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Abstract. We utilise a new approach via the so-called re-scaling method to derive a thorough
theory for polynomial Riccati differential equations in the complex domain.

1. Introduction

The basic features concerning the value distribution of the solutions to Riccati
differential equations

(1) w' = ag(2) + a1 (2)w + as(2)w?

with polynomial coefficients are well understood due to the pioneering work of Wittich
(see his book [15], Chapter V, pp. 73-80). The solutions are meromorphic in the
complex plane, and every non-rational solution has order of growth

log T
(2) Q:limsupmzl—l—nﬂ
T—00 l
mean type, where the non-negative integer n depends on the coefficients a, only. The
aim of this paper is to refine the results of Wittich and others (Bank [1], Gunder-

sen 5], Hellerstein and Rossi 7, 8]; see also Laine’s book [9], Chapter 5) on equation

(1) and the associated linear differential equation (set asw = —u’ / u)
al (z)
" 2 /
_ =0
U (ag(z) + al(z)>u + ao(z)ag(z)u

by a new approach which has been developed earlier to investigate the solutions of
Painlevé differential equations (see [12]). By a simple change of variables (retaining
the original notation z,w) we obtain

(R) w' = a(z) — w?

with

(3) a(z) =2"+0(z|"™") (2 = o).

Up to finitely many, all poles are simple with residue 1; w has counting function
(4) n(r,w) = O(r?).

Our proofs are solely based on the estimate (4), a new existence proof for asymptotic
expansions, and the method of re-scaling.
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2. Re-scaling and the distribution of poles

Throughout the whole paper w denotes any non-rational solution to the Riccati
equation (R). For h # 0 we set

wn(3) = h™"Pw(h + h™"%),
where h~"/? denotes any branch, the same at every occurrence (h="/2h="/2 = h=™).

Theorem 1. The re-scaled family (wp)s>1 is normal in the sense of Montel,
and every limit function w = limy, . wy, satisfies the differential equation

(5) ' =1-—w?
We note that the solution v = coth 3 with pole at the origin has the poles kmut,
k € Z, and no others. Any sequence o = (py) satisfying the approximate recursion
—n/2 —n
(6) Prr = P+ wp " 4 ol lpel )
with w = +ir fixed is called a string.

Theorem 2. Let w be any solution to (R). Then the set of poles on |z| > ry
consists of finitely many strings of poles. FEach string o accumulates at some Stokes
ray

(2v+ 1)m
7 v =0,=—"
(7) S, argz )
and has counting function
0
n(r,o) = ki o(r?).
o

0
Remark. We note that w has Nevanlinna characteristic T'(r,w) = ET—2 +o(r?),
mo

where ¢ = ¢(w) denotes the number of strings of poles.

3. Stokes sectors and asymptotic expansions

The open sectors
2ur s
n+2 < n+ 2
are called Stokes sectors. They are bounded by the Stokes rays s, and s,_;, and will
be enumerated as follows:

(a) 0 <v<n+1ifniseven, and

(b) —m—-1<v<m+1ifn=2m+1is odd.
In the second case s_,, 2 = s,,41 coincides with the negative real axis.

Let f be meromorphic on some sector S: ¢; < argz < ¢o. Then f is said to
have the asymptotic expansion f ~ > 7~ cpz ®9 for some g € N, if for every § > 0
and every n € N

S, largz —

f(z) =Y ez =02 ) (2 = o)
k=0

is valid, uniformly on every sub-sector S(J): ¢; + 6 < argz < ¢o — d. Obviously,
the sector S is ‘pole-free’ for f in the following sense: to every d > 0 there exists
r(d) > 0, such that f has no poles on S(§), |z| > r(d). It follows from Theorem 2
that the Stokes sectors S, are ‘pole-free’ for every solution to equation (R). By /2
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we denote the branch of the square root with Rey/z > 0 on |argz| < 7, and set
22 = (z)" if n is odd.

Theorem 3. The function z~"/?w(z) has an asymptotic expansion

(a) e + Z cpz " if n is even, and
k=1
(b) e+ Z crz M2 if n is odd
k=1
on every ‘pole-free’ sector S, with e = e(w) € {—1, 1} and coefficients ¢, only depend-
ing on €, but neither on w nor the sector S. The solution w is uniquely determined
by its asymptotic expansion if S contains some sub-sector S’ such that
(8) eRez?2<0 on S

Remark. In particular, Theorem 3 holds on Stokes sectors S, with ¢ = ¢, =
e, (w). If (8) is valid on S,, then the corresponding solution is uniquely determined
and is denoted by w,. With every solution w we associate its symbol

(a) ¥ =X(w) = [0, ..., Ens1) if nis even, and

(b) ¥ =%(w) = [ecm-1s---sEmy1] f n=2m + 1 is odd.
Solutions having the symbol ¥(w) with entries €, = (—1)” are called generic. Noting
that (—1)"Re2¢ > 0 holds on S,,, we obtain from Theorem 3:

Theorem 4. Any generic solution w has counting function of poles
2re
n(r,w) = 2 4 ofr?)
T

Theorem 5. Suppose w has symbol .. Then w has

(a) no string of poles asymptotic to the Stokes ray s, if €, = €,.1,

(b) exactly one such string if (—1)"(e, — e,41) = 2, while

(c) (=1)(ey — €p4+1) = —2 is impossible.
Ifn =2m+1 is odd and v = m+1, the term €, has to be replaced by —¢_,,,_1. In
case (a), w has an asymptotic expansion on 6, 1 < argz < 6,,1. Generic solutions
have exactly one string of poles along every Stokes ray, and in any case we have

n(r,w) = ~ Z(—l)”e,, + o(r?).

7TQV

4. Exceptional solutions

The non-generic solutions are called exceptional. Exceptional solutions w, have
the ‘false’ asymptotics

9) w, ~ —(=1)"2"* on S,
and are uniquely determined by that condition.

Example 1. The Riccati equation w’ = 22 + ap — w? is closely related to the
Weber—Hermate equation

y/:y2+2zy—2—2a (w=—y—2z ap=1+2a).

There are four exceptional solutions which may be described by their respective
symbols [-1,-1,1,—-1}, [1,1,1,-1], [1,—1,—1,—1], and [1,—1, 1, 1]. The poles are
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distributed along two rays: |argz — | = §, |argz + 5| = 7, |argz| = 7, and
|arg z — | = 7, respectively.

s
4

Example 2. The Riccati equation w’ = 2+ ag — w? is closely related to the Airy
equation 3’ = z/2+y?. Tt has three exceptional solutions with symbols [—1, —1, —1],
[1,1,—1], and [—1, 1,1}, and strings of poles asymptotic to (actually: on) argz =,
arg z = /3, and arg z = —7/3, respectively.

Theorem 6. To every Stokes sector S, there exists a unique exceptional solution
w,. It has the asymptotic expansion (9) also on the Stokes sectors adjacent to S,,
and no strings of poles along the Stokes rays that form the boundary of S,. The
number d, = n — {,,, where {,, denotes the number of strings of poles of w,, is even.

Remark. The exceptional solutions w, correspond to those solutions to the lin-
ear differential equation y” = a(z)y that are sub-dominant on S,; y,, = exp [ w(z) dz
is called sub-dominant on S, if y, tends to zero exponentially as z — oo on S,,.

Example 3. Gundersen and Steinbart [6] considered the linear differential equa-
tion f” — z"f = 0. They proved among others that certain contour integrals

fu(z) = L/ e dy
Cu

21

represent solutions having no zeros along given Stokes rays s,_; and s,. These
solutions give rise to exceptional solutions w, = f!/f, to the special Riccati equation
w' = 2" — w?, which is invariant under the transformations w(z) — nw(nz), "2 =
1. There are exactly two solutions that are invariant under these transformations,
namely those which either have a pole or else a zero at the origin. These solutions
are generic, hence there are n 4+ 2 mutually distinct exceptional solutions. They are
obtained from a single one, wy, say, by rotating the plane:

w,(2) = entBug(enf 2);
w, has a single string of poles along every Stokes ray s, except those that bound the
Stokes sector S,,.

In the general case (R) the solutions w, need not be mutually distinct.

Example 4. The eigenvalue problem f”+(z*—\)f =0, f € L*(R), has infinitely
many solutions (Mg, fx) (0 < Ay — o0), see Titchmarsh [13]. The eigenfunctions
fr have only finitely many non-real zeros. For every eigenpair (A, f) = (Mg, fx),
u(z) = f(e7"/62) satisfies u” — (2* + e™"™/3\)u = 0, and w = u’/u solves

w =2 e BN —w?
Up to finitely many the poles of the exceptional solution w = ws = ws belong to the
rays argz = ¢ and argz = %7‘(‘, hence w has the symbol [1,—1,—-1,—1,1,1].

Example 5. Eremenko and Gabrielov [2] considered the linear equation

y' — (2 —az+ Ny =0.
For certain real parameters a and A it has solutions with infinitely many zeros, only
finitely many of them are non-real or real and positive. Thus w’ = 2% — az + A — w?
has a solution w with symbol [1,1,1,1,1], hence w = w; = w_;, and mutually
distinct solutions wy, w_s, and wy with symbols [1,—-1,—-1,—1,1], [-1,—-1,1,—1,1],
and [1,—1,1, —1, —1], respectively, each having three strings of poles.
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5. Poles close to a single line

Several papers (Eremenko and Merenkov [3|, Eremenko and Gabrielov 2], Gun-
dersen [4, 5], Shin [11]) are devoted to the question whether or not the linear differ-
ential equation

(10)  y"—P(2)y=0 (P(z) =a,z"+ -+ a polynomial of degree n, |a,| =1)

has solutions with all but finitely many zeros on the real axis. From Theorem 5 we
obtain (see also [3, 4]):

Theorem 7. Suppose that equation (10) has a solution whose zeros are asymp-
totic to the real axis. Then the following is true:
If n is even, then either

e y has only finitely many zeros, or else

e n=0 mod 4, a, = —1, y has exactly one string of zeros asymptotic to the
negative and positive real axis, and y'/y ~ Fiz™? holds on the upper and
lower halt-plane, respectively.

If n =2m + 1 is odd, then either

e a, = 1, y has exactly one string of poles asymptotic to the negative real axis
with asymtotics y Jy ~ (—1)™+12"/% on | arg z| < T, or else
e a, = —1, y has exactly one string of poles asymptotic to the positive real axis
with asymtotics ' Jy ~ (—1)™+'(—2)"? on |arg(—z)| < 7.
If P is real, then in each case all but finitely many zeros are real and y is a (multiple
of a) real entire function.

6. The Schwarzian derivative

In [10] Nevanlinna considered the locally univalent meromorphic functions f of
finite order. They are characterised by the fact that their Schwarzian derivative
Sy = (f"/f") = L(f"/f)?* is a polynomial 2P, say. Moreover, f is the quotient
y(2;0)/y(z; 00) of two linearly independent solutions to the linear differential equation

y' + P(z)y =0,

which is equivalent to the Riccati equation v’ = —P(z) — w? via w = y'/y. The
generic solutions have counting function of poles and Nevanlinna characteristic T'(r, w)
~ Cr? with p = 1+ %deg P; C" > 0 is some known constant. FEvery excep-
tional solution w,, however, has counting function and Nevanlinna characteristic
T(ryw,) ~C %J:gd“ r¢, where d, is some positive integer such that > d, =n+ 2.
Since the zeros of f —a are the same as the zeros of y(z;a) = y(z;0) —ay(z; 00), hence
coincide with the poles of w(z;a) = y'(2;a)/y(z; a), it follows that f has Nevanlinna

deficiencies 0(a,) = 2% (w,(2) = w(z;a,)) with > 6(a,) = 2.

n+2

7. Proof of Theorem 1 and Theorem 2
Proof of Theorem 1. From
wi(3) = A7 a(h + h7"25) + wn(3)?
and 2 "a(z) — 1 as z — oo it follows that

Wy (3)] < 24 lwn(3)?



508 Norbert Steinmetz

holds on [3| < R, |h| > ng. Thus the family (wi)lh\zl of spherical derivatives

is bounded on |3| < R by M(R) = sup{w!(3): |3/ < R, 1 < |h| < ng}+ 2, say. The
limit function o = limy, . wy, = 0o does not occur since otherwise uy, = 1/wp,
would tend to zero, this contradicting w, = 1— h;"a(hy + h;"mg)u%k — 1. Thus
every limit function to satisfies (5) outside the set B of poles of tv. O

Proof of Theorem 2. From Theorem 1 and Hurwitz’ Theorem it follows that
given € > (0 and R > 0 there exists some 7y > 0, such that the disc

Ag(p) = {z: |z —p| < Rlp| ™%}

about any pole p with |[p| > r¢ contains the poles p; with
Bk — (p + krip™?)| < elp| ™" (=ka(p) < k < ka(p)),
and no others; the numbers k; and ks are bounded by a number only depending on
R (for example, k; = ks = 318 if R = 1000 and 7y is sufficiently large). Thus up to
finitely many every pole is contained in a unique string of poles (p) satisfying (6).
Then z, = p{ (0 =n/2+ 1) satisfies
241 = 2k + wo + o(1)
with w = 47 fixed, hence zj, = wok + o(k), pr = (wok)2(1 + o(1)), and
2
n—2k arg pr, = argw + o(1) = ﬂ:g +o0(1) mod 2,

that is, argpy = 0, + o(1) = % + 0(1) holds for some v. The counting function

of o equals n(r,o) = ;—z + o(r?), and from n(r,w) = O(r?) it follows that there are
only finitely many strings of poles. O

8. Proof of Theorem 3

Let w be any solution to (R) and S: |argz — ¢g| < 1 any sector that is ‘pole-
free’ for w. From Theorem 1 then it follows that w(z)z~"/? tends to either +1 or
else —1 as z — oo; the convergence to +1, say, is uniform on each closed sub-
sector S(0): |argz — ¢g| < n — ¢ (take any sequence hy — oo in S(4) such that
limy,, oo [w (i), "* — 1| = limsup, . |w(z)2~™2 — 1| on S(8)). If n = 2m is even
we set v(z) = 27" w(z) to obtain
(11) 2+ mzT ™ = a(2)27 P — 02
If, however, n = 2m + 1 is odd we set v(z) = 27 "w(z?) to obtain
(12) 2" 4 ne T = 2a(22) 2 — 207

From (11) resp. (12) and the fact that v(z) — £1 on some sector S we have to
conclude v ~ £1+ > ¢,z7" on S. For definiteness we will consider equation (11)
with v(z) — 1 on S. If we assume that

v(z) =14 e +o(l2l™) = ¢u(2) + o]z ™)

k=1
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has already been proved (this is true for n = 0) we obtain from

V(2) = ¢ (2) + ol
and (11)
a(2)z7?™ —v? = 2™ (2) + mzT" N, (2) + o |z,
The algebraic equation
a(2)z7 2™ —y* = 2™ (2) + mzT" M, (2)

has a unique solution y =1+ >, ¢j,z~" about z = oo, and from v +y = 2 + o(1)
and (v —y)(v+y) =v* —y* = o(|z| "™ 1) it follows that

n+1

v=y+o(lzl ) =14 ) ez 4 ol2] ) = Y () +o(l2 ).

k=1
It is obvious that ¢, = ¢}, holds for 0 < k& < n, and this proves the existence part.
The proof is the same in all other cases.

To prove the uniqueness part of Theorem 3 we assume that w; and wy have the
same asymptotic expansion on the sector S. Then u = w; — wy solves

W' = —(wi(2) + wy(2))u = —2e2"2(1 + O(|2]72))u,

hence u = CeXp(—2—:ZQ + O(|z|72)) holds. Our hypothesis eRe 22 < 0 and u — 0
on S’ C S then gives u = C' = 0, and this proves Theorem 3 completely. O

9. Proof of Theorem 5

Since all but finitely many poles of w are simple with residue 1, the Residue
Theorem gives

(13) n(r,w) = L/F w(z)dz + O(1),

211

where the simple closed curve T', is obtained from the circle C,.: |z| = r by replacing
the intersection of C, with any disc A(p) = {z: |z —p| < €|[p|™/2} (e > 0 sufficiently
small, p any pole of w) by an appropriate sub-arc of A (p). From w = O(|z|"/?) =
O(|z|27") on T, (this following from the normality of the family wy(3) = h="/2w(h +
h~"/23)) and the fact that [',N{z: |argz—0,| < §} has length at most 27dr as § — 0,
it follows that the contribution of the Stokes sector S, to the counting function of
poles equals

(—1)”5,,% +o(r?) (o=n/2+1).

In particular, w has ) (—1)"¢e, strings of poles. Integrating w along the line segment
o from 79e"® =9 (§ > 0 small, ry > 0 large) to re’® %) gives
1 y ; v
5 j w(z)dz = —2;Qré’em(9”_5) +o(r?) = (—1)”%@6 000 4 o(r9).

Thus, if 72 denotes the simple closed curve which consists of the line segment o, the

(00=0) to re®+9) the line segment from re’®+9) to rye’®*9) and

part of I, from re’
the circular arc on |z| = 7y from roe®*+9 to ree® =% we obtain

! w(z)dz = (—1)" e v — €via] + O(0r?) + o(r?)

o /., om0
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(r = 00, § = 0). Now the integral on the left hand side equals the number of poles
inside Y, while (—1)"$[e, —€,41] coincides with the number of strings of poles along
the Stokes ray s, : argz = 6,. From this the assertions (a), (b), and (c¢) in Theorem 5
immediately follow. O

10. Proof of Theorem 6
It is easily seen that equation (11) resp. (12), written as
(14) 20 = f(z,v) (g=mresp. g=n+1)

has a formal solution &, + Y ¢,z with £, = —(—1)". Since lim,_,, fo(z,¢,) =
—2¢, # 0, Theorem 12.1 in Wasow’s monograph [14] applies to the corresponding

equation for v — ¢,. Hence to every sector |argz — | < Jw there exists a solution

to equation (14) with asymptotic expansion v ~ &, + Y~ ¢,z~". In particular, for
every v we obtain a (unique) solution w = w, to (R) with the desired asymptotic
expansion (9) on the Stokes sector S,,. O

11. Proof of Theorem 7

If y(2) = Py(2)e™® has only finitely many zeros, then n = 2deg P, — 2 is even,
and not much more can be said (of course, P can be computed explicitly from P;
and P,). From now on we assume that y has infinitely many zeros. The change
of variables w(z) = ny'(nz)/y(nz) with n"*2a, = 1 transforms equation (10) into
equation (R) with a(z) = n?P(nz) = 2" + -+, hence the question whether or not
there are solutions y to (10) having infinitely many zeros, ‘most’ of them close to
the real axis is transformed into the question for solutions w to (R) having just one
string of poles asymptotic to some Stokes ray s,: argz = 0, = % if n is odd,
and asymptotic to the Stokes rays s, and s,,, if n = 2m is even, respectively. This
yields 7 = £e up to an arbitrary root of unity of order n + 2, and we are free to

choose n = e "2 and v = 0if nis even, and n = £l and v = m + 1 if n = 2m + 1

is odd. In the first case we obtain a, = —1, and from Theorem 5 it follows that
€0 — €1 =2 and (—1)" (€41 — €mye) = 2, hence ¢g = 1 and ¢; = —1, this implying
€ = " = €pt1 = €1 :—1, Em+2 = = €m+1 :60:1,m22k and n = 4k. This
proves the first part of Theorem 6.

In the second case we have a, = +1 and a, = —1 with zeros asymptotic to

the negative and positive real axis, respectively, and asymptotic expansions y'/y ~
(=1)™ 1272 on |argz| < 7 resp. y'/y =~ (—1)™*(=2)"? on |arg(—2)| < 7 (note
that 2™/? means (y/2)").

Now y is uniquely determined up to a constant factor. Thus if P is a real
polynomial, then the zeros of y*(z) = ﬁ are also asymptotic to the real axis, hence
y and y* are linearly dependent, and y is a multiple of a real function with all but
finitely many zeros real. OJ
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