
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 463–472

EXCEPTIONAL POINTS FOR

COCOMPACT FUCHSIAN GROUPS

Joseph Fera

Lehman College CUNY, Department of Mathematics and Computer Science
250 Bedford Park Blvd West, Bronx, NY 10468, U.S.A.; joseph.fera@lehman.cuny.edu

Abstract. Let G be a cocompact Fuchsian group acting on the hyperbolic plane H. If G

covers a compact hyperbolic surface of genus g ≥ 2, then almost every Dirichlet region for G has

12g− 6 sides. In this article, we study the exceptional points for G, i.e., the points in H associated

to Dirichlet regions for G with strictly less than 12g − 6 sides. More specifically, we show that

uncountably many exceptional points exist for any cocompact group. We also define and prove the

existence of higher order exceptional points for any such group.

1. Introduction

We consider cocompact Fuchsian groups G that cover compact hyperbolic sur-
faces of genus g ≥ 2. For such groups, Beardon proved that almost every Dirichlet
region has 12g − 6 sides [1]. Any point z in the hyperbolic plane H that admits a
Dirichlet region for G with strictly less than 12g− 6 sides is called exceptional for G.
As a consequence of Beardon’s result, the set of exceptional points for any cocom-
pact G has zero measure and, a priori, may be empty. In what follows, we prove the
following result using topological results on a Dirichlet region’s side-pairing transfor-
mations.

Theorem 4.3. Let G be a cocompact Fuchsian group. Uncountably many
exceptional points exist for G in H.

To better understand exceptional points, we also investigate where in H such
points can exist. We call these locations indicating sets for G. They appear in
[5] and are defined via complex-valued rational functions and hyperbolic isometries.
We provide useful topological characterizations for indicating sets (Section 5), which
allow us to prove an existence result for Dirichlet regions with strictly less than 12g−8
sides. Points admitting such Dirichlet regions are called exceptional points of higher

order for G.

Theorem 6.3. If G is a cocompact Fuchsian group, then there exists an excep-
tional point of higher order for G.

The paper proceeds as follows. Section 2 contains the definitions, notations, and
foundational results on cocompact Fuchsian groups needed for subsequent sections.
It also includes several technical facts (with minimal proofs) on Dirichlet regions.
We refer to [1], [3], and [4] for this background information. Section 3 summarizes
known results on regular points, i.e., the points in H that admit Dirichlet regions with
12g − 6 sides. In Section 4, we prove Theorem 4.3. Section 5 investigates indicating
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sets and provides a key proposition used to prove Theorem 6.3 which is the content
of Section 6.

2. Preliminaries

Let H denote the hyperbolic plane, ρ the hyperbolic metric on H, and Isom+(H)
the group of all orientation-preserving hyperbolic isometries endowed with the com-
pact-open topology. A discrete subgroup G of Isom+(H) is called a Fuchsian group.
Unless otherwise stated, G denotes a finitely generated, fixed-point free Fuchsian
group. When given the quotient topology, the quotient space H/G is homeomorphic
to a sphere with g ≥ 2 many handles and finitely many punctures. This g is the
genus of H/G.

The quotient space S = H/G is a hyperbolic surface and inherits a complete
hyperbolic metric denoted by ρS. Recall that a fundamental set for the action of a
Fuchsian group G on H is a subset F of H that contains exactly one point from each
G-orbit. An open and connected subset D of H is called a fundamental domain for G
provided that the hyperbolic area of ∂D is 0 and there exists a fundamental set F for
G that that satisfies D ⊂ F ⊂ D, where D denotes the closure of D. The following
construction defines a family of fundamental domains, the so-called Dirichlet regions,
for the action of such G on H.

Definition 2.1. The Dirichlet region for G with basepoint z is defined by,

D(z) =
⋂

f∈G\{id}

Hf (z),

where Hf (z) = {w ∈ H : ρ(w, z) < ρ(w, f(z))}.

When the hyperbolic surface H/G is compact, the Fuchsian group G is called
cocompact. Such groups are necessarily of the first kind (i.e. their limit sets are
all of ∂H) and contain only hyperbolic isometries. Therefore, all such groups are
necessarily torsion-free. In addition, if G is cocompact, then any of its associated
Dirichlet regions is a finite-sided hyperbolic polygon with compact closure, D(z), in
H.

A side s of D(z) is a positive length geodesic segment of the form D(z)∩f(D(z))

where f ∈ G \ {id}. A vertex of D(z) is a single point of the form D(z) ∩ f(D(z)) ∩

h(D(z)) where f, h ∈ G \ {id}. For each side s of D(z), there exists a unique map
f ∈ G such that f(s) is another side of D(z). The collection of all such maps, called
the side-pairing transformations of D(z), form a subset of G denoted by S(z). Since
G is torsion-free, it follows that the number of side-pairing transformations for D(z),
given by |S(z)|, equals the number of sides of D(z).

The following result, due to Beardon [1, Theorem 10.1.2], provides both upper
and lower bounds on |S(z)| for cocompact G.

Theorem 2.2. Let G be a cocompact Fuchsian group such that H/G has genus
g ≥ 2. Then,

4g ≤ |S(z)| ≤ 12g − 6.

and the upper bound is attained on a full-measure subset of H.

In what follows, G will always denote a cocompact Fuchsian group and D(z) the
Dirichlet region of G with center z ∈ H.
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A cycle C in D(z) is the intersection of the G-orbit of any point in H with D(z).
Any cycle C is necessarily finite by discreteness; its length is denoted by |C|. The
next theorem combines consequences of Theorems 9.3.5 and 9.4.5 in [1].

Theorem 2.3. Let C be a cycle in D(z) containing w. Then,

(1) |C| = 1 if and only if w ∈ D(z);
(2) |C| = 2 if and only if w is an interior point of a side of D(z);
(3) |C| ≥ 3 if and only if w is a vertex of D(z); such cycles are referred to as a

vertex cycles of D(z).

Next, we record several facts as one proposition for later reference. Their proofs
follow directly from results in Section 9 of [1].

Proposition 2.4. Let G denote a cocompact Fuchsian group and suppose that
f ∈ G.

(1) Let s be a side of D(z). The side s is given by D(z) ∩ f(D(z)) if and only if
s ⊂ Lf (z), where

Lf (z) = {w ∈ H : ρ(w, z) = ρ(w, f(z))}.

(2) The element f is in S(z) if and only if D(z) has a side given by s = D(z) ∩

f−1(D(z)).
(3) If f ∈ S(z), then f−1 ∈ S(z).
(4) If both w and f−1(w) belong to the same cycle C of D(z), then

ρ(w, z) = ρ(f−1(w), z) = ρ(w, f(z)).

The lemma below is easily verified; it will be referenced in the proposition that
immediately follows it and in later sections.

Lemma 2.5. If A ⊂ H is compact, then there exists K ⊂ H compact so that
D(z) ⊂ K for all z ∈ A.

The following proposition is probably known, but we include a full proof for the
reader’s convenience. Throughout, BR(z) denotes the hyperbolic ball centered at

z ∈ H of radius R > 0. Its closure is denoted by BR(z).

Proposition 2.6. If zn ∈ H converge to z ∈ H in the hyperbolic metric, then
∂D(zn) converge to ∂D(z) in the Hausdorff topology.

Proof. We show that for each ε > 0 there exists N ∈ N such that for all
n ≥ N the following conditions hold: (i) ρ(w, ∂D(z)) < ε for all w ∈ ∂D(zn) and (ii)
ρ(w, ∂D(zn)) < ε for all w ∈ ∂D(z). Using Lemma 2.5 with A = {zn : n ∈ N} ∪ {z}
which is compact by the convergence assumption, we can find a compact set K
containing the collection of all D(zn) and D(z).

Suppose to the contrary that (i) fails. Then, there exists an ε > 0, an infinite
subsequence of {zn} relabeled {zn} for convenience, and corresponding points ζn ∈
∂D(zn) satisfying, ρ(ζn, ∂D(z)) ≥ ε for every n. Each ζn lies in the compact set K
and, hence, a subsequence {ζn} relabeled if necessary may be extracted such that
{ζn} converges to ζ ∈ K. The limit ζ clearly satisfies ρ(ζ, ∂D(z)) ≥ ε.

For each ζn, there exists fn ∈ G such that ζn ∈ Lfn(zn) by Proposition 2.4. It
follows immediately that ρ(zn, ζn) = ρ(fn(zn), ζn) for every n. The compact set K has
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finite diameter, say M > 0, and K contains all zn and ζn. Therefore, ρ(fn(zn), ζn) =
ρ(zn, ζn) < M and we have ρ(zn, fn(zn)) < 2M by the triangle inequality.

If K∗ = B2M(K), then K∗ is a compact set containing all zn and all fn(zn).
Hence, fn(K

∗) ∩K∗ 6= ∅ for each n. Since G is discrete, it follows that only finitely
distinct maps exist among the fn. So, there exists a map f ∈ G such that fn = f for
infinitely many n ∈ N.

Again, refine and relabel the subsequence {ζn} so that, for all n, ζn ∈ Lf (zn)
for this fixed f ∈ G. For each n, ρ(zn, ζn) = ρ(f(zn), ζn), with zn → z and ζn → ζ .
It follows, from the continuity of ρ, that ρ(z, ζ) = ρ(f(z), ζ) and, hence, ζ ∈ Lf(z).
One now checks that ζ ∈ ∂D(z) which contradicts the fact that ρ(ζ, ∂D(z)) ≥ ε.

Next, we need to prove (ii). Suppose to the contrary that (ii) fails. Then, there
exists ε > 0 and a collection of points ζn ∈ ∂D(z) such that ρ(ζn, ∂D(zn)) ≥ ε for
infinitely many n. Since D(z) is a finite-sided polygon with compact closure in H,
its boundary is compact and, hence, the collection of ζn ∈ ∂D(z) has at least one
accumulation point ζ ∈ ∂D(z).

We claim that ζ satisfies ρ(ζ, ∂D(zn)) ≥ ε/2 for large enough values of n. Observe
that ρ(ζn, ∂D(zn)) ≥ ε by assumption, and for large enough n we have ρ(ζn, ζ) < ε/2.
Thus, by the (reverse) triangle inequality, ρ(ζ, ∂D(zn)) ≥ ε/2 for these large enough
n. It follows that, for these n, there exists an open neighborhood U of ζ such that
either U ⊂ D(zn) or U ⊂ H \D(zn). It is not hard to verify that neither can happen
for infinitely many n ∈ N which results in a contradiction and shows (ii). �

3. Regular points

Recall that G denotes a cocompact Fuchsian group, D(z) the Dirichlet region for
G centered at z, and S(z) the collection of all side-pairing transformations of D(z).

Proposition 3.1. Let z ∈ H and f ∈ S(z). Then there exists an open set
U ⊂ H containing z such that f ∈ S(w) for all w ∈ U .

Proof. Suppose to the contrary that the statement is false. Hence, there exists a
sequence {zm} converging to z such that f 6∈ S(zm) for each m ∈ N. It follows from

Proposition 2.4 that D(zm) cannot have a side of the form sm = D(zm) ∩ f(D(zm))
for any m ∈ N. We proceed to show, however, that this cannot be the case for
infinitely many sm.

Since f ∈ S(z), the Dirichlet region D(z) has a side given by s = D(z) ∩

f(D(z)) ⊂ Lf(z). Let w be a point on s that is not a vertex of D(z). By The-
orem 2.6, we can find points wm ∈ ∂D(zm) such that wm → w in the hyperbolic
metric. Moreover, since a fixed Dirichlet region has only finitely many vertices, we
may choose the wm so that no wm corresponds to a vertex of D(zm). Hence, wm is
an interior point of some side sm of D(zm). By Theorem 2.3, there exists a unique
map h−1

m so that {wm, h
−1
m (wm)} defines the full cycle containing wm. In addition,

ρ(wm, zm) = ρ(h−1
m (wm), zm) by Proposition 2.4.

Choose, by Lemma 2.5, a compact set K containing each D(zm) and D(z). Ob-

serve that {wm, h
−1
m (wm)} ⊂ D(zm) ⊂ K for each m. Hence, K ∩ h−1

m (K) 6= ∅ for
each m. Using the discreteness of G we find that there exists h ∈ G such that hm = h
for infinitely many m.
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By refining our subsequence and relabeling if necessary, we may thus find an
infinite collection of points wm which satisfy ρ(wm, zm) = ρ(h−1(wm), zm) for each
m. By taking m → ∞, it follows that ρ(w, z) = ρ(w, h(z)). Thus, w ∈ Lh(z). Since
w is an interior point of s ⊂ Lf(z), it must be the case that Lh(z) = Lf (z); else,
w ∈ Lf(z) ∩ Lh(z) would be a vertex of D(z). As concluded previously, this implies
that h = f , ρ(wm, zm) = ρ(wm, f(zm)), and wm ∈ Lf (zm). Since wm was chosen to lie

on the interior of side sm, it follows, by Proposition 2.4, that sm = D(zm)∩f(D(zm))
for each m and this is a contradiction. �

For the remainder of this section, let g be the genus of G (note that we assume
G to be cocompact). Recall that, for almost every z ∈ H, the associated Dirichlet
region satisfies |S(z)| = 12g − 6 by Theorem 2.2.

Definition 3.2. A point z ∈ H is called regular for G provided that |S(z)| =
12g − 6. If z is not regular for G, then it is called exceptional for G.

Proposition 3.3. If z ∈ H is regular for G, then there exists an open set U
containing z such that S(u) = S(z) for all u ∈ U .

Proof. Let z ∈ H be regular for G with S(z) = {f1, f2, . . . , f12g−6}. For each
i ∈ {1, 2, . . . , 12g − 6}, there exists an open set Ui ⊂ H with z ∈ Ui such that
fi ∈ S(w) for all w ∈ Ui; this follows from Theorem 3.1. Define,

U =

12g−6⋂

i=1

Ui.

By construction, U is an open subset of H containing z such that S(z) ⊂ S(u) for all
u ∈ U . Hence 12g−6 = |S(z)| ≤ |S(u)| ≤ 12g−6 for all u ∈ U . Hence, S(u) = S(z)
for all u ∈ U and this completes the proof. �

The following theorem is immediate.

Theorem 3.4. The set of all regular points for G is an open subset of H.

4. Exceptional points exist

Theorem 2.2 indicates that the set of all exceptional points for G has zero measure
in H. In what follows, we prove that this zero-measure subset is non-empty. In fact,
we prove that it is uncountable.

The following lemma is a standard result for non-elementary (which includes
cocompact) Fuchsian groups [3].

Lemma 4.1. For any z ∈ H and any ζ ∈ ∂H, there exists f ∈ S(z) so that
f(ζ) 6= ζ .

The next result is known, but we include a proof for completeness.

Theorem 4.2. Fix z0 ∈ H. The collection {z ∈ H : S(z) = S(z0)} is bounded
in the hyperbolic metric.

Proof. Assume to the contrary that {z ∈ H : S(z) = S(z0)} is unbounded in the
hyperbolic metric. Hence, there exists a sequence {zn} ⊂ H with S(zn) = S(z0) for
all n ∈ N satisfying ρ(z0, zn) → ∞ as n → ∞. The closure of H, denoted H, is

compact in Ĉ. Therefore, we can extract a convergent subsequence (in the chordal
metric) from the collection {zn} and by relabeling if necessary we may assume that
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zn → ζ ∈ H. Since ρ(z0, zn) → ∞ as n → ∞, it follows that ζ ∈ ∂H. Lemma
4.1 asserts the existence of f ∈ S(z0) so that f(ζ) 6= ζ . We proceed to show that
f 6∈ S(zn) for large enough values of n, which results in a contradiction.

The hyperbolic surface S = H/G is compact by assumption and, hence, has finite

diameter M > 0. Thus, D(z) ⊂ BM(z) for all z ∈ H. By assumption, the group G
is cocompact implying that the map f ∈ S(z0) ⊂ G is hyperbolic and satsfies,

(4.1) sinh

(
1

2
ρ(z, f(z))

)
= cosh(ρ(z, Af )) sinh

(
1

2
ℓ(f)

)
,

for all z ∈ H. We note that Af and ℓ(f) denote the axis and translation length
of f respectively and refer to [1, Theorem 7.35]. The map f does not fix ζ ∈ H.
Hence, its axis Af does not intersect ∂H at ζ and so, ρ(zn, Af) → ∞ as n → ∞. It
now follows from Equation (4.1) that ρ(zn, f(zn)) → ∞ and thus for large enough

n, ρ(w, f(w)) > 3M for all w ∈ BM(zn). But, f ∈ S(zn) for all n, and so, there

exists w ∈ H such that w, f(w) ∈ ∂D(zn). Since D(zn) ⊂ BM(zn), we find that
ρ(w, f(w)) ≤ 2M which is a contradiction. �

Theorem 4.3. Let G be a cocompact Fuchsian group. Uncountably many ex-
ceptional points exist for G in H.

Proof. Throughout this proof, we work in the Poincaré disk model, D, of H.
The set of regular points for G is of full measure and, hence, by conjugation (if
necessary) we may assume that 0 is regular for G. By Theorem 4.2, the set {z ∈
H : S(z) = S(0)} is bounded. Hence, there exists M > 0 so that if ρ(0, z) > M , then
S(z) 6= S(0). Thus, for each θ ∈ [0, 2π), there exists zθ = rθe

iθ with 0 < rθ < 1 such
that S(zθ) 6= S(0). Let γθ denote the geodesic segment connecting 0 and zθ. We
claim that, for each θ ∈ [0, 2π), γθ contains an exceptional point for G.

Suppose to the contrary that there exists θ ∈ [0, 2π) so that γθ contains no
exceptional point for G. Using the regular points along γθ and their associated
open sets given by Proposition 3.3, we may create an open cover for γθ which, by
compactness, has an associated finite subcover. Standard arguments now establish
that S(0) = S(zθ) contradicting the choice of zθ. So, γθ must contain an exceptional
point for each θ ∈ [0, 2π). �

Theorem 4.3 proves that, for any cocompact group G, the zero-measure subset
of H of exceptional points for G is non-empty and uncountable. Since Fuchsian
groups are at most countable, see [3], it also shows that the set of exceptional points
for G contains representatives from uncountably many distinct G-orbits. Hence, if
π : H → H/G denotes the canonical projection map, then there exists uncountably
many pj ∈ H/G such that each point in π−1(pj) ⊂ H is exceptional for G.

5. Indicating sets

In the proof of [1, Theorem 10.5.1], it is shown that D(z) has less than 12g− 6 if
and only if there exists a boundary cycle C of D(z) of length at least 4. Therefore, if
z is exceptional for G, then there exist distinct, non-identity maps f−1

1 , f−1

2 , f−1

3 ∈ G
and w ∈ ∂D(z) such that {w, f−1

1 (w), f−1

2 (w), f−1

3 (w)} belong to a boundary cycle
C of D(z). It follows from Proposition 2.4, that

(5.1) ρ(z, w) = ρ(z, f−1

1 (w)) = ρ(z, f−1

2 (w)) = ρ(z, f−1

2 (w)).
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Since each fj is a hyperbolic isometry, (5.1) is equivalent to

(5.2) ρ(w, z) = ρ(w, f1(z)) = ρ(w, f2(z)) = ρ(w, f3(z)).

Equation (5.2) indicates that the four points z, f1(z), f2(z), and f3(z) lie on a
(hyperbolic) circle centered at w in H. We record this fact in the following proposition
which can be found in [1, Theorem 9.4.5].

Proposition 5.1. Let G be a cocompact Fuchsian group. If z is exceptional for
G, then there exist distinct, non-identity maps f1, f2, f3 ∈ G such that,

(5.3) Im

(
(z − f2(z))(f1(z)− f3(z))

(z − f1(z))(f2(z)− f3(z))

)
= 0.

Equivalently, the complex cross-ratio [z, f1(z), f2(z), f3(z)] is purely real.

Note that the collection of points in Ĉ satisfying (5.3) lies on R−1(R̂) where R
is the rational map given by,

(5.4) R(z) =
(z − f2(z))(f1(z)− f3(z))

(z − f1(z))(f2(z)− f3(z))
,

for distinct, non-identity maps f1, f2, f3 ∈ G. These rational maps will help to
characterize the possible locations of exceptional points for G.

Definition 5.2. For distinct, non-identity maps f1, f2, f3 ∈ G, let R(z) be de-

fined as in (5.4). Then, the set Γ = R−1(R̂) ∩ H is called an indicating set for
G.

By Proposition 5.1, if z is exceptional for G, then there exists an indicating set
Γ for G such that z ∈ Γ. The converse of this statement, however, does not hold
in general. Though she uses different terminology, Näätänen studies the indicating
sets of a fixed cocompact Fuchsian group in §3 of [5]. Her results imply that not all
points found in these sets are exceptional.

Since G has at most countably many elements, the collection of all indicating sets
for G is also countable. Less immediate topological properties of indicating sets are
given below. The proof of the first lemma follows from standard results on rational
functions for which we refer to [2].

Lemma 5.3. Let X = F−1(R̂) for a rational function F : Ĉ → Ĉ.

(1) Each connected component of X is path connected in Ĉ.

(2) If C is any connected component of X, then F (C) = R̂.

Proposition 5.4. Let G be a cocompact Fuchsian group and suppose that X =

R−1(R̂) for a rational map R as defined by (5.4). Then, X is path connected.

Proof. Throughout this proof, we work in the upper-half plane model of H. Let

X = R−1(R̂) where R is given by,

R(z) =
(z − f2(z))(f1(z)− f3(z))

(z − f1(z))(f2(z)− f3(z))
,

for distinct, non-identity maps f1, f2, and f3 ∈ G. For j ∈ N, let Cj denote the
connected components of X. We begin by showing that X has only one connected
component.
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Firstly, observe that R̂ ⊂ X: if z ∈ R̂, then R(z) ∈ R̂ since each fi is a

hyperbolic isometry of H and, hence, fixes ∂H = R̂ set-wise. The set R̂ is con-
nected, and therefore belongs to a single connected component of X. Next, we

argue that R−1(∞) ⊂ R̂ ⊂ X. Notice that R(w) = ∞ if and only if either (1)
(w− f2(w))(f1(w)− f3(w)) = ∞ or (2) (w− f1(w))(f2(w)− f3(w)) = 0. We proceed

to show that both cases imply that w ∈ R̂.
In case (1), either (w − f2(w)) = ∞ or (f1(w) − f3(w)) = ∞ implying that

at least one of the following values equals ∞: w, f1(w), f2(w), or f3(w). Since

∞ ∈ R̂ and each fi fixes R̂ set-wise, it must be the case that w ∈ R̂. In case (2),
w satisfies (w − f1(w))(f2(w)− f3(w)) = 0 implying that either (w − f1(w)) = 0 or
(f2(w)− f3(w)) = 0. It follows that either w = f1(w) or w = f−1

2 (f3(w)). Since the

hyperbolic isometries f1 and f−1

2 f3 only fix points in R̂, it follows that w ∈ R̂ in this
case as well.

By (2) of Lemma 5.3, each component Cj of X contains a pre-image of ∞ under

R. The argument above now implies that each Cj intersects R̂ non-trivially. Hence,

each Cj is contained in the single connected component containing R̂. Thus, X has
a single connected component and is path connected by (1) of Lemma 5.3. �

The arguments used in the proof above also yield the following corollary when
we identify H with the upper-half plane model.

Corollary 5.5. If R : Ĉ → Ĉ is a rational function as defined in (5.4), then

R−1(∞) ⊂ R̂.

Suppose z0 is exceptional for G and belongs to the indicating set Γ = R−1(R̂)∩H.

Since R−1(R̂) is connected and contains R̂, Γ must be unbounded in the hyperbolic
metric. Therefore,

Proposition 5.6. Let G be a cocompact Fuchsian group with exceptional point
z0 lying on an indicating set Γ for G. For any M > 0, there exists a point zM ∈ Γ
with ρ(z0, zM) > M and a path γ : [0, 1] → Γ such that γ(0) = z0 and γ(1) = zM .

6. Higher order exceptional points

Let G be a cocompact Fuchsian group with Dirichlet region D(z) centered at
z ∈ H. Since G is cocompact, the number of sides of D(z), denoted by |S(z)|, is
even; see [1]. Recall that |S(z)| = 12g − 6 unless z is exceptional and so it follows
that, if z is exceptional, then S(z) ≤ 12g − 8.

Definition 6.1. If z is an exceptional point for G satisfying |S(z)| ≤ 12g − 10,
then z is called an exceptional point of higher order for G.

The next proposition is contained in [5, Theorem 2.2], where its proof is omitted.
For convenience, we sketch its proof below.

Proposition 6.2. Let G be a cocompact Fuchsian group. If z ∈ H is exceptional
but not exceptional of higher order for G, then there exists an indicating set Γ with
z ∈ Γ and an open set U containing z such that S(w) = S(z) for all w ∈ U ∩ Γ.

Sketch of proof. Let z ∈ H be exceptional for G, but not exceptional of higher
order for G. Hence, S(z) = 12g − 8 and it follows that D(z) has one vertex cycle of
length 4 and all other vertex cycles of length 3; see the proof of [1, Theorem 10.5.1].
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Let C denote the boundary cycle of D(z) of length 4 given by C = {v, f−1

1 (v), f−1

2 (v),
f−1

3 (v)} for distinct, non-identity maps f−1

1 , f−1

2 , and f−1

3 ∈ G and v ∈ ∂D(z). The

exceptional point z lies on the indicating set Γ = R−1(R̂) ∩H where R(z) is given
by,

R(z) =
(z − f2(z))(f1(z)− f3(z))

(z − f1(z))(f2(z)− f3(z))
,

as in equation (5.4) of Proposition 5.1. In addition, the collection of points {z, f1(z),
f2(z), f3(z)} lies on a (hyperbolic) circle in H centered at v and so, v is the unique
point in H satisfying

(6.1) ρ(v, z) = ρ(v, f1(z)) = ρ(v, f2(z)) = ρ(v, f3(z)),

for the collection {z, f1(z), f2(z), f3(z)}.
It now suffices to prove the following statement: if {zn} ⊂ Γ is any sequence

converging to z, then S(z) = S(zn) for large enough n. Let {zn} ⊂ Γ be any
sequence converging to z. By Theorem 3.1, if n is large enough, then S(z) ⊂ S(zn).
For these large n,

(6.2) 12g − 8 = |S(z)| ≤ |S(zn)| ≤ 12g − 6.

It now follows that, if |S(zn)| < 12g − 6, then S(z) = S(zn) for these n. Therefore,
we seek to show that zn is exceptional for sufficiently large n.

For each n, zn 6∈ R̂ and so, by Corollary 5.5 the point R(zn) ∈ R. Equivalently,
the complex cross-ration [zn, f1(zn), f2(zn), f3(zn)] is purely real and the points zn,
f1(zn), f2(zn), and f3(zn) lie on a hyperbolic circle in H. We denote the hyperbolic
center of this circle by vn. Observe that, for each n, vn is the unique point in H

satisfying

(6.3) ρ(vn, zn) = ρ(vn, f1(zn)) = ρ(vn, f2(zn)) = ρ(vn, f3(zn)).

The zn converge to z by assumption and, hence, for each j ∈ {1, 2, 3}, fj(zn) → fj(z)
as n → ∞. One now checks that the circles defined by the collection {zn, f1(zn),
f2(zn), f3(zn)} converge in the Hausdorff topology to the circle defined by {z, f1(z),
f2(z), f3(z)}. It follows from (6.1), (6.3), and the continuity of ρ, that vn → v ∈
∂D(z) as defined by (6.1).

Using the discreteness of G and the continuity of ρ, it can now be shown that
vn ∈ ∂D(zn) for large enough values of n. However, ρ(zn, f

−1

j (vn)) = ρ(zn, vn) for

j ∈ {1, 2, 3} by (6.3). So, {zn, f
−1

1 (vn), f
−1

2 (vn), f
−1

3 (vn)} ⊂ ∂D(zn) for large enough
vales of n and, hence, ∂D(zn) has at least one boundary cycle of length greater than
3. This implies that zn is exceptional for large enough values of n and completes the
proof. �

Proposition 6.2 provides a result on exceptional points for G which are not of
higher order; its content mirrors that of Propsition 3.3 pertaining to regular points.
Proving a comparable result for exceptional points of higher order, however, appears
to be more complicated. The methods used thus far fail when considering such points,
because these points can admit boundary cycles of various lengths. Still, we can use
Proposition 6.2 to establish that higher order exceptioanal points for G always exist.

Theorem 6.3. If G is a cocompact Fuchsian group, then there exists an excep-
tional point of higher order for G.
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Proof. Choose, by Theorem 4.3, an exceptional point z0 for G in H. If z0 is an
exceptional point of higher order, then we are done. So, assume that z0 is exceptional
for G, but not exceptional of higher order for G. By Proposition 6.2, there exists
an indicating set Γ and an open set U containing z0 such that S(w) = S(z0) for all
w ∈ U ∩Γ. The set {z ∈ H : S(z) = S(z0)} is bounded by Theorem 4.2. Hence, there
exists some M > 0 such that S(z) 6= S(z0) for all z satisfying ρ(z0, z) > M . Now,
apply Proposition 5.6: let zM ∈ Γ with ρ(z0, zM) > M and let γ : [0, 1] → Γ satisfy
γ(0) = z0 and γ(1) = zM .

Define x0 = inf{x ∈ [0, 1] : S(γ(x)) 6= S(z0)}. The properties of the open set U ,
the point zM , and the curve γ ensure that 0 < x0 ≤ 1. We claim that γ(x0) ∈ H is
an exceptional point of higher order for G.

Construct an increasing sequence {xn}n∈N ⊂ [0, x0) such that xn → x0 as n → ∞.
Note that the continuity of γ implies that γ(xn) → γ(x0) as n → ∞. For all n ∈ N,
S(γ(xn)) = S(z0); this follows from the definition of x0. By Theorem 3.1,

S(γ(x0)) ⊂ S(γ(xn)) = S(z0),

for all n ∈ N. Since S(γ(x0)) 6= S(z0) by definition and since z0 was chosen to be
exceptional for G, we have that |S(γ(x0))| � |S(z0)| = 12g−8. That is, |S(γ(x0))| ≤
12g − 10 and the proof is complete. �

In comparison to Theorem 4.3, the above fact does not establish the existence of
uncountably many exceptional points of higher order for G. It is easy to see, however,
that infinitely many such points exist for G: G is countably infinite and all points
in a single G-orbit have isometric Dirichlet regions [1]. Unfortunately, there are only
countably many indicating sets for G. Hence, the methods used to prove Theorem 6.3
cannot produce a result comparable to Theorem 4.3 for exceptional points of higher
order collapse.
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