C and R

2, writing
a + ib = (a, b)∗, where ∗ denotes transpose. Sometimes we also identity a + ib with

the multiplication operator

[

a −b
b a

]

. We parametrize Ω with

y = t + φ(x)

so that (x, y) ∈ Ω corresponds to (x, t) ∈ R
2
+. We sometimes write functions f(x, t)

as ft(x). Now, using this notation and the operators ∂⊥, ∂||, introduced in (1.6), in
Section 2 we prove that u is a weak solution to (1.3) in Ω if and only

f(x, t) = (f1(x, t), f2(x, t))
∗ = (∂xu(x, y),−∂yu(x, y))

∗,

that is f(x, t) = ∇u(x, t+ φ(x)), is a solution to the first order system

(1.7) ∂tf +B(f)Df = 0.

Here

D :=

[

0 ∂x
−∂x 0

]

= −i∂x

and

B(f) =
1

∆p

[

B11(f) B12(f)
B21(f) B22(f)

]

,(1.8)

with

B11(f) = (p− 2)f 2
2 + |f |2,(1.9)

B22(f) = (p− 2)f 2
1 + |f |2,

B12(f) = ((p− 2)f 2
1 + |f |2)φ′(x),

B21(f) = −2(p− 2)f1f2 − (φ′(x))((p− 2)f 2
1 + |f |2),(1.10)

and

∆p = ((p− 2)f 2
2 + |f |2)− 2φ′(x)(p− 2)f1f2 + (φ′(x))2((p− 2)f 2

1 + |f |2).(1.11)

To ease notation, here we suppress the dependence of B(f) on p and on φ′(x). Note
that if φ′ ≡ 0, that is Ω = R

2
+, then

(1.12) B(f) =
1

(p− 2)f 2
2 + |f |2

[

(p− 2)f 2
2 + |f |2 0

−2(p− 2)f1f2 (p− 2)f 2
1 + |f |2

]

,
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and if p = 2, then B(f) = B0 where

(1.13) B0(x) :=
1

1 + (φ′(x))2

[

1 φ′(x)
−φ′(x) 1

]

=
1

1 + iφ′(x)
.

In particular, when p = 2 and φ′ ≡ 0, then the system in (1.7) reduces to the classical
Cauchy–Riemann equations.

Define the boundary Cauchy integral

(S0h)t(x) =
1

2πi

ˆ

R

h(y)(1 + iφ′(y))

(y + iφ(y))− (x+ i(t+ φ(x)))
dy, h : R → C,

and the solid Cauchy integral

(S̃h)t(x) =
1

2πi

¨

R2
+

h(y, s)(1 + iφ′(y))

(y + i(s+ φ(y))− (x+ i(t + φ(x))
dy ds, h : R2

+ → C.

Let, given 0 < σ < 1, Ḣσ(R) denote the homogeneous fractional Sobolev space of
order σ. Our main results are Theorem 1.1 and Theorem 1.2 below. The first result,
Theorem 1.1, gives a Cauchy integral representation for solutions to the p-Laplace
equation.

Theorem 1.1. Let 1 < p < ∞, 0 < σ < 1, and 0 ≤ M < ∞ be given. Assume

that φ : R → R is a Lipschitz function with ‖φ′‖∞ ≤M and assume that u is a weak

solution to (1.3) in Ω = {(x, y) : x ∈ R, y > φ(x)} satisfying

(1.14)

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy <∞.

Let f(x, t) = (∂xu(x, y),−∂yu(x, y))
∗, y = t + φ(x). Then there exists g ∈ Ḣσ(R)

such that the Cauchy integral representation

(1.15) f = S0g + S̃((B0 −B(f))Df),

holds in R
2
+. In particular, the trace of f is

f0 = lim
t→0+

(S0g)−

ˆ ∞

0

(

S0(B0 − B(fs))Dfs
)

−s
ds ∈ Ḣσ(R).

Below we use the Cauchy integral representation in (1.15) to prove solvability
of boundary value problems for the p-Laplace equation, see Theorem 1.2. In the
linear case and in the end point cases corresponding to σ = 0 and σ = 1, such a
Cauchy representation yields non-trivial trace results for elliptic equations, see [AA].
However, in the case 0 < σ < 1, which we limit ourselves to here in the non-linear
case, these trace results are trivial. Indeed, as we note in Theorem 4.1 stated below,
the trace result

Ḣ1(R2
+, t

1−2σ) → Ḣσ(R)

holds in general and not only for solutions to some PDE.

Theorem 1.2. Let p, σ,M, φ, be as in Theorem 1.1. Then there exists δ =
δ(σ,M), δ > 0, such that if |p− 2| < δ, then the following is true. Given any bound-

ary data h ∈ Ḣσ(R), there exists a weak solution u to (1.3) in Ω = {(x, y) : x ∈
R, y > φ(x)} satisfying

(1.16)

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy <∞,
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and the boundary condition

∂xu(x, φ(x)) = h(x), x ∈ R,

where the trace of ∇u is taken in the sense of Theorem 4.1. The same solvability

result also holds true for the boundary condition ∂yu(x, φ(x)) = h(x).

1.1. Organization of the paper. In Section 2 we first show how quasi-linear
PDEs in the plane can be reduced to a vector valued ODE. In this section we also
show that our system of ODEs is closely related to the theory of quasiconformal and
quasiregular mappings in the plane. Section 3 is devoted to functional calculus and
Cauchy type formulas in our setting and we here prove key quantitative estimates.
Theorem 1.1 and Theorem 1.2 are proved in section 4, where we also for completeness
include some details of the proof of Theorem 4.1. In Section 5 we give a few con-
cluding remarks discussing, in particular, generalizations of our main results to more
general quasi-linear equations. We emphasize that our proofs of Theorem 1.1 and
Theorem 1.2 rely heavily on the fact that we are working in the plane. For example,
to be able to use the Cauchy integral representation of Theorem 1.1 we need to en-
sure that the zero sets {(x, t) ∈ R

2
+ : f(x, t) = 0} appearing in the construction, have

measure zero. To conclude this we here make use of the connection to quasiregular
mappings and the detailed results available concerning quasiregular mappings in the
plane, see [AIM], [IM], [IM1]. Theorem 1.2 is then proved by applying a fixed point
argument to the Cauchy integral representation from Theorem 1.1.

2. Quasi-linear PDEs in the plane

To stress generalities, in this section we consider quasi-linear equations of the more
general type

(2.1) div a(∇u) = ∂x(a1(∂xu, ∂yu)) + ∂y(a2(∂xu, ∂yu)) = 0,

where a(z) = (a1(z), a2(z)). Given p, 1 < p < ∞, we assume that the vector field
a : R2 → R

2 is C1-regular and satisfies the growth and ellipticity assumptions

(2.2)

{

|a(z)| + |∇a(z)||z| ≤ L|z|p−1,

[5pt]ν|z|p−2|ξ|2 ≤ 〈∇a(z)ξ, ξ〉,

whenever z, ξ ∈ R
2 and for some fixed parameters 0 < ν ≤ L. Here ∇a(z) denotes

the Jacobian matrix of a. We say that u is a weak solution to (2.1) in Ω provided
u ∈ W 1,p(Ω) and

(2.3)

ˆ

a(∇u) · ∇θ dx = 0

whenever θ ∈ W 1,p
0 (Ω). If a(z) = |z|p−2z, then a solution to (2.3) is referred to as

a p-harmonic function and we emphasize that this main example of equations (2.1),
(2.2), is given by the p-Laplace equation introduced in (1.3).

2.1. Reduction of the PDE to a system of ODEs. Let Ω ⊂ R
2 be an

unbounded domain of the form Ω = {(x, y) : x ∈ R, y > φ(x)} where φ : R → R

denotes a Lipschitz function with constant M . Recall the first order operators ∂⊥,
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∂||, introduced in (1.6). Using ∂⊥, ∂|| we see, given a vector field v = (v1, v2), that

curl v = ∂xv2 − ∂yv1 = ∂||v2 − ∂⊥v1 − φ′(x)∂⊥v2,

div v = ∂xv1 + ∂yv2 = ∂||v1 − φ′(x)∂⊥v1 + ∂⊥v2.(2.4)

Let w(x, y) = (w1(x, y), w2(x, y)) = (∂xu(x, y),−∂yu(x, y)), where u is weak solution
to (2.1). Then using (2.4) and (2.1) we have that

0 = −∂||w2 − ∂⊥w1 + φ′(x)∂⊥w2,

0 = ∂||a1(w̄)− φ′(x)∂⊥a1(w̄) + ∂⊥a2(w̄).(2.5)

Simply writing a for a(w̄) and φ′ for φ′(x), we see that the second relation (2.5) can
be expressed as

0 = (∂1a1)∂||w1 − (∂2a1)∂||w2 − φ′
(

(∂1a1)∂⊥w1 − (∂2a1)∂⊥w2

)

+ (∂1a2)∂⊥w1 − (∂2a2)∂⊥w2.(2.6)

We next want to solve for (∂⊥w1, ∂⊥w2) in the system

0 = −∂||w2 − ∂⊥w1 + φ′∂⊥w2,

0 = (∂1a1)∂||w1 − (∂2a1)∂||w2 − φ′(x)
(

(∂1a1)∂⊥w1 − (∂2a1)∂⊥w2

)

+ (∂1a2)∂⊥w1 − (∂2a2)∂⊥w2.(2.7)

Let

A :=

[

−1 φ′

(∂1a2)− φ′(∂1a1) −(∂2a2) + φ′(∂2a1)

]

, D :=

[

0 ∂||
−∂|| 0

]

.

Using this notation, the system in (2.7) can be written as

(2.8) A

[

∂⊥w1

∂⊥w2

]

=

[

1 0
∂2a1 ∂1a1

]

D

[

w1

w2

]

=

[

1 0
∂2a1 ∂1a1

] [

∂||w2

−∂||w1

]

.

In the following, we let

∆ := − ((∂1a2)− φ′(∂1a1))φ
′ + ((∂2a2)− φ′(∂2a1))

= (∂2a2)− φ′((∂1a2) + (∂2a1)) + (φ′)2(∂1a1).(2.9)

Using this, we have

A−1 = −
1

∆

[

(∂2a2)− φ′(∂2a1) φ′

(∂1a2)− φ′(∂1a1) 1

]

,

and

A−1

[

1 0
(∂2a1) (∂1a1)

]

= −
1

∆

[

∂2a2 (∂1a1)φ
′

(∂2a1) + (∂1a2)− φ′(∂1a1) ∂1a1

]

.

Let, for w = (w1, w2) and φ given,

Bw,φ(x, t) :=
1

∆

[

(∂2a2)(w̄) (∂1a1)(w̄)φ
′(x)

((∂2a1)(w̄) + (∂1a2)(w̄)− φ′(x)(∂1a1)(w̄)) (∂1a1)(w̄)

]

.

Then (2.8) can be restated as

(2.10)

[

∂⊥w1

∂⊥w2

]

+Bw,φD

[

w1

w2

]

= 0.

We summarize our findings as follows.
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Lemma 2.1. A function u is a weak solution to (2.1) in Ω if and only if

f(x, t) = (f1(x, t), f2(x, t)) :=
(

∂xu(x, t+ φ(x)),−∂yu(x, t+ φ(x))
)∗

satisfies

(2.11) ∂t

[

f1
f2

]

+Bf,φD

[

f1
f2

]

= 0, D :=

[

0 ∂x
−∂x 0

]

,

in R
2
+ := {(x, t) ∈ R

2 : t > 0} where

(2.12) Bf,φ(x, t) :=
1

∆

[

∂2a2(f̄) (∂1a1(f̄))φ
′(x)

(∂2a1(f̄)) + (∂1a2(f̄))− φ′(x)(∂1a1(f̄)) ∂1a1(f̄)

]

and

(2.13) ∆ := (∂2a2)(f̄)− φ′(x)
(

(∂1a2)(f̄) + (∂2a1)(f̄)
)

+ (φ′(x))2(∂1a1)(f̄).

Recall that a 2×2-dimensional matrix B, defined in R
2 and potentially complex

valued, is said to be accretive if

(2.14) κ := essinf(x,t)∈R2 inf
ξ∈C2\{0}

Re(B(x, t)ξ, ξ)

|ξ|2
> 0.

Lemma 2.2. Let a : R2 → R
2 be a C1-regular vector field satisfying (2.2) for

some fixed parameters 0 < ν ≤ L. Let B = Bf,φ be as in (2.12), (2.13). Then

B ∈ L∞(R2
+,C

2) and B is accretive in the sense of (2.14). Furthermore, the L∞-

bound on B, and the parameter of accretivity κ, depend only on p, M , ν, and L.

Proof. First, using the ellipticity type condition in (2.2) we see that

∆ ≥ ν|f̄ |p−2(1 + (φ′(x))2).

Hence, using also the upper bound in (2.2) we can conclude that

|B| ≤
c(L)

∆
|f̄ |p−2(1 + φ′(x)) ≤ c(p,M, ν, L).

To estimate the parameter of accretivity, let ξ ∈ C
2 \ {0}, (x, t) ∈ R

2
+, and note that

Re(B(x, t)ξ, ξ) = B11|ξ1|
2 +B22|ξ2|

2 +B12Re(ξ̄1ξ2) +B21Re(ξ1ξ̄2)

= (∂1a1(f̄))|ξ1|
2 + (∂2a2(f̄))|ξ2|

2 + ((∂1a2(f̄)) + (∂2a1(f̄)))Re(ξ1ξ̄2)(2.15)

and the estimate now follows from (2.2). �

2.2. Quasi-regular mappings in the plane. Consider a function f : Ω → Ω′

where Ω,Ω′ ⊂ C. Let z = x + iy ∈ C and assume that f has a derivative ∇f at z.
We let ∂zf = (∂xf − i∂yf)/2, ∂z̄f = (∂xf + i∂yf)/2 and we write the derivative as

∇f(z)h = ∂zf(z)h + ∂z̄f(z)h̄, h ∈ C = R
2.

Note that
|∇f(z)|2 = |∂zf(z)|

2 + |∂z̄f(z)|
2

and that the Jacobian equals

J(z, f) = |∂zf(z)|
2 − |∂z̄f(z)|

2.

Recall that if the mapping f satisfies f ∈ W 1,2
loc

(Ω), f is orientation preserving so that
J(z, f) ≥ 0 a.e., and if

(2.16) |∇f(z)|2 ≤ KJ(z, f) for almost every z ∈ Ω,
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then f is called K-quasiregular. The smallest number K for which (2.16) holds is
called the dilation of f and we denote this number by K(f). Constant functions are
by definition 0-quasiregular. If, in addition, f is a homeomorphism, then f is called
K-quasiconformal. Note that (2.16) can also be expressed as

(2.17) |∂zf(z)|
2 + |∂z̄f(z)|

2 ≤ K(|∂zf(z)|
2 − |∂z̄f(z)|

2)

or equivalently

(2.18) |∂z̄f(z)|
2 ≤

K − 1

K + 1
|∂zf(z)|

2 for almost every z ∈ Ω.

In particular, f : Ω → Ω′ is K-quasiregular if and only if f ∈ W 1,2
loc

(Ω), f is orientation
preserving and

(2.19) ∂z̄f(z) = µ(z)∂zf(z) for almost every z ∈ Ω,

where µ, called the Beltrami coefficent of f , is a bounded measurable function satis-
fying

(2.20) ‖µ‖∞ ≤

√

K − 1

K + 1
< 1.

Note that the differential equation in (2.19) is called the Beltrami equation and it
is this equation that provides the link from the geometric theory of quasiconformal
mappings to complex analysis and to elliptic partial differential equations. For ac-
counts of these connections we refer to [AIM], [IM], and [IM1]. The following lemma
connects the notion of quasiregular mappings to the set-up used in this paper.

Lemma 2.3. Let f = (f1, f2) ∈ W 1,2
loc

(Ω) be non-constant. If ∂tf + BDf = 0
for some bounded and accretive B then f is quasiregular. Furthermore, if f is

quasiregular and if we define the complex linear multiplier B := −∂tf/Df , then B
is bounded and accretive and ∂tf +BDf = 0.

Proof. Assume that ∂tf +BDf = 0 for some bounded and accretive B. Simply
note that

|∇f |2 = |∂xf1|
2 + |∂xf2|

2 + |∂tf1|
2 + |∂tf2|

2 = |∂tf |
2 + |Df |2,

J(f) = ∂xf1∂tf2 − ∂xf2∂tf1 = −(∂tf,Df),(2.21)

and hence |∇f |2 ≈ |Df |2 . (BDf,Df) = −(∂tf,Df), so f is quasiregular. To prove
the other direction, assume that f is quasiregular and let B := −∂tf/Df by complex
division. Then ∂tf + BDf = 0 and B is bounded since |∂tf |

2 + |Df |2 . |∂tf ||Df |.
Moreover

(2.22) 1 ≈
J(f)

|∇f |2
=

−(∂tf,Df)

|∂tf |2 + |Df |2
≈

(BDf,Df)

|Df |2
= Re(B),

so B is accretive. This completes the proof of the lemma. �

We next note the following existence and uniqueness result for the Beltrami
equation in (2.19), assuming that µ has compact support, as well as the Stoïlow
factorization of quasiregular mappings with subsequent corollary. Besides the more
modern references given below for these results, we also refer the reader to the very
readable lecture notes [Ahl, Chapter V].
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Theorem 2.1. Let µ bounded measurable function on C with compact support

and assume that

(2.23) ‖µ‖∞ ≤ k for some k < 1.

Then there exists a unique f ∈ W 1,2
loc

(Ω) such that

∂z̄f(z) = µ(z)∂zf(z) for almost every z ∈ C,

f(z) = z +O(z−1) as z → ∞.(2.24)

Moreover, there exists p(k) such that f ∈ W 1,p
loc

(Ω) for all p, 2 ≤ p < p(k).

Proof. This is Theorem 5.1.2 in [AIM]. �

Theorem 2.2. Let f : Ω → Ω′ be a homeomorphic solution to the Beltrami

equation in (2.19), with |µ(z)| ≤ k < 1 almost everywhere on Ω, and assume that

f ∈ W 1,1
loc

(Ω). Suppose that g ∈ W 1,2
loc

(Ω) is any other solutions to (2.19). Then there

exists a holomorphic function Φ: Ω′ → C such that

g(z) = Φ(f(z)), z ∈ Ω.

Conversely, if Φ is holomorphic in Ω′, then the composition Φ ◦ f is a W 1,2
loc

-solution

to (2.19) in Ω.

Proof. This is Theorem 5.5.1 in [AIM]. �

Corollary 2.1. Let f be a non-constant quasiregular mapping defined on a

domain Ω ⊂ C. Then

(1) f is open and discrete,

(2) f is locally Hölder continuous with exponent α = 1/K, K = K(f), and

(3) f is differentiable with non-vanishing Jacobian almost everywhere.

Proof. This is essentially Corollary 5.5.2 in [AIM]. �

Recall that a mapping f : Ω→R
2 is discrete if f−1(y) is a discrete set for all

y ∈ R
2, and f is open if it takes open sets onto open sets. That f−1(y) is a discrete

set means that it is made up by isolated points. We also note the following lemma
concerning the convergence of K-quasiregular mappings.

Lemma 2.4. Let fj : Ω → R
2, j = 1, 2, . . ., be a sequence of K-quasiregular

mappings converging locally uniformly to a mapping f . Then f is quasiregular and

K(f) ≤ lim sup
j→∞

K(fj).

Proof. See, for example Theorem 8.6 in [Ri] and the discussion above Theorem 2.4
in the same reference. �

Beltrami equations can be reduced to real elliptic divergence form equations and
the following lemma can be verified by a straightforward calculation.

Lemma 2.5. Let f = (f1, f2) ∈ W 1,2
loc

(Ω) satisfy (2.19) for some µ ∈ L∞(Ω,C)
satisfying (2.20). Define a 2×2-matrix A = Aµ = {aij} as follows. Given µ = µ1+iµ2,
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µi = µi(z) ∈ R, z ∈ C, we let

a11(z) =
1− 2µ1(z) + |µ(z)|2

1− |µ(z)|2
, a22(z) =

1 + 2µ1(z) + |µ(z)|2

1− |µ(z)|2
,

a12(z) = a21(z) = −
2µ2(z)

1− |µ(z)|2
.(2.25)

Then A is bounded, symmetric and satisfies det A(z) = 1 for a.e. z ∈ Ω. Furthermore,

f1 and f2 are weak solutions to the equation

div(A∇·) = 0 in Ω.

Remark 2.1. Consider the matrix A in the statement of Lemma 2.5. Using that
det A = 1 one easily see that the eigenvalues of A(z) are

λ±(z) :=
1 + |µ(z)|2

1− |µ(z)|2
±

√

1 + |µ(z)|2

1− |µ(z)|2
− 1.

Since |µ(z)| < 1 we immediately see that λ±(z) are greater or equal to 1 and that

(2.26) sup
z∈Ω

λ−(z) ≤ sup
z∈Ω

λ+(z) ≤
1 + β2

1− β2
+

√

1 + β2

1− β2
− 1

if |µ(z)| < β for all z ∈ Ω. In particular, if this is the case then A is uniformly
elliptic. Naturally an upper bound can also be derived by simply using the explicit
expression of the coefficients {aij}.

The following lemma is essentially statement (2) in Corollary 2.1 but we include it,
and a short discussion of its proof based on PDE-techniques, to stress the connection
between the Beltrami equation and quasi-linear PDEs.

Lemma 2.6. Let f = (f1, f2) be as in the statement of Lemma 2.5 and assume

that |µ(z)| ≤ β < 1 on Ω. Then there exist c = c(β), 1 ≤ c < ∞, and σ = σ(β) ∈
(0, 1), such that if B(z, 2R) ⊂ Ω then

sup
z1,z2∈B(z,r)

|f(z2)− f(z1)| ≤ c(r/R)σ
(

R−2

ˆ

B(z,2R)

|f |2 dz

)1/2

.

Proof. Let f = (f1, f2) be as in the statement of Lemma 2.5 and assume that
|µ(z)| ≤ β < 1 on Ω. Consider a ball B(z, R) such that B(z, 2R) ⊂ Ω. Then, using
Lemma 2.5 and Moser iteration we have that

sup
z1,z2∈B(z,r)

|f(z2)− f(z1)| ≤ c(r/R)σ
(

R−2

ˆ

B(z,2R)

|f |2 dz

)1/2

where c, σ ∈ (0, 1) are independent of f , r and R. In fact, c and σ only depend on
the the operator through the ellipticity and the bounded on the coefficients and if
|µ(z)| ≤ β < 1 on Ω, see Lemma 2.1, then c and σ will depend on µ through β. �

3. Functional calculus and Cauchy operators

Recall the definition of D introduced below (1.7) and the matrix B0 defined in
(1.13). Given p, f , φ, we in the following write B(f) = Bf,φ

p for this generic t-
dependent matrix. In line with [AA], [AR] we approach the system in (1.7) using
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a functional calculus build on the t-independent matrix B0. As references for func-
tional calculus we refer to [ADMc], [Ar], [AMcN], [DS], [H], [Mc], [Mc1], [McY]. Let
L2(R) = L2(R,C) and let, for −1 ≤ α ≤ 1,

(3.1) L2(R
2
+, t

α) :=

{

f : R2
+ → C

2 :

ˆ ˆ

R2
+

|f(x, t)|2tαdtdx <∞

}

.

Then, both as an operator in L2(R) and in L2(R
2
+, t

α), acting in the x-variable for
each fixed t > 0, DB0 and B0D define closed and densely defined operators with
spectrum contained in a bisector Sω = Sω+ ∪ (−Sω+) where

(3.2) Sω+ := {λ ∈ C : | arg λ| ≤ ω} ∪ {0}, ω < π/2.

In particular, as a consequence of [CMcM] we note that both DB0 and B0D have
bounded holomorphic functional calculi which supply estimates of operators ψ(DB0)
and ψ(B0D) formed by applying holomorphic functions ψ : So

µ → C, ω < µ, to the
operators DB0 and B0D respectively. Here So

µ = So
µ+ ∪ (−So

µ+) denotes the open
bisector, where

So
µ+ := {λ ∈ C : | argλ| < µ} \ {0},

Note here, in particular, that ψ need not be analytic across 0 or at ∞.
Applying the functional calculi with the scalar holomorphic functions λ→ |λ| :=

±λ, if ±Re λ > 0, λ→ e−t|λ|, λ→ χ±(λ) := 1 if ±Re λ > 0 and 0 elsewhere, we get
operators

Λ0 := |DB0|, e
−t|DB0|, t > 0, E±

0 := χ±(DB0),

Λ̃0 := |B0D|, e−t|B0D|, t > 0, Ẽ±
0 := χ±(B0D),(3.3)

acting as operators in L2(R). We note that the operators Ẽ±
0 are projections and

that we have a topological splitting

(3.4) L2(R) = Ẽ+
0 L2(R)⊕ Ẽ−

0 L2(R).

Using this notation we define the operators

(S0h)t(x) =

{

(e−tΛ̃0Ẽ+
0 h)(x), t > 0,

−(etΛ̃0Ẽ−
0 h)(x), t < 0,

and

(3.5) (S̃h)t(x) :=

ˆ t

0

e−(t−s)Λ̃0Ẽ+
0 B0hs(x) ds+

ˆ ∞

t

e−(s−t)Λ̃0Ẽ−
0 B0hs(x) ds, t > 0.

As we will see in Lemma 3.1 below, these operators coincide with the boundary and
solid Cauchy integrals from the introduction.

We intend to derive a representation formula for solutions to the equation

(3.6) ∂tft +B(ft)Dft = 0, ft ∈ L2(R).

To do this we first write

∂tft +B0Dft = B0EtDft, where

Et = Et(x) := (E(f))t(x) := I − (B0(x))
−1B(f(x, t)).(3.7)
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Applying the projections Ẽ±
0 we see that

∂tf
+
t + Λ̃0f

+
t = Ẽ+

0 B0EtDft,

∂tf
−
t − Λ̃0f

−
t = −Ẽ−

0 B0EtDft.(3.8)

where now f±
t = Ẽ±

0 ft. Formally assuming that

lim
t→0+

ft = f0, lim
t→∞

ft = 0,

we can integrate the equations in (3.8) to conclude that

f+
t − e−tΛ̃0f+

0 =

ˆ t

0

e−(t−s)Λ̃0Ẽ+
0 B0EsDfs ds,

0− f−
t = −

ˆ ∞

t

e−(s−t)Λ̃0Ẽ−
0 B0EsDfs ds.(3.9)

Subtracting the equations in (3.9), we see that

(3.10) ft = (S0f0)t + S̃EtDft,

and we have derived a representation formula for (3.6). To continue we note that

(3.11) Dft = De−tΛ̃0Ẽ+
0 f0 +DS̃EtDft.

However, using the relation Dψ(B0D) = ψ(DB0)D through the holomorphic func-

tional calculus we first see that De−tΛ̃0Ẽ+
0 f0 = e−tΛ0E+

0 Df0. Furthermore, by the
same argument we have that

De−(t−s)Λ̃0Ẽ+
0 B0 = Λ0e

−(t−s)Λ0E+
0 ,

De−(s−t)Λ̃0Ẽ−
0 B0 = Λ0e

−(t−s)Λ0E−
0 .(3.12)

Define

(Sh)t(x) :=D(S̃h)(x)

=

ˆ t

0

Λ0e
−(t−s)Λ0E+

0 hs(x) ds+

ˆ ∞

t

Λ0e
−(s−t)Λ0E−

0 hs(x) ds,(3.13)

for h ∈ L2(R) so that

(3.14) Dft = e−tΛ0E+
0 Df0 + SEtDft.

For a rigorous definition of the singular integral operator S, see [AA]. We here note
the following lemma concerning the operators S0, S̃ and S and their relation to
classical analysis in the complex plane.

Lemma 3.1. Let S0, S̃ and S be defined as above. Then S0 is the boundary

Cauchy integral

(S0h)t(x) =
1

2πi

ˆ

R

h(y)(1 + iγ′(y)) dy

(y + iγ(y))− (x+ iγ(x))
,

S̃ is the solid Cauchy integral

(S̃h)t(x) =
1

2πi

¨

R2
+

h(y, s)(1 + iφ′(y))

(y + i(s+ φ(y))− (x+ i(t + φ(x))
dy ds,
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and S = DS̃ is the Beurling transform

(Sh)t(x) = −
1

2π
p.v.

¨

R2
+

h(y, s)(1 + iφ′(y))

((y + i(s + φ(y))− (x+ i(t+ φ(x)))2
dy ds.

Proof. The result for the boundary Cauchy singular integral is well known, see
for example [McQ]. Integration and derivation gives the result for S̃ and S. �

To further understand the appropriate function spaces, we consider the free evo-

lution e−tΛ̃0Ẽ+
0 f and we note that

¨

R2
+

|De−tΛ̃0Ẽ+
0 f |

2t1−2σ dx dt ≈

¨

R2
+

|B0De
−tB0DẼ+

0 f |
2t1−2σ dx dt

=

ˆ

R+

(
ˆ

R

∣

∣

∣

∣

t1−σB0De
−tΛ̃0Ẽ+

0 f

∣

∣

∣

∣

2

dx

)

dt

t
.(3.15)

Note that Λ̃0 = sgn(B0D)B0D and since sgn(B0D) is invertible we can conclude that

(3.16)

¨

R2
+

|De−tΛ̃0Ẽ+
0 f |

2t1−2σ dx dt ≈

ˆ

R+

(
ˆ

R

∣

∣

∣

∣

(tΛ̃0)
1−σe−tΛ̃0Λ̃σ

0Ẽ
+
0 f

∣

∣

∣

∣

2

dx

)

dt

t
.

Using that ψ(tB0D) := (tΛ̃0)
1−σe−tB0D satisfies square function estimates when σ <

1, it follows from (3.16) that

(3.17)

¨

R2
+

|De−tΛ̃0Ẽ+
0 f |

2t1−2σ dx dt ≈

ˆ

R

∣

∣

∣

∣

Λ̃σ
0 Ẽ

+
0 f

∣

∣

∣

∣

2

dx.

However, D(Λ̃0) = D(B0D) ≈ D(D) ≈ D(∇) = Ḣ1(R) and D(Λ̃0
0) = L2(R). Hence,

as in [R], by interpolation we see that

(3.18) D(Λ̃σ
0) = Ḣσ(R).

In particular, we have the following estimates.

Lemma 3.2. Let 0 ≤ σ ≤ 1. For all f ∈ D(Λ̃σ
0) we have

‖Λ̃σ
0f‖2 ≈ ‖f‖Ḣσ(R).

Lemma 3.3. The following estimates hold:

(1) For σ ∈ [0, 1],

sup
t>0

‖e−tΛ̃0Ẽ+
0 f‖Ḣσ(R) ≤ c‖f‖Ḣσ(R).

(2) For σ ∈ [0, 1),
¨

R2
+

|De−tΛ̃0Ẽ+
0 f |

2t1−2σ dx dt ≤ c‖f‖2
Ḣσ(R)

.

Remark 3.1. Below we refer to [R] for many results concerning solving linear
boundary value problems for first order systems of the form

∂tf +B0Df = 0,

with boundary trace f |R∈Ḣσ(R). Applying the isomorphismD : Ḣσ(R)→Ḣσ−1(R),
pointwise in t, to this equation, yields the system

∂tf̃ +DB0f̃ = 0,
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for f̃ := Df ∈ Ḣσ−1(R). Thus the results stated in [R] for f̃ , transfer directly to the
setting in this paper for f .

To establish estimates for the operators S and S̃ we first note that for a multiplier
E we have

(3.19) sup
‖f‖

L2(R
2
+

,t1−2σ)
=1

‖Ef‖L2(R2
+,t1−2σ) = ‖E‖L∞(R2

+).

We next prove the following lemma.

Lemma 3.4. The following estimates hold:

(1) For σ ∈ [0, 1/2),

sup
t>0

‖S̃EtDft‖
2
Ḣσ(R)

≤ c‖E‖2L∞(R2
+)

¨

R2
+

|Df(x, t)|2t1−2σ dx dt.

(2) For σ ∈ [1/2, 1),

sup
t>0

1

t

ˆ 2t

t

‖S̃EsDfs‖Ḣσ(R)ds ≤ c‖E‖2L∞(R2
+)

¨

R2
+

|Df(x, t)|2t1−2σ dx dt.

(3) For σ ∈ (0, 1),
¨

R2
+

|Sft|
2t1−2σ dx dt ≤ c

¨

R2
+

|f(x, t)|2t1−2σ dx dt.

Proof. The estimates (1) and (2) follow from [R, Thm. 1.3]. For the reader’s
convenience we outline the proof here. Let ht := EtDft and consider

(3.20) S̃ht =

ˆ t

0

e−(t−s)Λ̃0Ẽ+
0 B0hsds+

ˆ ∞

t

e−(s−t)Λ̃0Ẽ−
0 B0hsds.

Then

(3.21) Λ̃σ
0 S̃ht =

ˆ t

0

Λ̃1−σ̃
0 e−(t−s)Λ̃0Ẽ+

0 B0hs ds+

ˆ ∞

t

Λ̃1−σ̃
0 e−(s−t)Λ̃0Ẽ−

0 B0hs ds

where σ̃ = 1 − σ. Using Lemma 3.2 we see that we want to estimate ‖Λ̃σ
0 S̃ht‖2. To

do this we, following [R], write

(3.22) Λ̃σ
0 S̃ht = I1 + I2 + I3 + I4

where

I1 =

ˆ 2t

t/2

Λ̃1−σ̃
0 e−(t−s)Λ̃0Ẽ

sgn(t−s)
0 B0hs ds,

I2 =

ˆ t/2

0

Λ̃1−σ̃
0 e−(t−s)Λ̃0(I − e−2sΛ̃0)Ẽ+

0 B0hs ds,

I3 =

ˆ ∞

2t

Λ̃1−σ̃
0 e−(t−s)Λ̃0(I − e−2sΛ̃0)Ẽ−

0 B0hs ds,

I4 = e−tΛ̃0

ˆ

R\[t/2,2t]

Λ̃1−σ̃
0 e−sΛ̃0Ẽ

sgn(t−s)
0 B0hs ds,(3.23)
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and where sgn(t − s) is interpreted as ′+′ when positive and as ′−′ when negative.
Consider first the case when σ ∈ [0, 1/2), i.e., σ̃ ∈ (1/2, 1]. We then immediately see
that

‖I1‖2 .

ˆ 2t

t/2

‖hs‖2
|t− s|1−σ̃

ds .

(

t2σ−1

ˆ 2t

t/2

1

|t− s|2−2σ̃
ds

)1/2

‖h‖L2(R2
+,t1−2σ)

. ‖h‖L2(R2
+,t1−2σ).(3.24)

To estimate ‖I2‖2 we note that

‖Λ̃1−σ̃
0 e−(t−s)Λ̃0(I − e−2sΛ̃0)‖

= ‖(s/(t− s)2−σ̃)((t− s)Λ̃0)
2−σ̃e−(t−s)Λ̃0(I − e−2sΛ̃0)/(sΛ̃0‖ . s/t2−σ̃.(3.25)

Using this we see that

(3.26) ‖I2‖2 .

ˆ t/2

0

s/t2−σ̃‖hs‖2 ds . ‖h‖L2(R2
+,t1−2σ).

Obviously a similar estimate holds for ‖I3‖2. Finally, to estimate ‖I4‖2 we consider
φ ∈ L2(R), ‖φ‖2 = 1, and note that

(3.27) |(I4, φ)| .

ˆ ∞

0

‖(sΛ̃0)
1−σ̃e−sΛ̃∗

0φ‖2‖s
σ̃hs‖2

ds

s
. ‖h‖L2(R2

+,t1−2σ).

These estimates complete the proof of (1). The proof of (2), in this case σ ∈ [1/2, 1),
i.e., σ̃ ∈ (0, 1/2], follow similar except that in this case we we have to be slightly
more careful when estimating

(3.28)
1

t

ˆ 2t

t

‖I1(s)‖2 ds

where

(3.29) I1(s) =

ˆ 2s

s/2

Λ̃1−σ̃
0 e−(s−τ)Λ̃0Ẽ

sgn(s−τ)
0 B0hτ dτ.

Indeed, in this case we have

1

t

ˆ 2t

t

‖I1(s)‖2 ds .
1

t

ˆ 2t

t

(
ˆ 2s

s/2

‖hτ‖2
|s− τ |1−σ̃

dτ

)

ds

.
1

t

ˆ 2t

t

(
ˆ 2s

s/2

1

|s− τ |1−σ̃
dτ

)(
ˆ 2s

s/2

‖hτ‖
2
2

|s− τ |1−σ̃
dτ

)

ds

.
1

t

ˆ 2t

t

τ σ̃
(
ˆ 2s

s/2

‖hτ‖
2
2

|s− τ |1−σ̃
dτ

)

ds

.
1

t

ˆ 4t

t/2

τ σ̃
(
ˆ 2τ

τ/2

sσ̃

|s− τ |1−σ̃
ds

)

‖hs‖
2
2 ds . ‖h‖L2(R2

+,t1−2σ).(3.30)

To complete the proof of the lemma it only remains to prove statement (3) of
the lemma. However, this follows from [R, Thm. 2.3], and the proof of Lemma 3.4
is complete. �
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4. Proof of the main results

In the following we let B0 be as in (1.13) and we recall the operators introduced
in (3.3) and acting in L2(R). Recall that B0D is an injective bisectorial operator
and that

(4.1) L2(R) = Ẽ+
0 L2(R)⊕ Ẽ−

0 L2(R).

Lemma 4.1. Given p, 1 < p < ∞, and Lipschitz function φ with Lipschitz

constant M , let B(f) = Bf,φ
p be as in (1.8). Then there exists C(M, p) < ∞ such

that |B(f)| ≤ C(M, p) and

Re(B(f)v, v) ≥ |v|2/C(M, p), for all v ∈ C
2,

uniformly for all f 6= 0. Moreover, for a fixed Lipschitz function φ, we have

lim sup
p→2

(

supf 6=0 |B(f)− B0|

|p− 2|

)

<∞.

Proof. The proof is straightforward and we omit it. �

Theorem 4.1. Let 0 < σ < 1. The trace map, initially defined on C∞
0 (R2

+),

extends uniquely by continuity to a bounded linear operator Ḣ1(R2
+, t

1−2σ) → Ḣσ(R)
with bounds

(4.2)

¨

R2

|f(x, 0)− f(x′, 0)|2

|x− x′|1+2σ
dx dx′ ≤ c

¨

R2
+

|∇f(x, t)|2t1−2σ dx dt.

In particular, for any f ∈ Ḣ1(R2
+, t

1−2σ), we have limits limt→0+ ft = f0 and limt→∞ ft
= 0 in Ḣσ(R).

Proof. Given a smooth and compactly supported function f , and writing

|f(x, 0)− f(x′, 0)| ≤ |f(x, 0)− f(x, t)|+ |f(x, t)− f(x′, t)|+ |f(x′, t)− f(x′, 0)|,

with t := |x− x′|, it is straightforward to establish the stated trace bound. Indeed,
the bound follows by applying a Hardy estimate, with weight t1−2σ in the variable t,
to the first and last terms, and Plancherel’s identity in the variable h = x−x′ to the
middle term. The density of, and the extension from, C∞

0 (R2
+) is proved as follows.

By Chua [Ch], it suffices to prove density of C∞
0 (R2) in the corresponding weighted

Sobolev Ḣ1(R2, |t|1−2σ) space on R
2. Standard mollification together with a cutoff

argument, using the weighted Poincaré inequality of Fabes, Kenig and Serapioni
[FKS] applies. Note that |t|1−2σ is an A2 weight on R

2. �

4.1. Proof of Theorem 1.1. Let p, 1 < p < ∞, be given and let σ ∈ (0, 1).
Let φ : R → R be a Lipschitz function with constant at most M . Assume that u is
p-harmonic in Ω = {(x, y) : x ∈ R, y > φ(x)} and that

(4.3)

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy <∞.

Let (x, y) → (x, t), t = y − φ(x), f(x, t) = (∂xu(x, y),−∂yu(x, y))
∗. Then,

(4.4) ∂tf +B0Df = B0EDf, E := I − B−1
0 Bf,φ

p .
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We note that E is a multiplier, defined almost everywhere by Corollary 2.1, which is
bounded by Lemma 4.1, with bound independent of f . Using (3.10) we see that

(4.5) ft = e−tB0DẼ+
0 g

+ + S̃EtDft.

Formally, we expect

‖g+‖2
Ḣσ(R)

.

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy

from (3.17). This is indeed the case, and this can be proved rigorously as in [R].
We refer to [R] for detailed proofs. See Lemma 3.3 and Lemma 3.4 for the main
estimates.

4.2. Proof of Theorem 1.2. Let σ ∈ (0, 1) and a Lipschitz function φ, with

Lipschitz constant M , be given. Consider h ∈ Ḣσ(R), which we without loss of
generality assume is non-constant. Consider the linear boundary value problem

(4.6)

{

∂tf +BDf = 0, in R
2
+,

f1 = h, on R.

Assume that |p− 2| < δ, where δ > 0 can and is chosen so that the boundary value
problem in (4.6) is well posed whenever ‖B−B0‖L∞(R2

+) < δ. To prove Theorem 1.2

we intend to apply the following version of Schauder’s fixed point theorem by Singbal.
For a proof, see [B].

Theorem 4.2. Let V be a locally convex topological vector space, let X be a

non-empty closed convex subset of V , and let T be a continuous mapping of X into

a compact subset of X. Then T has a fixed point, i.e., T (x) = x for some x ∈ X.

In the proof of Theorem 1.2 our space V will be L∞(R2
+,R

2×2), equipped with
semi-norms

pf (B) :=

(

¨

R2
+

|Bf |2t1−2σ dx dt

)1/2

.

I.e., V is the subspace of multipliers in the space of bounded linear operators on
L2(R

2
+, t

1+2σ), equipped with the strong operator topology. For the set X we choose
to be the closed ball X := {B ∈ L∞(R2

+,R
2×2) : ‖B − B0‖∞ < r} around B0 in V ,

for some small radius r < δ, and the map T is set to be

T : B 7→ B(f),

where f solves the linear boundary value problem (4.6) with coefficients B, and B(f)
is calculated from f pointwise as in (1.8)–(1.11).

Using this set up we see that to prove Theorem 1.2 it remains to verify the
hypothesis of Theorem 4.2. In particular, we have to verify that T is a continuous
mapping of X into a compact subset of X.

To establish the continuity of T , we use the Cauchy integral representation from
Theorem 1.1 and the operators and estimates from Section 3 as follows. Consider a
strongly convergent sequence Bn → B of coefficients in X. Consider the auxiliary
linear operator PB : Ḣσ(R) → Ḣ1(R2

+, t
1−2σ) given by

(4.7) g 7→ PBg := S0g + S̃E(I − SE)−1DS0g
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where E = I − (B0)
−1B. For any auxiliary boundary function g, this gives a solution

f := PBg to the linear PDE ∂tft + BtDft = 0. It is straightforward to verify that
the operators PBn converge strongly to PB as Bn → B. To solve the boundary value
problem, we solve the boundary equation (PB

0 g)1 = h, where PB
0 g := limt→0+(P

Bg)t.
The operators PB

0 are seen to be projections onto the subspace of Ḣσ(R) consisting of
traces of solutions to ∂tft+BtDft = 0 in R

2
+. One then verifies, see [R] and [AAMc,

Lemma 4.3], that the functions gn corresponding to Bn will converge in Ḣσ(R),
as a consequence of the strong convergence of PBn

0 as Bn → B, to the function
g corresponding to B. In total, we obtain solutions fn = PBngn which converge
to f = PBg in Ḣ1(R2

+; t
1−2σ). Poincaré’s inequality and the interior estimates of

Lemma 2.6 show that fn → f locally uniformly. From the dominated convergence
theorem, using Lemma 4.1, it follows that B(fn) = T (Bn) converges to B(f) = T (B)
in V .

To establish the compactness of the image of T we first note that it suffices, since
V is metrizable, to consider a sequence of solutions fk to linear problems ∂tfk +
BkDfk = 0, (fk)1 = h, with coefficients Bk ∈ X. However, using the bounds

‖fk‖Ḣ1(R2
+;t1+2σ) ≤ c‖h‖Ḣσ(R),

we obtain, using Poincaré’s inequality, the interior estimates of Lemma 2.6, and
Arzelà–Ascoli’s theorem, the existence of a subsequence fkj which converges locally
uniformly to some limit function f , which is quasiregular by Lemma 2.4. We note
that f is non-constant by Theorem 4.1, since the trace of f is h. The union Z ⊂ R

2
+ of

the zeros of f and all fkj , j = 1, 2, . . ., has measure zero by (1) of Corollary 2.1. Thus
B(fkj) converges pointwise to B(f) on R

2
+ \ Z. Using Lemma 4.1, the dominated

convergence theorem applies and shows that B(fkj ) converges to B(f) in the topology
of V . This completes the proof of Theorem 1.2.

5. Concluding remarks

We here briefly discuss generalizations of Theorem 1.1 and Theorem 1.2 to the more
general quasi-linear PDEs in the plane considered in section 2. Indeed, consider (2.1)
assuming (2.2) and recall Lemma 2.1. The lemma states that u is a weak solution to
(2.1) in Ω if and only if

f(x, t) = (f1(x, t), f2(x, t)) :=
(

∂xu(x, t+ φ(x)),−∂yu(x, t+ φ(x))
)∗

satisfies

(5.1) ∂t

[

f1
f2

]

+Ba,f,φ
p D

[

f1
f2

]

= 0,

in R
2
+ := {(x, t) ∈ R

2 : t > 0} where we now stress the dependence of Bf,φ
p on the

symbol a by writing Ba,f,φ
p . Furthermore, Ba,f,φ

p is given in (2.12), (2.13) and by

Lemma 2.2 we have Ba,f,φ
p ∈ L∞(R2

+,C
2) and B is accretive in the sense of (2.14).

Furthermore, the L∞-bound on Ba,f,φ
p , and the parameter of accretivity κ, depend

only on p, M , ν, and L. In the following we let B0 be as in (1.13) and we recall the
operators introduced in (3.3) and acting in L2(R). Then, as discussed, B0D is an
injective bisectorial operator and

(5.2) L2(R) = Ẽ+
0 L2(R)⊕ Ẽ−

0 L2(R).
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Let ǫ ∈ (0, 1), consider p, 1 < p < ∞, fixed and let φ be a fixed Lipschitz function
with Lipschitz constant M . Then, in the following we say that Ba,f,φ

p is within ǫ of
B0 if

sup
f 6=0

|Ba,f,φ
p − B0| < ǫ.

Note that when the underlying operator is the p-Laplace operator, i.e., a(η) = |η|p−2η,
and B(f) = Ba,f,φ

p as in (1.8), then Lemma 4.1 states that

lim sup
p→2

supf 6=0 |B
a,f,φ
p − B0|

|p− 2|
<∞

and hence in this case Ba,f,φ
p is within ǫ of B0, for any ǫ ∈ (0, 1), as long as |p − 2|

is small enough. The following two theorems, generalizing Theorem 1.1 and The-
orem 1.2 to the more general quasi-linear PDEs in the plane, can be proved by
repeating the arguments in Section 4.

Theorem 5.1. Let 1 < p < ∞, 0 < σ < 1, and 0 ≤ M < ∞ be given. Assume

that φ : R → R is a Lipschitz function with ‖φ′‖∞ ≤M and assume that u is a weak

solution to (2.1), assuming (2.2), in Ω = {(x, y) : x ∈ R, y > φ(x)} satisfying

(5.3)

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy <∞.

Let f(x, t) = (∂xu(x, y),−∂yu(x, y))
∗, y = t + φ(x). Then there exists g ∈ Ḣσ(R)

such that the Cauchy integral representation

(5.4) f = S0g + S̃((B0 −Ba,f,φ
p )Df),

holds in R
2
+. In particular, the trace of f is

f0 = lim
t→0+

(S0g)−

ˆ ∞

0

(

S0(B0 − Ba,f,φ
p )Dfs

)

−s
ds ∈ Ḣσ(R).

Theorem 5.2. Let p, σ,M, φ, be as in Theorem 5.1. Then there exists ǫ0 =
ǫ0(p, σ,M), ǫ0 ∈ (0, 1), such that the following is true. Let ǫ ∈ (0, ǫ0) and assume

that Ba,f,φ
p is within ǫ of B0. Then, given any boundary data h ∈ Ḣσ(R), there exists

a weak solution u to (2.1) in Ω = {(x, y) : x ∈ R, y > φ(x)} satisfying

(5.5)

¨

Ω

|∇2u|2(y − φ(x))1−2σ dx dy <∞,

and the boundary condition

∂xu(x, φ(x)) = h(x), x ∈ R,

where the trace of ∇u is taken in the sense of Theorem 4.1. The same solvability

result also holds true for the boundary condition ∂yu(x, φ(x)) = h(x).
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