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Abstract. The pointwise behavior of Sobolev-type functions, whose weak derivatives up to

a given order belong to some rearrangement-invariant Banach function space, is investigated. We

introduce a notion of approximate Taylor expansion in norm for these functions, which extends the

usual definition of Taylor expansion in Lp-sense for standard Sobolev functions. An approximate

Taylor expansion for functions in arbitrary-order Sobolev-type spaces, with sharp norm, is estab-

lished. As a consequence, a characterization of those Sobolev-type spaces in which all functions

admit a classical Taylor expansion is derived. In particular, this provides a higher-order version of

a well-known result of Stein [27] on the differentiability of weakly differentiable functions. Applica-

tions of our results to customary classes of Sobolev-type spaces are also presented.

1. Introduction

The classical Lebesgue differentiation theorem asserts that if u is any locally
integrable function on an open set Ω in R

n, with n ≥ 2, then for almost every x ∈ Ω

(1.1) lim
r→0+

1

|B(x, r)|

ˆ

B(x,r)

u(y) dy

exists, is finite, and agrees with u(x). Here, B(x, r) denotes the open ball of radius
r centered at x, and |B(x, r)| its Lebesgue measure. The precise representative of u
is the function defined on Ω as the limit in (1.1) at those points x for which such
limit exists and is finite, and as 0 elsewhere. Hereafter, we assume that functions are
precisely represented.

The additional assumption that u belongs to Lp
loc(Ω) for some p ∈ [1,∞[ yields

stronger information on the pointwise behaviour of u, namely

(1.2) lim
r→0+

‖u− u(x)‖
⊘

Lp(B(x,r))
= 0 for a.e. x ∈ Ω,

where ‖ · ‖
⊘

Lp(B(x,r))
stands for the averaged norm associated with ‖ · ‖Lp(B(x,r)) and

defined by

‖u‖
⊘

Lp(B(x,r))
=

(

1

|B(x, r)|

ˆ

B(x,r)

|u(y)|p dy

)
1
p

.
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In fact, equation (1.2) may be regarded as a 0-order Taylor expansion in norm-form
for functions u enjoying merely a locally Lp-integrability property on Ω.

A parallel m-th order Taylor expansion in norm-form holds for functions endowed
with weak derivatives up to the order m ∈ N in Lp

loc(Ω). Specifically, let u ∈ Wm,p
loc

(Ω).
If either m ≥ n, or p > 1 and mp > n, then u admits a classical m-th order Taylor
expansion at almost every point in Ω, namely

(1.3) u(y) = Tm
x (u)(y) + o(|y − x|m) as y → x,

for a.e. x ∈ Ω. When either mp < n, or p > 1 and mp = n, the relevant expansion
tells us that

(1.4) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

Lq(B(x,r))
= 0 for a.e. x ∈ Ω,

with q ≤ np
n−mp

if mp < n, and q < ∞ if p > 1 and mp = n (see e.g. [28, Theorem 3.3.3,

Chapter 3]). Here, Tm
x (u) denotes the Taylor polynomial of order m of u centered at

x ∈ Ω, which is defined as

(1.5) Tm
x (u)(y) =

∑

0≤|α|≤m

1

α!
Dαu(x)(y − x)α for y ∈ R

n,

where α = (α1, · · · , αn) is a multi-index of degree |α| =
∑n

i=1 αi, α! = α1! · · ·αn!,
(y − x)α = (y1 − x1)

α1 · · · (yn − xn)
αn , and Dα = Dα1

1 · · ·Dαn
n , with Di =

∂
∂xi

.
Enlarging the class of function spaces, and corresponding norms, which describe

the integrability degree of functions and of their weak derivatives actually allows
for more precise information on their pointwise differentiability properties. A well-
known contribution in this direction is due to Stein [27] (see also [17]), and tells us
that if u belongs to the Sobolev-type space of functions endowed with first-order weak
derivatives which just belong to the Lorentz space Ln,1

loc (Ω), then u is differentiable
a.e. in Ω. Namely, u fulfills (1.3) with m = 1. This improves the parallel result in
W 1,p

loc (Ω), with p > n, mentioned above, inasmuch as Lp
loc(Ω) $ Ln,1

loc (Ω) $ Ln
loc(Ω)

for p > n. In fact, the space Ln,1
loc (Ω) is the optimal (largest possible) space enjoying

this property in the class of all rearrangement-invariant (r.i., for short) spaces [10]. A
precise definition of this class of spaces is given in the next section. Loosely speaking,
membership of a measurable function u to a (local) rearrangement-invariant space
Xloc(Ω) only depends on its (local) integrability properties. Pointwise differentiability
properties of functions whose weak derivatives belong to another customary class of
r.i. spaces, the Orlicz spaces, have been investigated in [2, 12].

The present paper is aimed at providing a comprehensive approach to the problem
of classical and approximate differentiability properties of functions in Sobolev-type
spaces, of arbitrary order, built upon general rearrangement-invariant spaces. The
analysis of these spaces has been the object of various contributions, especially in
recent years, including [11, 14, 15, 16, 18, 20, 21]. However, apart from the specific
results cited above in Lorentz and Orlicz spaces, this aspect of the theory seems to
be still untouched in a general framework.

One difficulty which immediately arises in dealing with this topic is that, unlike
Lebesgue norms, a general rearrangement-invariant norm need not have an integral
form. A first problem to be faced is thus to find an appropriate counterpart ‖·‖

⊘

X(B(x,r))

of the averaged norm ‖ · ‖
⊘

Lp(B(x,r))
in (1.2). A notion of this kind is available in the



Classical and approximate Taylor expansions of weakly differentiable functions 529

literature [1, 13, 22], and consists in defining the averaged norm in X(B(x, r)) as the
ratio between the standard norm in X(B(x, r)) and the norm in X(B(x, r)) of the
constant function 1. Here, we instead propose and work with a different notion, which
just amounts to replacing the Lebesgue measure dx with the normalized Lebesgue
measure dx

|B(x,r)|
. Although these two definitions agree in some customary situations,

they differ in general. The latter is more natural in a sense, and turns out to be
better fitted for the problems under consideration.

It is however clear that an analogue of (1.2) for functions in Xloc(Ω), namely

(1.6) lim
r→0+

‖u− u(x)‖
⊘

X(B(x,r))
= 0 for a.e. x ∈ Ω,

cannot hold without some additional assumption on the space Xloc(Ω), whatever

reasonable definition of ‖ · ‖
⊘

X(B(x,r))
is adopted. This can be verified, for instance, on

taking Xloc(Ω) = L∞
loc(Ω), a choice which makes (1.6) false.

Our main result can be summarized as follows. Given any space Xloc(Ω) ful-
filling the 0-order approximate Taylor expansion (1.6), we show that an m-th order
counterpart

(1.7) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

Y (B(x,r))
= 0 for a.e. x ∈ Ω

holds for every u from the Sobolev-type space WmXloc(Ω) of those functions whose
weak derivatives up to the order m belong to Xloc(Ω), and we characterize the optimal
(i.e. the smallest possible) rearrangement-invariant space Yloc(Ω) which is admissible
in (1.7). This is the content of Theorem 3.1, Section 3. Such a result provides us
with a unified framework for Taylor expansions of weakly differentiable functions
of any order and, as a consequence, enables us to characterize the spaces Xloc(Ω)
whose norm is sufficiently strong for the classical expansion (1.3) to hold for any
u ∈ WmXloc(Ω) (Corollary 3.3, Section 3). In particular, we show that in the case

when m < n the Lorentz space L
n
m
,1

loc (Ω) is the optimal—the largest possible—(local)
r.i. space Xloc(Ω) which enjoys such property, thus providing a higher-order version
of Stein’s result.

A full characterization of the spaces Xloc(Ω) for which (1.6) holds is an issue of
independent interest, and seems to be unknown. However, sufficient conditions for
(1.6) to be true can be derived from results appearing in the literature, and can be
applied to prove (1.6) for various families of spaces Xloc(Ω). For instance, we obtain
an enhanced form of the classical result (1.4), where the Lq-norm is replaced with a
somewhat stronger Lorentz, or Lorentz–Zygmund, norm. We refer to Section 3 for
this conclusion, where applications to the case when Xloc(Ω) is either a Lorentz or
an Orlicz space are also discussed.

2. Background

2.1. Rearrangement-invariant spaces. In this section we recall some defini-
tions and basic properties of decreasing rearrangements and rearrangement-invariant
function norms. For more details and proofs, we refer to [3, 19].

Let E be a (non-negligible) Lebesgue measurable subset of Rn, n ≥ 1, of finite
measure. We denote by χ

E
the characteristic function of E, and by |E| its Lebesgue

measure.
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The Riesz space of all (equivalence classes of) extended real-valued measurable
functions on E is denoted by L0(E), and L0

+(E) = {f ∈ L0(E) : f ≥ 0}. The
decreasing rearrangement of a function f in L0(E) is the function f ∗ ∈ L0

+([0,∞[)
defined by

(2.1) f ∗(s) = sup{t ≥ 0: |{x ∈ E : |f(x)| > t}| > s} for s ∈ [0,∞[.

Clearly, f ∗(s) = 0 if s ≥ |E|. The signed decreasing rearrangement of f is the
function f o : [0, |E|] → [−∞,∞] given by

(2.2) f o(s) = sup {t ∈ R : |{x ∈ E : f(x) > t}| > s} for s ∈ [0, |E|].

Note that (f o)∗ = f ∗. The Hardy–Littlewood inequality tells us that

(2.3) ‖fg‖
L1(E)

≤

ˆ |E|

0

f ∗(s)g∗(s) ds

for every f, g ∈ L0(E). The function f ∗∗ : ]0,∞[→ [0,∞] given by

(2.4) f ∗∗(s) =
1

s

ˆ s

0

f ∗(t) dt for s ∈ ]0,∞[

is non-decreasing and satisfies f ∗ ≤ f ∗∗. Moreover,

(2.5) (f + g)∗∗ ≤ f ∗∗ + g∗∗

for every f, g ∈ L0
+(E).

A rearrangement-invariant Banach (extended) function norm—an r.i. function
norm, for short—is a functional ‖ · ‖

X(0,1)
: L0

+(0, 1) → [0,∞] such that

(N1) ‖f + g‖
X(0,1)

≤ ‖f‖
X(0,1)

+ ‖g‖
X(0,1)

for all f, g ∈ L0
+(0, 1);

‖αf‖
X(0,1)

= α‖f‖
X(0,1)

for all α ∈ [0,∞[, f ∈ L0
+(0, 1)

(here, and in what follows, we adhere the convention that 0 · ∞ = 0);
‖f‖

X(0,1)
> 0 if f does not vanish a.e.;

(N2) ‖f‖
X(0,1)

≤ ‖g‖
X(0,1)

whenever f ≤ g a.e.;

(N3) sup
k
‖fk‖X(0,1)

= ‖f‖
X(0,1)

if {fk} ⊂ L0
+(0, 1) with fk ր f a.e. in ]0, 1[;

(N4) ‖1‖
X(0,1)

< ∞;

(N5) there is a positive constant C such that ‖f‖
L1(0,1)

≤ C‖f‖
X(0,1)

for all f ∈

L0
+(0, 1);

(N6) ‖f‖
X(0,1)

= ‖g‖
X(0,1)

for all f, g ∈ L0
+(0, 1) such that f ∗ = g∗.

The associate function norm of ‖·‖
X(0,1)

is the r.i. function norm ‖·‖
X′(0,1)

defined
by

(2.6) ‖g‖
X′(0,1)

= sup
{

‖fg‖
L1(0,1)

: f ∈ L0
+(0, 1), ‖f‖

X(0,1)
≤ 1
}

.

Given E as above and an r.i. function norm ‖ · ‖
X(0,1)

, the space X(E) is defined

as the collection of all functions f ∈ L0(E) such that the quantity

(2.7) ‖f‖
X(E)

= ‖f ∗‖
X(0,1)

is finite. This quantity defines a norm on X(E), called an r.i. norm, which makes
X(E) a Banach space, called an r.i. space. The space X(0, 1) is called the represen-
tation space of X(E). The r.i. space X ′(E) built upon the function norm ‖ · ‖

X′(0,1)

is called the associate space of X(E). Let us notice that, although E is required to
have finite measure, it may exceed 1. Thus, the norm ‖ · ‖

X(E)
, defined by (2.7), is
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just equivalent to (but possibly different from) more customary norms on X(E). If
f ∈ L0(E) and g ∈ X(E) satisfy the inequality

(2.8) f ∗∗(s) ≤ g∗∗(s) for s ∈ ]0,∞[,

then f ∈ X(E) as well, and ‖f‖
X(E)

≤ ‖g‖
X(E)

(see e.g. [3, Chapter 2, Proposition 3.6

and Theorem 4.6]). The following properties hold for any r.i. spaces X(E) and Y (E):

L∞(E) →֒ X(E) →֒ L1(E), where →֒ stands for a continuous embedding;(2.9)

X(E) = X ′′(E);(2.10)

if f ∈ X(E) and g ∈ X ′(E), then fg ∈ L1(E) and the Hölder inequality(2.11)

‖fg‖
L1(E)

≤ ‖f‖
X(E)

‖g‖
X′(E)

holds;

X(E) →֒ Y (E) if, and only if Y ′(E) →֒ X ′(E) and the embedding(2.12)

constants are the same.

Now, define the functional

(2.13) ‖f‖
⊘

X(E)
= ‖f ∗

(

|E| ·
)

‖
X(0,1)

for f ∈ X(E). This is another r.i. norm on X(E), which—as a consequence of the
boundedness of the dilation operator in r.i. spaces [3, Proposition 5.11]—is equivalent
to ‖f‖

X(E)
up to constants depending only on |E|. We will refer to the r.i. norm (2.13)

as the averaged norm of ‖ · ‖
X(E)

, since

(2.14) ‖f‖
⊘

X(E)
= ‖f‖

X(E, dx
|E|

)
for f ∈ X(E),

where X(E, dx
|E|

) denotes the r.i. space, defined as above, save that rearrangements are

defined with the Lebesgue measure replaced with the normalized Lebesgue measure
dx
|E|

. This averaged norm is closely related to a norm exploited in [26] to define

maximal operators associated with general function norms.
Let us warn the reader that, in what follows, we shall frequently consider norms

‖f‖
X(F )

and ‖f‖
⊘

X(F )
, where F is a measurable subset of the domain E of f . They

have to be interpreted as the norms defined as in (2.7) and (2.13), where f is replaced
with fχF .

Note that

(2.15) ‖1‖
⊘

X(E)
= ‖1‖

X(0,1)
.

Also, if f ∈ X(E) and g ∈ X ′(E), then

(2.16)
1

|E|

ˆ

E

|f(x)g(x)| dx ≤ ‖f‖
⊘

X(E)
‖g‖

⊘

X′(E)
.

We recall now the definition of some customary, and less standard, instances of
r.i. function norms of use in our applications. In what follows, we set p′ = p

p−1
for

p ∈ [1,∞], and adopt the convention that 1/∞ = 0.
Prototypal examples of r.i. function norms are the classical Lebesgue norms.

Indeed, ‖f‖
Lp(0,1)

= ‖f ∗‖
Lp(0,1)

, if p ∈ [1,∞[, and ‖f‖
L∞(0,1)

= f ∗(0+). Note that, by

(2.9), L∞(E) and L1(E) are the smallest and the largest, respectively, r.i. spaces on
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E. Moreover, the averaged norms are just given by

(2.17) ‖f‖
⊘

Lp(E)
=







(

1
|E|

´

E
|f(x)|p dx

)
1
p

if 1 ≤ p < ∞,

‖f‖
L∞(E)

if p = ∞.

Let p, q ∈ [1,∞]. Assume that either 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = q = 1,
or p = q = ∞. Then the functional defined as

(2.18) ‖f‖
Lp,q(0,1)

= ‖t
1
p
− 1

q f ∗(t)‖
Lq(0,1)

for f ∈ L0
+(0, 1), is equivalent to an r.i. function norm. The corresponding r.i. space

is called a Lorentz space. One has that Lp,p(E) = Lp(E) for every p ∈ [1,∞]. If
1 ≤ q ≤ r ≤ ∞, then Lp,q(E) →֒ Lp,r(E), and the two spaces agree if and only if
q = r.

Assume now that either 1 < p < ∞, 1 ≤ q ≤ ∞ and α ∈ R, or p = 1, q = 1 and
α ≥ 0, or p = ∞, q = ∞ and α ≤ 0, or p = ∞, 1 ≤ q < ∞ and α+ 1

q
< 0. Then also

the functional given by

(2.19) ‖f‖
Lp,q(logL)α(0,1)

= ‖t
1
p
− 1

q (1 + log 1
t
)αf ∗(t)‖

Lq(0,1)

for f ∈ L0
+(0, 1) is equivalent to an r.i. function norm. The r.i. space built upon this

function norm is called a Lorentz–Zygmund space.
Let A be a Young function, namely a left-continuous convex function from [0,∞[

into [0,∞], which is neither identically equal to 0, nor to ∞. Thus, A has the form

(2.20) A(t) =

ˆ t

0

a(s) ds for t ≥ 0,

for some (non-trivial) non-decreasing left-continuous function a : [0,∞[→ [0,∞].
The Luxemburg r.i. function norm associated with A is defined as

(2.21) ‖f‖
LA(0,1)

= inf

{

λ > 0:

ˆ 1

0

A

(

f(t)

λ

)

dt ≤ 1

}

for f ∈ L0
+(0, 1). The space LA(E) is called an Orlicz space. In particular, LA(E) =

Lp(E) if A(t) = tp for p ∈ [1,∞[, and LA(E) = L∞(E) if A(t) = ∞χ
]1,∞[

(t).
Recall that A is said to satisfy the ∆2-condition near infinity if there exist positive

constants C and t0 such that

(2.22) A(2t) ≤ CA(t) for t ≥ t0;

moreover, A is said to be equivalent near infinity to another Young function B if
there exist positive constants c, C and t0 such that

(2.23) A(ct) ≤ B(t) ≤ A(Ct) for t ≥ t0.

Note that

LA(E) = LB(E) up to equivalent norms if and only if A is equivalent to(2.24)

B near infinity.

Finally, assume that A is a Young function and q ∈ ]1,∞[. If

(2.25)

ˆ ∞ A(t)

t1+q
dt < ∞,
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then the r.i. function norm given by

(2.26) ‖f‖
L(q,A)(0,1)

= ‖t−
1
q f ∗(t)‖

LA(0,1)

for f ∈ L0
+(0, 1) will be called an Orlicz–Lorentz norm [8, Proposition 2.1]. The class

of the Orlicz–Lorentz spaces encompasses (up to equivalent norms) the Orlicz spaces
and various instances of Lorentz and Lorentz–Zygmund spaces.

2.2. Spaces of Sobolev-type. Let Ω be a non-empty open set in R
n, n ≥ 2,

with |Ω| < ∞, and let ‖ · ‖
X(0,1)

be an r.i. function norm. For each m ∈ N, the m-th

order Sobolev-type space WmX(Ω) is the Banach space

WmX(Ω) = {u ∈ X(Ω) : u is m-times weakly differentiable in Ω, and Dαu ∈ X(Ω)

for every multi-index α such that |α| ≤ m}

endowed with the norm

‖u‖
WmX(Ω)

=

m
∑

k=0

‖∇ku‖
X(Ω)

.

Here, ∇ku denotes the vector of all derivatives Dαu, with α = (α1, · · · , αn) such that
∑n

i=1 αi = k, and ‖∇ku‖
X(Ω)

is an abridged notation for ‖ |∇ku| ‖
X(Ω)

, where |∇ku|

is the Euclidean norm of ∇ku. Moreover, ∇0u stands just for u, and ∇1u will also
simply be denoted by ∇u.

The local Sobolev space WmXloc(Ω) is accordingly defined as

WmXloc(Ω) = {u ∈ L0(Ω) : u ∈ WmX(Ω′) for all open sets Ω′ ⊂⊂ Ω},

where Ω is an arbitrary open set, not necessarily of finite measure, and the notation
Ω′ ⊂⊂ Ω means that the closure of Ω′ is a compact set contained in Ω.

The optimal target r.i. function norm in Sobolev-type embeddings for WmX(Ω)
can be characterized as follows. For each m ∈ N, we denote by ‖ · ‖

Xm(0,1)
the

rearrangement-invariant function norm whose associate norm obeys

(2.27) ‖f‖
X′

m(0,1)
=

∥

∥

∥

∥

s−1+m
n

ˆ s

0

f ∗(r) dr

∥

∥

∥

∥

X′(0,1)

for all f ∈ L0
+(0, 1). By [20, Theorem A] (see also [11, Theorem 6.2]), if Ω is bounded

and has a Lipschitz boundary, then

(2.28) WmX(Ω) →֒ Xm(Ω),

and the embedding constant depends only on n,m and Ω. Moreover, Xm(Ω) is
optimal in (2.28) among all r.i. spaces, in the sense that, if (2.28) holds with Xm(Ω)
replaced with some other r.i. space Y (Ω), then

Xm(Ω) →֒ Y (Ω),

or, equivalently,

(2.29) Xm(0, 1) →֒ Y (0, 1).
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3. Main results and applications

An r.i. function norm ‖ · ‖
X(0,1)

will be said to fulfill the Lebesgue point property

if, for every open set Ω in R
n, with n ≥ 1, and every u ∈ Xloc(Ω),

lim
r→0+

‖u− u(x)‖
⊘

X(B(x,r))
= 0 for a.e. x ∈ Ω.

Our main result is the following theorem.

Theorem 3.1. Let Ω be an open set in R
n, with n ≥ 2, and let m ∈ N.

Assume that ‖ · ‖
X(0,1)

is an r.i. function norm fulfilling the Lebesgue point property.

If u ∈ WmXloc(Ω), then

(3.1) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

Xm(B(x,r))
= 0 for a.e. x ∈ Ω,

where ‖·‖
Xm(0,1)

is the optimal r.i. function norm in the Sobolev embedding associated

with ‖ · ‖
X(0,1)

and m as in (2.27).

As will be shown in Corollary 3.3 below, when m ≥ n the assumption that ‖·‖
X(0,1)

fulfills the Lebesgue point property in Theorem 3.1 is a posteriori immaterial. Indeed,
for these values of m, property (3.1) implies that any function u ∈ WmXloc(Ω) has
an approximate differential of order m a.e. in Ω, whatever ‖ · ‖

X(0,1)
is.

Remark 3.2. Assume that ‖ · ‖
X(0,1)

, m, and Ω are as in Theorem 3.1, and that
‖ · ‖

Y (0,1)
is any r.i. function norm satisfying (2.29). If u ∈ WmXloc(Ω), then

(3.2) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

Y (B(x,r))
= 0 for a.e. x ∈ Ω.

Theorem 3.1 enables us to characterize those r.i. function norms ‖ · ‖
X(0,1)

with

the property that every function from the Sobolev-type space WmXloc(Ω) admits an
m-th order differential a.e. in Ω. Note that the Lebesgue point property of ‖ · ‖

X(0,1)

is not required in this result.

Corollary 3.3. Let ‖ · ‖
X(0,1)

be an r.i. function norm, and m ∈ N. Let Ω be

any open set in R
n, with n ≥ 2.

Case m ≥ n. If u ∈ WmXloc(Ω), then

(3.3) u(y) = Tm
x (u)(y) + o(|y − x|m) as y → x,

for a.e. x ∈ Ω.

Case 1 ≤ m < n. The following facts are equivalent:

(i) each u ∈ WmXloc(Ω) fulfils (3.3) for a.e. x ∈ Ω;

(ii) ‖s−1+m
n ‖

X′(0,1)
< ∞;

(iii) X(0, 1) →֒ L
n
m
,1(0, 1).

In particular, the Lorentz norm ‖ · ‖
L

n
m,1

(0,1)
is the weakest r.i. function norm

having the property that every function from the associated m-th order Sobolev

space satisfies (3.3).

In the remaining part of this section, we present applications of Theorem 3.1 and
Corollary 3.3 to customary classes of Sobolev-type spaces.

Classical Sobolev spaces. As a first consequence of Theorem 3.1 and Corol-
lary 3.3, one can recover, and somewhat improve, via a unified approach, the standard
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results for the usual Sobolev space Wm,p
loc

(Ω) recalled in Section 1. Indeed, if either
p > 1 and mp > n, or p = 1 and m ≥ n, then condition (ii) of Corollary 3.3 is satisfied
with X(0, 1) = Lp(0, 1); hence any u ∈ Wm,p

loc
(Ω) fulfills (3.3). On the other hand,

if mp < n, then (Lp)m(0, 1) = L
np

n−mp
,p(0, 1), up to equivalent norms; this conclusion

can be derived from [18, Remark 5.13]; see also [11, Theorem 6.9] for a self-contained
proof. Hence, by Theorem 3.1,

(3.4) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L

np
n−mp ,p

(B(x,r))

= 0 for a.e. x ∈ Ω.

In the borderline case when mp = n and p > 1, one has that (Lp)m(0, 1) =
L∞,p(logL)−1(0, 1), up to equivalent norms ([4]; see also [18, 10, 11]), and hence,
by Theorem 3.1,

(3.5) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L∞,p(logL)−1(B(x,r))
= 0 for a.e. x ∈ Ω.

Note that (3.4) and (3.5) actually enhance (1.4), inasmuch as the function norm
‖ · ‖

L
np

n−mp ,p
(0,1)

is stronger than ‖ · ‖
L

np
n−mp (0,1)

, and ‖ · ‖L∞,p(logL)−1(0,1) is stronger than

‖ · ‖Lq(0,1) for every q < ∞.

Lorentz–Sobolev spaces. Properties (3.4) and (3.5) are special cases of more
general results for Lorentz-Sobolev spaces, which can be deduced via Theorem 3.1
and Corollary 3.3.

Let us begin by observing that the Lorentz function norm ‖ · ‖
Lp,q(0,1)

, defined

by (2.18), enjoys the Lebesgue point property if 1 ≤ q ≤ p < ∞. To verify this
assertion, note that [27, equation (2) and Remark 2] tell us that if Ω is any open set
in R

n, n ≥ 2, and u ∈ Lp,q
loc
(Ω) then

(3.6) lim
r→0+

‖u− u(x)‖
Lp,q(B(x,r))

‖1‖
Lp,q(B(x,r))

= 0 for a.e. x ∈ Ω.

On the other hand,

(3.7) ‖u− u(x)‖
⊘

Lp,q(B(x,r))
=
(p

q

)1/q ‖u− u(x)‖
Lp,q(B(x,r))

‖1‖
Lp,q(B(x,r))

if |B(x, r)| ≤ 1. The Lebesgue point property of ‖ · ‖
Lp,q(0,1)

follows from (3.6) and

(3.7).
Now let u ∈ WmLp,q

loc
(Ω), with m ∈ N. By Corollary 3.3, u admits an m-th order

differential a.e. in Ω if either m ≥ n, or m < n and mp > n and q > 1, or mp = n
and q = 1. Indeed, in each of these cases, we have that Lp,q(0, 1) →֒ L

n
m
,1(0, 1). If

none of the above conditions is satisfied, then one can show that

(Lp,q)m(0, 1) =

{

L
np

n−mp
,q(0, 1) if mp < n,

L∞,q(logL)−1(0, 1) if mp = n and q > 1,

up to equivalent norms—see [18, Remark 5.13], or [11, Theorem 6.9]. Hence, by
Theorem 3.1, if 1 ≤ q ≤ p and mp < n, then

(3.8) lim
r→0+

1

rm
‖u− Tm

x u‖
⊘

L

np
n−mp ,q

(B(x,r))

= 0 for a.e. x ∈ Ω,
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whereas if 1 < q ≤ p and mp = n

(3.9) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L∞,q(logL)−1(B(x,r))
= 0 for a.e. x ∈ Ω.

Orlicz–Sobolev spaces. Here, we focus the case when the r.i. function norm
‖·‖

X(0,1)
is a Luxemburg function norm ‖·‖

LA(0,1)
associated with some Young function

A. Let us preliminarily observe that such a function norm fulfills the Lebesgue point
property provided that A satisfies the ∆2-condition near infinity. In fact, by [2,
Lemma 3.1] and such condition for A, one has that, if Ω is any open set in R

n,
n ≥ 1, and u ∈ LA

loc(Ω), then for a.e. x ∈ Ω, and any σ > 0, there exists R > 0 such
that

(3.10)
1

|B(x, r)|

ˆ

B(x,r)

A

(

|u(y)− u(x)|

σ

)

dy ≤ 1

if 0 < r < R. Equation (3.10) entails that

‖u− u(x)‖
⊘

LA(B(x,r))
≤ σ,

and hence, owing to the arbitrariness of σ,

lim
r→0+

‖u− u(x)‖
⊘

LA(B(x,r))
= 0 for a.e. x ∈ Ω.

Given m ∈ N, we use the abridged notation Wm,A
loc

(Ω) for the Orlicz–Sobolev space

WmLA
loc
(Ω) associated with the Young function A. Let u ∈ Wm,A

loc
(Ω). Then Corol-

lary 3.3 tells us that u has an m-th order differential a.e. in Ω if and only if either
m ≥ n, or m < n and

(3.11)

ˆ ∞( t

A(t)

)
m

n−m

dt < ∞.

Indeed, condition (3.11) is equivalent to condition (ii) of Corollary 3.3 when X(0, 1) =
LA(0, 1); this follows from [5, equation 3.10] and [7, Lemma 2.3].

Assume next that 1 ≤ m < n and (3.11) fails, namely

(3.12)

ˆ ∞( t

A(t)

)
m

n−m

dt = ∞.

Let us replace, if necessary, A with another Young function, still denoted by A, which
is equivalent to the original one near infinity, and such that

(3.13)

ˆ

0

(

t

A(t)

)
m

n−m

dt < ∞.

For instance, we may choose A in such a way that A(t) = t near 0. Owing to

(2.24), such a replacement leaves the space Wm,A
loc

(Ω) unchanged. Thanks to [8,
Theorem 3.7], if A is given by (2.20), then the optimal target space (LA)m(0, 1)
for Orlicz–Sobolev embeddings associated with the Young function A is the Orlicz–
Lorentz space L(m

n
,B)(0, 1), where B is the (finite-valued) Young function defined

by

(3.14) B(t) =

ˆ t

0

b(r) dr for t ≥ 0,
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and b is the non-decreasing, left-continuous function in [0,∞[ whose (generalized)
left-continuous inverse is given by

b−1(s) =





ˆ ∞

a−1(s)

(

ˆ r

0

(

1

a(t)

) m
n−m

dt

)− n
m

dr

a(r)
n

n−m





m
m−n

for s ≥ 0.

Note that, since A(t) ≤ ta(t) for t ≥ 0, condition (3.13) ensures that the integral
´

0

(

1
a(t)

) m
n−m dt converges. Moreover, the Young function B does fulfill condition (2.25)

with q = n/m [7, Proposition 2.2]. Thus, if A satisfies the ∆2-condition near infinity,
then, by Theorem 3.1,

(3.15) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L
(mn ,B)

(B(x,r))

= 0 for a.e. x ∈ Ω.

A result in the spirit of (3.15) holds with the optimal r.i. norm replaced with an
optimal Orlicz norm, when (3.12) is in force. Let A n

m
be the Young function given

by

A n
m
(t) = A

(

H−1
n
m

(t)
)

for t ≥ 0 ,

where H−1
n
m

is the generalized left-continuous inverse of the function H n
m

obeying

H n
m
(r) =

(

ˆ r

0

(

t

A(t)

)
m

n−m

dt

)
n−m

n

for r ≥ 0.

Then
Wm,A(Ω) →֒ L

A n
m (Ω)

for every bounded open set Ω in R
n with a Lipschitz boundary, and L

A n
m (Ω) is

optimal (i.e. smallest possible) among all Orlicz spaces [8, Theorem 3.1]. Hence,
from Remark 3.2, we deduce that

(3.16) lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L

A n
m (B(x,r))

= 0 for a.e. x ∈ Ω.

Let us specialize the results discussed above to the case when A is a Young
function equivalent to tp logα(1 + t) near infinity, where either p > 1 and α ∈ R,
or p = 1 and α ≥ 0. A real number α satisfying this assumption will be called
admissible in what follows. Clearly, A satisfies the ∆2-condition near infinity, and
hence the Orlicz norm ‖ · ‖

LA(0,1)
enjoys the Lebesgue point property. We may clearly

just focus the case when m < n. The function A fulfils (3.11) if either p > n
m

, or
p = n

m
and α > n

m
− 1. In both cases, Corollary 3.3 tells us that each function

u ∈ Wm,A
loc

(Ω) has a m-th order differential a.e. in Ω. When (3.11) fails, one has

(LA)m(0, 1) =











L
np

n−mp
,p(logL)

α
p (0, 1) if mp < n and α is admissible,

L∞, n
m (logL)

αm
n

−1(0, 1) if mp = n and α < n
m
− 1,

L∞, n
m (logL)−

m
n (log logL)−1(0, 1) if mp = n and α = n

m
− 1,

up to equivalent norms [8, Example 3.10]. The last space is a generalized Lorentz–
Zygmund space associated with the r.i. function norm given by

‖f‖
L
∞, nm (logL)

−m
n (log logL)−1(0,1)

=
∥

∥s−
m
n

(

1+log(1
s
)
)−m

n
(

1+log(1+log
(

1
s

)))−1
f ∗(s)

∥

∥

L
n
m (0,1)
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for f ∈ L0
+(0, 1).

Now, let u ∈ Wm,A
loc

(Ω). By Theorem 3.1, if mp < n and α is any admissible
number, then

lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L

np
n−mp ,p

(logL)
α
p (B(x,r))

= 0 for a.e. x ∈ Ω.

When mp = n, if α < n
m
− 1, then

lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L
∞, nm (logL)

αm
n −1

(B(x,r))

= 0 for a.e. x ∈ Ω,

whereas if α = n
m
− 1, then

lim
r→0+

1

rm
‖u− Tm

x (u)‖
⊘

L
∞, nm (logL)

−m
n (log logL)−1(B(x,r))

= 0 for a.e. x ∈ Ω.

Finally, u fulfills (3.16), where

A n
m
(t) is equivalent to















t
np

n−mp log
nα

n−mp (1 + t) if mp < n and α is admissible,

et
n

n−m−αm
− 1 if mp = n and α < n

m
− 1,

ee
t

n
n−m

− e if mp = n and α = n
m
− 1,

near infinity.

4. Proofs of the main results

We preliminarily state and prove some auxiliary lemmas.

Lemma 4.1. Let n ∈ N, with n ≥ 2, and let x ∈ R
n. Let ‖ · ‖

X(0,1)
be an r.i.

function norm. Then there exists a positive constant C = C(n) such that

(4.1) ‖u− u
B(x,1)

‖
⊘

X(B(x,1))
≤ C‖∇u‖

⊘

X(B(x,1))

for every u ∈ W 1X(B(x, 1)). Here, u
B(x,1)

= 1
|B(x,1)|

´

B(x,1)
u(y) dy.

Proof. We may assume, without loss of generality, that x = 0. Let u ∈
W 1X(B(0, 1)). In particular, by (2.9), u ∈ W 1,1(B(0, 1)) as well. Then [9, Lemma 6.6
and (6.30)] tell us that its signed decreasing rearrangement uo is locally absolutely
continuous in ]0, ωn[, where ωn = |B(0, 1)|, and

(4.2) u◦(s)− u
B(0,1)

=

ˆ ωn

0

(

χ
(s,ωn)

(t)−
t

ωn

)

(−u◦)′(t) dt for s ∈ ]0, ωn[ .

Moreover, coupling [10, Lemma 4.1 and (3.5)] with property (N2) of r.i. function
norms implies that there exists a positive constant C ′ = C ′(n) such that

(4.3) ‖min{t, ωn − t}
1
n′ (−u◦)′(t)‖

⊘

X(0,ωn)
≤ C ′‖∇u‖

⊘

X(B(0,1))
.

Consider the linear operator T defined, for ϕ ∈ L1(0, ωn), by

Tϕ(s) =

ˆ ωn

0

(

χ
(s,ωn)

(t)−
t

ωn

)

min{t, ωn − t}−
1
n′ ϕ(t) dt for s ∈ ]0, ωn[ .

It is easy to check that T is bounded on L1(0, ωn), and on L∞(0, ωn). In particular,

‖Tϕ‖
⊘

L1(0,ωn)
≤ 2ω1/n

n ‖ϕ‖
⊘

L1(0,ωn)
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for ϕ ∈ L1(0, ωn), and

‖Tϕ‖
⊘

L∞(0,ωn)
≤ 2nω1/n

n ‖ϕ‖
⊘

L∞(0,ωn)

for ϕ ∈ L∞(0, ωn). An application of an interpolation theorem of Calderón [3, Chap-
ter 3, Theorem 2.12] implies that T is bounded on X(0, ωn), and

(4.4) ‖Tϕ‖
⊘

X(0,ωn)
≤ 2nω1/n

n ‖ϕ‖
⊘

X(0,ωn)

for ϕ ∈ X(0, ωn). From (4.2), (4.4) and (4.3), one concludes that

‖u− u
B(0,1)

‖
⊘

X(B(0,1))
= ‖u◦ − u

B(0,1)
‖

⊘

X(0,ωn)
≤ 2nωnC

′ ‖∇u‖
⊘

X(B(0,1))
,

whence (4.1) follows. �

Lemma 4.2. Let n ∈ N, with n ≥ 2, and let x ∈ R
n and r > 0. Let ‖ · ‖

X(0,1)
be

an r.i. function norm, and let ‖ · ‖
X1(0,1)

be the optimal target r.i. function norm in

the first-order Sobolev embedding associated with ‖ · ‖
X(0,1)

as in (2.27). Then there

exists a constant C1 = C1(n) such that

(4.5) ‖u− u
B(x,r)

‖
⊘

X1(B(x,r))
≤ C1 r ‖∇u‖

⊘

X(B(x,r))

for every u ∈ W 1X(B(x, r)). Hence, in particular, if ‖ · ‖
Y (0,1)

is any r.i. function

norm satisfying (2.29) with m = 1, then there exists a constant C2 = C2(n, Y ) such

that

(4.6) ‖u− u
B(x,r)

‖
⊘

Y (B(x,r))
≤ C2 r ‖∇u‖

⊘

X(B(x,r))

for every u ∈ W 1X(B(x, r)).

Proof. We may assume, without loss of generality, that x = 0. Let u ∈
W 1X(B(0, r)), and define w : B(0, 1) → R by w(y) = u(ry) for y ∈ B(0, 1). Note
that w ∈ W 1X(B(0, 1)). Then (2.28) with m = 1, and Lemma 4.1, imply that

‖w − w
B(0,1)

‖
⊘

X1(B(0,1))
≤ C

(

‖w − w
B(0,1)

‖
⊘

X(B(0,1))
+ ‖∇w‖

⊘

X(B(0,1))

)

(4.7)

≤ C
(

C ′‖∇w‖
⊘

X(B(0,1))
+ ‖∇w‖

⊘

X(B(0,1))

)

= C(C ′ + 1)‖∇w‖
⊘

X(B(0,1))

for some positive constants C and C ′ depending only on n.
Computations show that

wo(ωns) = uo(ωnr
ns) for s ∈ ]0, 1[ , and w

B(0,1)
= u

B(0,r)
.

Consequently,

(w − w
B(0,1)

)∗(ωns) = (wo − w
B(0,1)

)∗(ωns) = (uo − u
B(0,r)

)∗(ωnr
ns)

= (u− u
B(0,r)

)∗(ωnr
ns) for s ∈ ]0, 1[ .

Thus,

‖w − w
B(0,1)

‖
⊘

X1(B(0,1))
= ‖(w − w

B(0,1)
)∗(ωn ·)‖X1(0,1)

(4.8)

=
∥

∥(u− u
B(0,r)

)∗(ωnr
n ·)
∥

∥

X1(0,1)
= ‖u− u

B(0,r)
‖

⊘

X1(B(0,r))
.

Next,
|∇w|∗(ωns) = r|∇u|∗(ωnr

ns) for s ∈ ]0, 1[ ,
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whence

(4.9) ‖∇w‖
⊘

X(B(0,1))
= ‖|∇w|∗(ωn·)‖X(0,1)

= r ‖|∇u|∗(ωnr
n·)‖

X(0,1)
= r ‖∇u‖

⊘

X(B(0,r))
.

Combining (4.7), (4.8) and (4.9) yields

1

r
‖u− u

B(0,r)
‖

⊘

X1(B(0,r))
≤ C1‖∇u‖

⊘

X(B(0,r))
,

with C1 = C(C ′ + 1). �

Lemma 4.3. Let ‖ · ‖
X(0,1)

be an r.i. function norm, and let Ω be an open set in

R
n, with n ≥ 2. If u ∈ W 1Xloc(Ω), then

(4.10)
1

r
‖u− u(x)‖

⊘

X(B(x,r))
≤ sup

ρ∈[0,r]

‖∇u‖
⊘

X(B(x,ρ))
for a.e. x ∈ Ω,

for every r > 0 such that B(x, r) ⊂⊂ Ω.

Proof. Let u ∈ W 1Xloc(Ω). Then, by (2.9), u ∈ W 1,1
loc (Ω). A standard result in

the theory of Sobolev spaces tells us that, for a.e. x ∈ Ω and every r > 0 such that
B(x, r) ⊂⊂ Ω, the function [0, 1] ∋ t 7→ u

(

x+ t(y − x)
)

is absolutely continuous for
a.e. y ∈ B(x, r), and

d

dt
u
(

x+ t(y − x)
)

= ∇u
(

x+ t(y − x)
)

· (y − x) for a.e. t ∈ [0, 1],

where “ · ” stands for scalar product in R
n. Hence,

|u(y)− u(x)| ≤

ˆ 1

0

|∇u
(

x+ t(y − x)
)

| |y − x| dt for a.e. y ∈ B(x, r).

An application of the integral Minkowski inequality then yields

1

r
‖u− u(x)‖

⊘

X(B(x,r))
≤

∥

∥

∥

∥

ˆ 1

0

1

r
|∇u

(

x+ t(y − x)
)

| |y − x| dt

∥

∥

∥

∥

⊘

X(B(x,r))

≤

ˆ 1

0

∥

∥

∥

| · −x|

r
|∇u

(

x+ t(· − x)
)

|
∥

∥

∥

⊘

X(B(x,r))

dt

≤

ˆ 1

0

∥

∥

∥
∇u
(

x+ t(· − x)
)

∥

∥

∥

⊘

X(B(x,r))

dt

=

ˆ 1

0

‖∇u‖
⊘

X(B(x,rt))
dt ≤ sup

ρ∈[0,r]

‖∇u‖
⊘

X(B(x,ρ))
,

namely (4.10). �

We are now in a position to accomplish the proof of Theorem 3.1.

Proof of Theorem 3.1. Let u ∈ WmXloc(Ω). We claim that, for each k ∈ N,
with k ≤ m, there exists a constant C = C(n, k,X) such that

(4.11)
1

rk
‖u− T k

x (u)‖
⊘

Xk(B(x,r))
≤ C sup

ρ∈[0,r]

‖∇ku−∇ku(x)‖
⊘

X(B(x,ρ))
for a.e. x ∈ Ω,

for every r > 0 such that B(x, r) ⊂⊂ Ω.
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Consider first the case when k = 1. For each x ∈ Ω, the function v = 1
r
(u−T 1

x (u))
belongs to W 1Xloc(Ω). Thus, owing to Lemma 4.2, for any ball B(x, r) ⊂⊂ Ω

(4.12) ‖v − v
B(x,r)

‖
⊘

X1(B(x,r))
≤ C1r‖∇v‖

⊘

X(B(x,r))

for some positive constant C1 = C1(n). By (4.12) and (2.16),

‖v‖
⊘

X1(B(x,r))
≤ ‖v − v

B(x,r)
‖

⊘

X1(B(x,r))
+ ‖v

B(x,r)
‖

⊘

X1(B(x,r))
(4.13)

≤ C1r‖∇v‖
⊘

X(B(x,r))
+ |v

B(x,r)
|‖1‖

⊘

X1(B(x,r))

≤ C1r‖∇v‖
⊘

X(B(x,r))
+ ‖v‖

⊘

X(B(x,r))
‖1‖

⊘

X′(B(x,r))
‖1‖

⊘

X1(B(x,r))

= C1r‖∇v‖
⊘

X(B(x,r))
+ C ′‖v‖

⊘

X(B(x,r))
,

where, by (2.15), C ′ is independent of r, and equals ‖1‖
X′(0,1)

‖1‖
X1(0,1)

. Consequently,

(4.14)
1

r
‖u− T 1

x (u)‖
⊘

X1(B(x,r))
≤ C1‖∇u−∇u(x)‖

⊘

X(B(x,r))
+

C ′

r
‖u− T 1

x (u)‖
⊘

X(B(x,r))

for each x ∈ Ω, and every r > 0 such that B(x, r) ⊂⊂ Ω. Applying Lemma 4.3, with
u replaced with u− T 1

x (u), tells us that

(4.15)
1

r

∥

∥ u− T 1
x (u)

∥

∥

⊘

X(B(x,r))
≤ sup

ρ∈[0,r]

∥

∥∇u−∇u(x)
∥

∥

⊘

X(B(x,ρ))
for a.e. x ∈ Ω,

for every r > 0 such that B(x, r) ⊂⊂ Ω. Combining (4.14) and (4.15) thus yields

1

r
‖u− T 1

x (u)‖
⊘

X1(B(x,r))
≤ C1‖∇u−∇u(x)‖

⊘

X(B(x,r))
+ C ′ sup

ρ∈[0,r]

‖∇u−∇u(x)‖
⊘

X(B(x,ρ))

≤ (C1 + C ′) sup
ρ∈[0,r]

‖∇u−∇u(x)‖
⊘

X(B(x,ρ))
,

namely, inequality (4.11) with k = 1.
We now argue by finite induction, and assume that (4.11) holds for some k ∈ N,

with k < m. Since u ∈ W k+1Xloc(Ω), one has that u − T k+1
x (u) ∈ W k+1Xloc(Ω) for

each x ∈ Ω. Hence, u− T k+1
x (u) ∈ W 1(Xk)loc(Ω). By [11, Theorem 5.7],

(4.16)
(

Xk+1

)

loc
(Ω) =

(

(Xk)1
)

loc
(Ω) .

From (4.13) with v and ‖·‖
X(0,1)

replaced with u−T k+1
x (u) and ‖·‖

Xk(0,1)
, respectively,

and (4.16), one can deduce that

1

rk+1
‖u− T k+1

x (u)‖
⊘

Xk+1(B(x,r))
(4.17)

≤
C1

rk
‖∇(u− T k+1

x (u))‖
⊘

Xk(B(x,r))
+

C ′

rk+1
‖u− T k+1

x (u)‖
⊘

Xk(B(x,r))

=
C1

rk
‖∇u− T k

x (∇u)‖
⊘

Xk(B(x,r))
+

C ′

rk+1
‖u− T k+1

x (u)‖
⊘

Xk(B(x,r))

for each x ∈ Ω, and every r > 0 such that B(x, r) ⊂⊂ Ω.
By the induction assumption, one can apply (4.11), with u replaced with each

partial derivative uxi
, and obtain that there exists a positive constant C = C(n, k,X)

such that

(4.18)
1

rk
‖∇u− T k

x (∇u)‖
⊘

Xk(B(x,r))
≤ C sup

ρ∈[0,r]

‖∇k+1u−∇k+1u(x)‖
⊘

X(B(x,ρ))
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for a.e. x ∈ Ω, for every r > 0 such that B(x, r) ⊂⊂ Ω. Moreover, Lemma 4.3 applied
with ‖ · ‖

X(0,1)
and u replaced with ‖ · ‖

Xk(0,1)
and u− T k+1

x (u), respectively, yields

1

r
‖u− T k+1

x (u)‖
⊘

Xk(B(x,r))
≤ sup

ρ∈[0,r]

‖∇u− T k
x (∇u)‖

⊘

Xk(B(x,ρ))
.

Therefore, owing to (4.18),

1

rk+1
‖u− T k+1

x (u)‖
⊘

Xk(B(x,r))
≤

1

rk
sup
ρ∈[0,r]

‖∇u− T k
x (∇u)‖

⊘

Xk(B(x,ρ))
(4.19)

≤ sup
ρ∈[0,r]

1

ρk
‖∇u− T k

x (∇u)‖
⊘

Xk(B(x,ρ))

≤ C sup
ρ∈[0,r]

sup
σ∈[0,ρ]

‖∇k+1u−∇k+1u(x)‖
⊘

X(B(x,σ))

= C sup
̺∈[0,r]

‖∇k+1u−∇k+1u(x)‖
⊘

X(B(x,̺))

for a.e. x ∈ Ω, and every r > 0 such that B(x, r) ⊂⊂ Ω. Combining (4.17)–(4.19)
entails that (4.11) holds with k + 1 in place of k. Estimate (4.11) is thus fully
established for every k ≤ m.

Equation (3.1) now follows from (4.11), with k = m, via the Lebesgue point
property of ‖ · ‖

X(0,1)
. �

We conclude with a proof of Corollary 3.3.

Proof of Corollary 3.3. Case m ≥ n. Let u ∈ WmXloc(Ω). Hence, by (2.9),
u ∈ WmL1

loc(Ω). The Lebesgue norm ‖ · ‖
L1(0,1)

enjoys the Lebesgue point property.

Moreover, since m ≥ n, one has that (L1)m(0, 1) = L∞(0, 1) by a superlimiting case
of the standard Sobolev embedding theorem [23, Theorem 1.4.5]. Also, the function
u is continuous. Theorem 3.1 thus tells us that

(4.20) lim
r→0+

1

rm
‖u− Tm

x (u)‖
L∞(B(x,r))

= 0 for a.e. x ∈ Ω.

Hence,

(4.21) lim
y→x

|u(y)− Tm
x (u)(y)|

|y − x|m
= 0 for a.e. x ∈ Ω,

namely (3.3).
Case m < n. The equivalence of conditions (iii) and (ii) is a consequence of the

fact that, by (2.6), and (2.18) with p = m
n

and q = 1,

‖s
m−n

n ‖
X′(0,1)

= sup
f∈X(0,1)

‖f‖
L

n
m ,1

(0,1)

‖f‖
X(0,1)

.

To verify that (iii) implies (i), fix any u ∈ WmXloc(Ω). Owing to (iii), one has

that u ∈ WmL
n
m
,1

loc (Ω). The Lorentz norm ‖ · ‖
L

n
m,1(0,1)

enjoys the Lebesgue point

property, as observed in Section 3. One has that (L
n
m
,1)m(0, 1) = L∞(0, 1) [24, 25].

Furthermore, any function u ∈ WmL
n
m
,1

loc (Ω) is continuous, as can be shown by the
Sobolev embedding theorem in Lorentz spaces [25], combined with the first-order
result of [27] (see also [12, Theorem 3.1]). Thus, by Theorem 3.1, equation (4.20)
holds, and (3.3) follows as above. Property (i) is thus proved.
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We finally show that (i) implies (iii). Assume, by contradiction, that (iii) fails.
Then the inclusion X(0, 1) ⊂ L

n
m
,1(0, 1) fails as well [3, Theorem 1.8], namely, there

exists a function f ∈ X(0, 1) \L
n
m
,1(0, 1). Without loss of generality, we may assume

that 0 ∈ Ω, and let R > 0 be such that B(0, R) ⊂⊂ Ω. Define u : Ω → [0,∞[ as

u(x) =

{

´ ωnRn

ωn|x|n
f ∗(t)t−m+m

n (t− ωn|x|
n)m−1 dt if x ∈ B(0, R),

0 if x ∈ Ω \B(0, R).

Note that u is radially decreasing and m-times weakly-differentiable. Moreover, by
[20, proof of Theorem A], one has that u ∈ WmXloc(Ω), and

‖u‖
WmX(B)

≤ C‖f‖
X(0,1)

for some positive constant C = C(m,n,R). On the other hand, u /∈ L∞
loc(Ω). Indeed,

since u is radially decreasing,

‖u‖L∞(B(0,R)) = u∗(0) ≥

ˆ ωnRn

0

f ∗(t)t
m
n
−1 dt = ∞,

inasmuch as f /∈ L
n
m
,1(0, 1).

The existence of a function u ∈ WmXloc(Ω) \L
∞
loc(Ω) contradicts assumption (i),

which forces WmXloc(Ω) to be contained in L∞
loc(Ω). �
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