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Abstract. We utilise a new approach via the so-called re-scaling method to derive a thorough

theory for polynomial Riccati differential equations in the complex domain.

1. Introduction

The basic features concerning the value distribution of the solutions to Riccati
differential equations

(1) w′ = a0(z) + a1(z)w + a2(z)w
2

with polynomial coefficients are well understood due to the pioneering work of Wittich
(see his book [15], Chapter V, pp. 73–80). The solutions are meromorphic in the
complex plane, and every non-rational solution has order of growth

(2) ̺ = lim sup
r→∞

log T (r, w)

log r
= 1 + n/2

mean type, where the non-negative integer n depends on the coefficients aν only. The
aim of this paper is to refine the results of Wittich and others (Bank [1], Gunder-
sen [5], Hellerstein and Rossi [7, 8]; see also Laine’s book [9], Chapter 5) on equation
(1) and the associated linear differential equation (set a2w = −u′/u)

u′′ −
(a′2(z)

a2(z)
+ a1(z)

)

u′ + a0(z)a2(z)u = 0

by a new approach which has been developed earlier to investigate the solutions of
Painlevé differential equations (see [12]). By a simple change of variables (retaining
the original notation z, w) we obtain

(R) w′ = a(z)− w2

with

(3) a(z) = zn +O(|z|n−1) (z → ∞).

Up to finitely many, all poles are simple with residue 1; w has counting function

(4) n(r, w) = O(r̺).

Our proofs are solely based on the estimate (4), a new existence proof for asymptotic
expansions, and the method of re-scaling.
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2. Re-scaling and the distribution of poles

Throughout the whole paper w denotes any non-rational solution to the Riccati
equation (R). For h 6= 0 we set

wh(z) = h−n/2w(h+ h−n/2z),

where h−n/2 denotes any branch, the same at every occurrence (h−n/2h−n/2 = h−n).

Theorem 1. The re-scaled family (wh)|h|>1 is normal in the sense of Montel,

and every limit function w = limhn→∞whn
satisfies the differential equation

(5) w′ = 1−w2.

We note that the solution w = coth z with pole at the origin has the poles kπi,
k ∈ Z, and no others. Any sequence σ = (pk) satisfying the approximate recursion

(6) pk+1 = pk + ωp
−n/2
k + o(|pk|−n/2)

with ω = ±iπ fixed is called a string.

Theorem 2. Let w be any solution to (R). Then the set of poles on |z| > r0
consists of finitely many strings of poles. Each string σ accumulates at some Stokes
ray

(7) sν : arg z = θν =
(2ν + 1)π

n + 2

and has counting function

n(r, σ) =
r̺

π̺
+ o(r̺).

Remark. We note that w has Nevanlinna characteristic T (r, w) = ℓ
r̺

π̺2
+ o(r̺),

where ℓ = ℓ(w) denotes the number of strings of poles.

3. Stokes sectors and asymptotic expansions

The open sectors

Sν :
∣

∣

∣
arg z − 2νπ

n+ 2

∣

∣

∣
<

π

n + 2
are called Stokes sectors. They are bounded by the Stokes rays sν and sν−1, and will
be enumerated as follows:

(a) 0 ≤ ν ≤ n+ 1 if n is even, and
(b) −m− 1 ≤ ν ≤ m+ 1 if n = 2m+ 1 is odd.

In the second case s−m−2 = sm+1 coincides with the negative real axis.
Let f be meromorphic on some sector S : φ1 < arg z < φ2. Then f is said to

have the asymptotic expansion f ∼ ∑∞
k=0 ckz

−k/q for some q ∈ N, if for every δ > 0
and every n ∈ N0

f(z)−
n

∑

k=0

ckz
−k/q = o(|z|−n/q) (z → ∞)

is valid, uniformly on every sub-sector S(δ) : φ1 + δ < arg z < φ2 − δ. Obviously,
the sector S is ‘pole-free’ for f in the following sense: to every δ > 0 there exists
r(δ) > 0, such that f has no poles on S(δ), |z| > r(δ). It follows from Theorem 2
that the Stokes sectors Sν are ‘pole-free’ for every solution to equation (R). By

√
z
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we denote the branch of the square root with Re
√
z > 0 on | arg z| < π, and set

zn/2 = (
√
z)n if n is odd.

Theorem 3. The function z−n/2w(z) has an asymptotic expansion

(a) ε+

∞
∑

k=1

ckz
−k if n is even, and

(b) ε+

∞
∑

k=1

ckz
−k/2 if n is odd

on every ‘pole-free’ sector S, with ε = ε(w) ∈ {−1, 1} and coefficients ck only depend-

ing on ε, but neither on w nor the sector S. The solution w is uniquely determined

by its asymptotic expansion if S contains some sub-sector S ′ such that

(8) εRe z̺ < 0 on S ′.

Remark. In particular, Theorem 3 holds on Stokes sectors Sν with ε = εν =
εν(w). If (8) is valid on Sν , then the corresponding solution is uniquely determined
and is denoted by wν . With every solution w we associate its symbol

(a) Σ = Σ(w) = [ε0, . . . , εn+1] if n is even, and
(b) Σ = Σ(w) = [ε−m−1, . . . , εm+1] if n = 2m+ 1 is odd.

Solutions having the symbol Σ(w) with entries εν = (−1)ν are called generic. Noting
that (−1)νRe z̺ > 0 holds on Sν , we obtain from Theorem 3:

Theorem 4. Any generic solution w has counting function of poles

n(r, w) =
2r̺

π
+ o(r̺).

Theorem 5. Suppose w has symbol Σ. Then w has

(a) no string of poles asymptotic to the Stokes ray sν if εν = εν+1,
(b) exactly one such string if (−1)ν(εν − εν+1) = 2, while

(c) (−1)ν(εν − εν+1) = −2 is impossible.

If n = 2m+1 is odd and ν = m+1, the term εν+1 has to be replaced by −ε−m−1. In

case (a), w has an asymptotic expansion on θν−1 < arg z < θν+1. Generic solutions

have exactly one string of poles along every Stokes ray, and in any case we have

n(r, w) =
r̺

π̺

∑

ν

(−1)νǫν + o(r̺).

4. Exceptional solutions

The non-generic solutions are called exceptional. Exceptional solutions wν have
the ‘false’ asymptotics

(9) wν ≈ −(−1)νzn/2 on Sν

and are uniquely determined by that condition.

Example 1. The Riccati equation w′ = z2 + a0 − w2 is closely related to the
Weber–Hermite equation

y′ = y2 + 2zy − 2− 2α (w = −y − z, a0 = 1 + 2α).

There are four exceptional solutions which may be described by their respective
symbols [−1,−1, 1,−1], [1, 1, 1,−1], [1,−1,−1,−1], and [1,−1, 1, 1]. The poles are
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distributed along two rays: | arg z − π| = π
4
, | arg z + π

2
| = π

4
, | arg z| = π

4
, and

| arg z − π
2
| = π

4
, respectively.

Example 2. The Riccati equation w′ = z+a0−w2 is closely related to the Airy

equation y′ = z/2+y2. It has three exceptional solutions with symbols [−1,−1,−1],
[1, 1,−1], and [−1, 1, 1], and strings of poles asymptotic to (actually: on) arg z = π,
arg z = π/3, and arg z = −π/3, respectively.

Theorem 6. To every Stokes sector Sν there exists a unique exceptional solution

wν . It has the asymptotic expansion (9) also on the Stokes sectors adjacent to Sν ,

and no strings of poles along the Stokes rays that form the boundary of Sν . The

number dν = n− ℓν , where ℓν denotes the number of strings of poles of wν , is even.

Remark. The exceptional solutions wν correspond to those solutions to the lin-
ear differential equation y′′ = a(z)y that are sub-dominant on Sν ; yν = exp

´

w(z) dz
is called sub-dominant on Sν , if yν tends to zero exponentially as z → ∞ on Sν .

Example 3. Gundersen and Steinbart [6] considered the linear differential equa-
tion f ′′ − znf = 0. They proved among others that certain contour integrals

fν(z) =
1

2πi

ˆ

Cν

eP (z,w) dw

represent solutions having no zeros along given Stokes rays sν−1 and sν . These
solutions give rise to exceptional solutions wν = f ′

ν/fν to the special Riccati equation
w′ = zn − w2, which is invariant under the transformations w(z) 7→ ηw(ηz), ηn+2 =
1. There are exactly two solutions that are invariant under these transformations,
namely those which either have a pole or else a zero at the origin. These solutions
are generic, hence there are n + 2 mutually distinct exceptional solutions. They are
obtained from a single one, w0, say, by rotating the plane:

wν(z) = e
2νπi
n+2w0

(

e
2νπi
n+2 z

)

;

wν has a single string of poles along every Stokes ray sµ except those that bound the
Stokes sector Sν .

In the general case (R) the solutions wν need not be mutually distinct.

Example 4. The eigenvalue problem f ′′+(z4−λ)f = 0, f ∈ L2(R), has infinitely
many solutions (λk, fk) (0 < λk → ∞), see Titchmarsh [13]. The eigenfunctions
fk have only finitely many non-real zeros. For every eigenpair (λ, f) = (λk, fk),
u(z) = f(e−iπ/6z) satisfies u′′ − (z4 + e−iπ/3λ)u = 0, and w = u′/u solves

w′ = z4 + e−iπ/3λ− w2.

Up to finitely many the poles of the exceptional solution w = w2 = w5 belong to the
rays arg z = π

6
and arg z = 7

6
π, hence w has the symbol [1,−1,−1,−1, 1, 1].

Example 5. Eremenko and Gabrielov [2] considered the linear equation

y′′ − (z3 − az + λ)y = 0.

For certain real parameters a and λ it has solutions with infinitely many zeros, only
finitely many of them are non-real or real and positive. Thus w′ = z3 − az + λ− w2

has a solution w with symbol [1, 1, 1, 1, 1], hence w = w1 = w−1, and mutually
distinct solutions w0, w−2, and w2 with symbols [1,−1,−1,−1, 1], [−1,−1, 1,−1, 1],
and [1,−1, 1,−1,−1], respectively, each having three strings of poles.
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5. Poles close to a single line

Several papers (Eremenko and Merenkov [3], Eremenko and Gabrielov [2], Gun-
dersen [4, 5], Shin [11]) are devoted to the question whether or not the linear differ-
ential equation

(10) y′′ − P (z)y = 0 (P (z) = anz
n + · · · a polynomial of degree n, |an| = 1)

has solutions with all but finitely many zeros on the real axis. From Theorem 5 we
obtain (see also [3, 4]):

Theorem 7. Suppose that equation (10) has a solution whose zeros are asymp-

totic to the real axis. Then the following is true:

If n is even, then either

• y has only finitely many zeros, or else

• n ≡ 0 mod 4, an = −1, y has exactly one string of zeros asymptotic to the

negative and positive real axis, and y′/y ≈ ∓izn/2 holds on the upper and

lower half-plane, respectively.

If n = 2m+ 1 is odd, then either

• an = 1, y has exactly one string of poles asymptotic to the negative real axis

with asymtotics y′/y ≈ (−1)m+1zn/2 on | arg z| < π, or else

• an = −1, y has exactly one string of poles asymptotic to the positive real axis

with asymtotics y′/y ≈ (−1)m+1(−z)n/2 on | arg(−z)| < π.

If P is real, then in each case all but finitely many zeros are real and y is a (multiple
of a) real entire function.

6. The Schwarzian derivative

In [10] Nevanlinna considered the locally univalent meromorphic functions f of
finite order. They are characterised by the fact that their Schwarzian derivative
Sf = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2 is a polynomial 2P , say. Moreover, f is the quotient

y(z; 0)/y(z;∞) of two linearly independent solutions to the linear differential equation

y′′ + P (z)y = 0,

which is equivalent to the Riccati equation w′ = −P (z) − w2 via w = y′/y. The
generic solutions have counting function of poles and Nevanlinna characteristic T (r, w)
∼ Cr̺ with ̺ = 1 + 1

2
degP ; C > 0 is some known constant. Every excep-

tional solution wν , however, has counting function and Nevanlinna characteristic
T (r, wν) ∼ C n+2−2dν

n+2
r̺, where dν is some positive integer such that

∑

ν dν = n + 2.
Since the zeros of f−a are the same as the zeros of y(z; a) = y(z; 0)−ay(z;∞), hence
coincide with the poles of w(z; a) = y′(z; a)/y(z; a), it follows that f has Nevanlinna
deficiencies δ(aν) =

2dν
n+2

(wν(z) = w(z; aν)) with
∑

ν δ(aν) = 2.

7. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. From

w′
h(z) = h−na(h+ h−n/2z) + wh(z)

2

and z−na(z) → 1 as z → ∞ it follows that

|w′
h(z)| ≤ 2 + |wh(z)|2
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holds on |z| < R, |h| > ηR. Thus the family (w♯
h)|h|≥1 of spherical derivatives

w♯
h =

|w′
h|

1 + |wh|2

is bounded on |z| < R by M(R) = sup{w♯
h(z) : |z| < R, 1 < |h| < ηR} + 2, say. The

limit function w = limhk→∞whk
≡ ∞ does not occur since otherwise uhk

= 1/whk

would tend to zero, this contradicting u′hk
= 1 − h−n

k a(hk + h
−n/2
k z)u2hk

→ 1. Thus
every limit function w satisfies (5) outside the set P of poles of w. �

Proof of Theorem 2. From Theorem 1 and Hurwitz’ Theorem it follows that
given ǫ > 0 and R > 0 there exists some r0 > 0, such that the disc

△R(p) = {z : |z − p| < R|p|−n/2}
about any pole p with |p| > r0 contains the poles p̃k with

|p̃k − (p+ kπip−n/2)| < ǫ|p|−n/2 (−k1(p) ≤ k ≤ k2(p)),

and no others; the numbers k1 and k2 are bounded by a number only depending on
R (for example, k1 = k2 = 318 if R = 1000 and r0 is sufficiently large). Thus up to
finitely many every pole is contained in a unique string of poles (pk) satisfying (6).
Then zk = p̺k (̺ = n/2 + 1) satisfies

zk+1 = zk + ω̺+ o(1)

with ω = ±πi fixed, hence zk = ω̺k + o(k), pk = (ω̺k)1/̺(1 + o(1)), and

n + 2

2
arg pk = arg ω + o(1) = ±π

2
+ o(1) mod 2π,

that is, arg pk = θν + o(1) = 2νπ+1
n+2

+ o(1) holds for some ν. The counting function

of σ equals n(r, σ) = r̺

π̺
+ o(r̺), and from n(r, w) = O(r̺) it follows that there are

only finitely many strings of poles. �

8. Proof of Theorem 3

Let w be any solution to (R) and S : | arg z − φ0| < η any sector that is ‘pole-
free’ for w. From Theorem 1 then it follows that w(z)z−n/2 tends to either +1 or
else −1 as z → ∞; the convergence to +1, say, is uniform on each closed sub-
sector S(δ) : | arg z − φ0| ≤ η − δ (take any sequence hk → ∞ in S(δ) such that

limhk→∞ |w(hk)h−n/2
k − 1| = lim supz→∞ |w(z)z−n/2 − 1| on S(δ)). If n = 2m is even

we set v(z) = z−mw(z) to obtain

(11) z−mv′ +mz−m−1v = a(z)z−2m − v2.

If, however, n = 2m+ 1 is odd we set v(z) = z−nw(z2) to obtain

(12) z−n−1v′ + nz−n−2v = 2a(z2)z−2n − 2v2.

From (11) resp. (12) and the fact that v(z) → ±1 on some sector S we have to
conclude v ∼ ±1 +

∑∞
k=1 ckz

−k on S. For definiteness we will consider equation (11)
with v(z) → 1 on S. If we assume that

v(z) = 1 +
n

∑

k=1

ckz
−k + o(|z|−n) = ψn(z) + o(|z|−n)
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has already been proved (this is true for n = 0) we obtain from

v′(z) = ψ′
n(z) + o(|z|−n−1)

and (11)

a(z)z−2m − v2 = z−mψ′
n(z) +mz−m−1ψn(z) + o(|z|−n−m−1).

The algebraic equation

a(z)z−2m − y2 = z−mψ′
n(z) +mz−m−1ψn(z)

has a unique solution y = 1 +
∑∞

k=1 c
′
kz

−k about z = ∞, and from v + y = 2 + o(1)
and (v − y)(v + y) = v2 − y2 = o(|z|−n−m−1) it follows that

v = y + o(|z|−n−m−1) = 1 +
n+1
∑

k=1

c′kz
−k + o(|z|−n−1) = ψn+1(z) + o(|z|−n−1).

It is obvious that ck = c′k holds for 0 ≤ k ≤ n, and this proves the existence part.
The proof is the same in all other cases.

To prove the uniqueness part of Theorem 3 we assume that w1 and w2 have the
same asymptotic expansion on the sector S. Then u = w1 − w2 solves

u′ = −(w1(z) + w2(z))u = −2εzn/2(1 +O(|z|− 1

2 ))u,

hence u = C exp(−2ε
̺
z̺ + O(|z|̺− 1

2 )) holds. Our hypothesis εRe z̺ < 0 and u → 0

on S ′ ⊂ S then gives u = C = 0, and this proves Theorem 3 completely. �

9. Proof of Theorem 5

Since all but finitely many poles of w are simple with residue 1, the Residue
Theorem gives

(13) n(r, w) =
1

2πi

ˆ

Γr

w(z) dz +O(1),

where the simple closed curve Γr is obtained from the circle Cr : |z| = r by replacing
the intersection of Cr with any disc △ǫ(p) = {z : |z−p| < ǫ|p|−n/2} (ǫ > 0 sufficiently
small, p any pole of w) by an appropriate sub-arc of ∂△ǫ(p). From w = O(|z|n/2) =
O(|z|̺−1) on Γr (this following from the normality of the family wh(z) = h−n/2w(h+
h−n/2z)) and the fact that Γr∩{z : | arg z−θν | < δ} has length at most 2πδr as δ → 0,
it follows that the contribution of the Stokes sector Sν to the counting function of
poles equals

(−1)νεν
r̺

π̺
+ o(r̺) (̺ = n/2 + 1).

In particular, w has
∑

ν(−1)νεν strings of poles. Integrating w along the line segment
σ from r0e

i(θν−δ) (δ > 0 small, r0 > 0 large) to rei(θν−δ) gives

1

2πi

ˆ

σ

w(z) dz =
εν

2πi̺
r̺ei̺(θν−δ) + o(r̺) = (−1)ν

εν
2π̺

e−i̺δr̺ + o(r̺).

Thus, if γνr denotes the simple closed curve which consists of the line segment σ, the
part of Γr from rei(θν−δ) to rei(θν+δ), the line segment from rei(θν+δ) to r0e

i(θν+δ), and
the circular arc on |z| = r0 from r0e

i(θν+δ) to r0e
i(θν−δ) we obtain

1

2πi

ˆ

γν
r

w(z) dz = (−1)ν
r̺

2π̺
[εν − εν+1] +O(δr̺) + o(r̺)
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(r → ∞, δ → 0). Now the integral on the left hand side equals the number of poles
inside γνr , while (−1)ν 1

2
[εν − εν+1] coincides with the number of strings of poles along

the Stokes ray sν : arg z = θν . From this the assertions (a), (b), and (c) in Theorem 5
immediately follow. �

10. Proof of Theorem 6

It is easily seen that equation (11) resp. (12), written as

(14) z−qv′ = f(z, v) (q = m resp. q = n+ 1)

has a formal solution εν +
∑∞

ν=1 cνz
−ν with εν = −(−1)ν . Since limz→∞ fv(z, εν) =

−2εν 6= 0, Theorem 12.1 in Wasow’s monograph [14] applies to the corresponding
equation for v − εν . Hence to every sector | arg z − θ0| < π

2q+2
there exists a solution

to equation (14) with asymptotic expansion v ∼ εν +
∑∞

ν=1 cνz
−ν . In particular, for

every ν we obtain a (unique) solution w = wν to (R) with the desired asymptotic
expansion (9) on the Stokes sector Sν . �

11. Proof of Theorem 7

If y(z) = P1(z)e
P2(z) has only finitely many zeros, then n = 2degP2 − 2 is even,

and not much more can be said (of course, P can be computed explicitly from P1

and P2). From now on we assume that y has infinitely many zeros. The change
of variables w(z) = ηy′(ηz)/y(ηz) with ηn+2an = 1 transforms equation (10) into
equation (R) with a(z) = η2P (ηz) = zn + · · · , hence the question whether or not
there are solutions y to (10) having infinitely many zeros, ‘most’ of them close to
the real axis is transformed into the question for solutions w to (R) having just one

string of poles asymptotic to some Stokes ray sν : arg z = θν = (2ν+1)π
n+2

if n is odd,
and asymptotic to the Stokes rays sν and sν+m if n = 2m is even, respectively. This
yields η̄ = ±eiθν up to an arbitrary root of unity of order n + 2, and we are free to
choose η = e−i π

n+2 and ν = 0 if n is even, and η = ±1 and ν = m+ 1 if n = 2m+ 1
is odd. In the first case we obtain an = −1, and from Theorem 5 it follows that
ǫ0 − ǫ1 = 2 and (−1)m+1(ǫm+1 − ǫm+2) = 2, hence ǫ0 = 1 and ǫ1 = −1, this implying
ǫ2 = · · · = ǫm+1 = ǫ1 = −1, ǫm+2 = · · · = ǫ2m+1 = ǫ0 = 1, m = 2k and n = 4k. This
proves the first part of Theorem 6.

In the second case we have an = +1 and an = −1 with zeros asymptotic to
the negative and positive real axis, respectively, and asymptotic expansions y′/y ≈
(−1)m+1zn/2 on | arg z| < π resp. y′/y ≈ (−1)m+1(−z)n/2 on | arg(−z)| < π (note
that zn/2 means (

√
z)n).

Now y is uniquely determined up to a constant factor. Thus if P is a real
polynomial, then the zeros of y∗(z) = y(z̄) are also asymptotic to the real axis, hence
y and y∗ are linearly dependent, and y is a multiple of a real function with all but
finitely many zeros real. �

References

[1] Bank, S.: A note on the zeros of solutions of w′′ + P (z)w = 0, where P is a polynomial. -
Appl. Anal. 25, 1988, 29–41.

[2] Eremenko, A., and A. Gabrielov: Singular pertubation of polynomial potentials with
application to PT-symmetric families. - Mosc. Math. J. 11, 2011, 473–503.



Complex Riccati differential equations revisited 511

[3] Eremenko, A., and S. Merenkov: Nevanlinna functions with real zeros. - Illinois J. Math.
49, 2005, 1093–1110.

[4] Gundersen, G.: On the real zeros os solutions of f ′′ + A(z)f = 0, where A is entire. - Ann.
Acad. Sci. Fenn. Ser. A I Math. 11, 1986, 275–294.

[5] Gundersen, G.: Solutions of f ′′ + P (z)f = 0 that have almost all real zeros. - Ann. Acad.
Sci. Fenn. Math. 26, 2001, 483–488.

[6] Gundersen, G., and E. Steinbart: A generalization of the Airy integral for f ′′ − znf = 0.
- Trans. Amer. Math. Soc. 337, 1993, 737–755.

[7] Hellerstein, S., and J. Rossi: Zeros of meromorphic solutions of second-order differential
equations. - Math. Z. 192, 1986, 603–612.

[8] Hellerstein, S., and J. Rossi: On the distribution of zeros of solutions of second-order
differential equations. - Complex Var. Theory Appl. 13, 1989, 99–109.

[9] Laine, I.: Nevanlinna theory and complex differential equations. - W. de Gruyter, 1993.

[10] Nevanlinna, R.: Über Riemannsche Flächen mit endlich vielen Windungspunkten - Acta.
Math. 58, 1932, 295–273.

[11] Shin, K.: New polynomials P for which f ′′ + P (z)f = 0 has a solution with almost all real
zeros. - Ann. Acad. Sci. Fenn. Math. 27, 2002, 491–498.

[12] Steinmetz, N.: Sub-normal solutions to Painlevé’s second differential equation. - Bull. London
Math. Soc. 45, 2013, 225–235.

[13] Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equa-
tions, Part I, second edition. - Oxford Univ. Press, London, 1962.

[14] Wasow, W.: Asymptotic expansions for ordinary differential equations. - J. Wiley & Sons,
1965.

[15] Wittich, H.: Neuere Untersuchungen über eindeutige analytische Funktionen. - Springer,
1968.

Received 30 January 2013 • Accepted 20 December 2013


