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Abstract. In this article, the authors consider smoothness and decay properties of radial

functions belonging to smoothness spaces related to Morrey spaces (Sobolev–Morrey spaces, Besov-

type spaces and Besov–Morrey spaces). Within this framework, some generalizations of the radial

lemma of Strauss are obtained.

1. Introduction

At the end of the seventies, Strauss [39] was the first who observed that there
exists an interplay between the regularity and the decay properties of radial functions.
We recall his lemma as follows.

Radial Lemma. Let n ≥ 2. Every radial function f ∈ H1(Rn)(= W 1
2 (R

n))

is almost everywhere equal to a function f̃ , continuous for x 6= 0, such that, for all
x ∈ R

n \ {0},
(1.1) |f̃(x)| ≤ C|x| 1−n

2 ‖f‖H1(Rn),

where the positive constant C depends only on n.

Strauss stated (1.1) with the extra condition |x| ≥ 1, but this restriction is not
needed. The radial lemma contains three different assertions:

(a) the existence of a representative of f , which is continuous outside the origin;
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(b) the decay of f near infinity;
(c) the limited unboundedness near the origin.

These three properties do not extend to all functions in H1(Rn), of course. In
particular, H1(Rn) 6⊂ L∞(Rn), n ≥ 2. Taking an unbounded function f ∈ H1(Rn),
say, unbounded near the origin, by means of a simple shift f(· − x0), we obtain a
function which is now unbounded around x0 and belongs to H1(Rn) as well. This
makes also clear that an inequality like (1.1) can not be true in the general context.

Later on, Lions [24] showed how the radial lemma extends to first order Sobolev
spaces.

Proposition 1.1. Let n ≥ 2 and 1 ≤ p <∞. Every radial function f ∈ W 1
p (R

n)

is almost everywhere equal to a function f̃ , continuous for x 6= 0, such that, for all
x ∈ R

n \ {0},

(1.2) |f̃(x)| ≤ C|x| 1−n
p ‖f‖W 1

p (R
n),

where the positive constant C depends only on n and p.

In recent years, after the seminal article of Kozono and Yamazaki [19], an in-
creasing number of papers on existence and regularity of solutions of some partial
differential equations is using Morrey spaces and smoothness spaces built on Morrey
spaces (such as Sobolev–Morrey spaces, Besov–Morrey spaces or Besov-type spaces).
For convenience of the readers, we recall their definitions (also to fix the notation
which is different in different articles).

Definition 1.2. (i) Let 0 < p ≤ u ≤ ∞. The Morrey space Mu
p(R

n) is defined
to be the set of all p-locally Lebesgue-integrable functions f on R

n such that

‖f‖Mu
p(R

n) := sup
B

|B|1/u−1/p

[
ˆ

B

|f(x)|p dx
]1/p

<∞,

where the supremum is taken over all balls B in R
n.

(ii) Let m ∈ N and 1 ≤ p ≤ u ≤ ∞. The Sobolev–Morrey space WmMu
p(R

n) is
defined to be the collection of all functions f ∈ Mu

p(R
n) such that all distributional

derivatives Dαf of order |α| ≤ m belong to Mu
p(R

n). We equip this space with the
norm

‖f‖WmMu
p (R

n) :=
∑

|α|≤m

‖Dαf‖Mu
p(R

n).

Remark 1.3. We call the parameter u in Definition 1.2 the Morrey parameter

(also in connection with the Besov-type and Besov–Morrey spaces defined below).

Obviously, we have Mp
p(R

n) = Lp(Rn) and M∞
p (Rn) = L∞(Rn). As a conse-

quence of Hölder’s inequality, we conclude the following monotonicity with respect
to p, namely,

Mu
w(R

n) →֒ Mu
p(R

n) if 0 < p ≤ w ≤ u ≤ ∞.

In particular, Lp(Rn) = Mp
p(R

n) →֒ Mp
v(R

n) if v < p. This implies that

Wm
p (Rn) →֒ WmMp

v(R
n) if 1 ≤ v ≤ p ≤ ∞.

For a better understanding and later use, we mention also the embedding into the
class of all complex-valued, uniformly continuous and bounded functions on R

n, here



The radial lemma of Strauss in the context of Morrey spaces 419

denoted by Cub(R
n). We have

(1.3) WmMu
p(R

n) →֒ Cub(R
n) if

n

u
< m;

see [31, Proposition 17]. Our first result consists in an extension of Proposition 1.1 to
Sobolev spaces built on Morrey spaces. In what follows, C∞

c (Rn) denotes the space

of all infinitely differentiable functions on R
n with compact support.

Theorem 1.4. Let n ≥ 2 and 1 ≤ p ≤ u < ∞. Every radial function f ∈
W 1Mu

p(R
n) is almost everywhere equal to a function f̃ , continuous for x 6= 0, such

that

(1.4) |f̃(x)| ≤ C |x| 1p−n
u ‖f‖W 1Mu

p (R
n)

holds true for all |x| ≥ 1 with some positive constant C depending only on n, p and
u.

Proof. The proof is simple and (1.4) can be easily reduced to (1.2). To see this,
let f ∈ W 1Mu

p(R
n) be a radial function. We choose a smooth radial cut-off function

̺ ∈ RC∞
c (Rn) := {f ∈ C∞

c (Rn) : f is radial}
such that 0 ≤ ̺ ≤ 1, supp ̺ ⊂ {x ∈ R

n : 1/2 < |x| < 2}, and
∑

j∈Z ̺(2
−jx) = 1 for

all x ∈ R
n \ {0}. Then, for all 2k ≤ |x| < 2k+1 with k ∈ Z, we see that

f(x) =
∑

j∈Z

̺(2−jx)f(x) =

k+1∑

j=k−1

ρ(2−jx)f(x).

Notice that, for all k ∈ Z+ := {0, 1, . . .}, the function
∑k+1

j=k−1 ̺(2
−j · ) f( · ) is a radial

function in W 1
p (R

n) and hence, by Proposition 1.1, there exists a function gk, which

is continuous on R
n\{0} and coincides with

∑k+1
j=k−1 ̺(2

−j · ) f( · ) almost everywhere,
such that, for all x ∈ R

n,

|gk(x)| ≤ C|x| 1−n
p

k+1∑

j=k−1

‖̺(2−j · )f( · )‖W 1
p (R

n)

≤ C|x| 1−n
p

k+1∑

j=k−1

∑

|α|≤1

[
ˆ

2k−2<|y|< 2k+2

|Dα(̺(2−j ·)f)(y)|p dy
]1/p

≤ C

[
max
|α|≤1

‖Dα̺‖L∞(Rn)

]
|x| 1−n

p

∑

|α|≤1

[
ˆ

2k−2<|y|<2k+2

|Dαf(y)|p dy
]1/p

,

where C is a positive constant depending only on p and n and, in the last inequality,
we used the fact that k ∈ Z+. Now, we switch to the Morrey norm by inserting the
volume of the ball with radius 2k+2 to the power 1/u − 1/p. By ωn we denote the
volume of the unit ball. Then it follows that, for all 2k ≤ |x| < 2k+1 with k ∈ Z+,

|gk(x)| ≤ C

[
max
|α|≤1

‖Dα̺‖L∞(Rn)

]
|x| 1−n

p
(
4n2knωn

) 1

p
− 1

u ‖f‖W 1Mu
p(R

n)

≤ C|x| 1p−n
u ‖f‖W 1Mu

p (R
n),

where C is a positive constant depending on p, u and n only.



420 Winfried Sickel, Dachun Yang and Wen Yuan

Now let f̃ :=
∑

k∈Z gk/3. Since supp gk∩ supp gj = ∅ if |j−k| ≥ 5, it follows that

the summation over k is finite, and hence f̃ is continuous on R
n \ {0} and satisfies

that, for all |x| ≥ 1,

|f̃(x)| ≤ C|x| 1p−n
u‖f‖W 1Mu

p (R
n),

where C is a positive constant depending on p, u and n only. Moreover, since gk
coincides with

∑k+1
j=k−1 ̺(2

−j · )f( · ) almost everywhere, we see that

f̃(x) =
∑

k∈Z

k+1∑

j=k−1

̺(2−jx)f(x)/3 =
∑

j∈Z

̺(2−jx)

j+1∑

k=j−1

f(x)/3 = f(x)

for almost every x ∈ R
n. This finishes the proof of Theorem 1.4. �

Remark 1.5. (i) Obviously, by taking u = p, we see that the inequality (1.4)
covers (1.2) when |x| ≥ 1. Furthermore, we have the decay near infinity if 1/p <
n/u. In case 1/p > n/u, the inequality (1.4) can be immediately improved by (1.3)
resulting in the global boundedness of all elements of W 1Mu

p(R
n).

(ii) The elementary proof given above shows that we do not need all available
information on the elements of W 1Mu

p(R
n). Indeed, we only need that f belongs to

W 1
p (R

n) locally and that

sup
B

|B|1/u−1/p

{
ˆ

B

|Dαf(x)|p dx
}1/p

<∞, |α| ≤ 1,

where the supremum is taken over all balls B, centered in the origin and having
radius larger than 1. Such kind of spaces are usually called central Morrey spaces or
local Morrey spaces. They attracted some attention in recent years; see, for example,
[1, 5]. By this point of view, it would make sense to study associated smoothness
spaces. However, for the moment, we concentrate on smoothness spaces related to
the original Morrey norm.

The main application of the Strauss lemma and its generalizations consists in
the proof of the compactness of the embedding of the radial subspace RWm

p (Rn) of
the Sobolev space Wm

p (Rn) into Lebesgue spaces Lq(Rn) (see, for example, [33, 36,
17, 18, 35]). Those applications are possible also for this more general situation. For
this, we refer to our article [54].

In many papers, we refer, for example, to the survey [30] or the articles [33],
[38], [6], [36] and [34], it has been shown that one gets a better insight into the
behavior of radial functions, if one replaces the Sobolev space W 1

p (R
n) by spaces of

fractional order of smoothness, for instance, Bessel potential or Besov spaces. In such

a framework, H1(Rn) can be replaced either by Hs(Rn) with s > 1/2 or by B
1/2
2,1 (R

n)
to guarantee the same conclusions as in the Strauss radial lemma above. But the

Bessel potential space Hs(Rn) with 1/2 < s < 1 and the Besov space B
1/2
2,1 (R

n) are

much larger than H1(Rn). Indeed, we have

H1(Rn) →֒ Hs(Rn) →֒ B
1/2
2,1 (R

n), 1/2 < s < 1,

and all the embeddings are strict. The p-version looks as follows

W 1
p (R

n) →֒ B
1/p
p,1 (R

n), 1 < p ≤ ∞,
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and again the embedding is strict. This motivates the use of more complicated spaces
of fractional order of smoothness, which is also done here. Also, in this much more
general framework, we know that

W 1Mu
p(R

n) →֒ B
1/p, 1

p
− 1

u

p,1 (Rn), 1 < p ≤ u ≤ ∞.

The main aim of this article consists in proving the extension of Theorem 1.4 to the

Besov-type spaces B
1/p, 1

p
− 1

u

p,1 (Rn) instead of the Sobolev–Morrey spaces.
This article is organized as follows. In Section 2, we recall the definition and

some properties of Besov-type spaces. The main part of this section is taken by
a flexibilization of the known characterizations of the spaces Bs,τ

p,q (R
n) in terms of

atoms. Section 3 is devoted to the investigation of the regularity of radial functions
belonging to Bs,τ

p,q (R
n) outside the origin. Finally, in Section 4, we study the decay

of radial functions. As a service for the reader, we reformulate the outcome for
Sobolev–Morrey spaces in a separate subsection at the end of Section 4.

Finally, we make some conventions on notation. If E and F are two quasi-Banach
spaces, then the symbol E →֒ F indicates that the embedding is continuous.

Let Q be the collection of all dyadic cubes in R
n, namely,

(1.5) Q := {Qj,k := 2−j([0, 1)n + k) : j ∈ Z, k ∈ Z
n}.

The symbol ℓ(Q) is used for the side-length of Q and jQ := − log2 ℓ(Q).
As usual, the symbol C denotes a positive constant which depends only on the

fixed parameters n, s, τ, p, q and probably on auxiliary functions, unless otherwise
stated; its value may vary from line to line. Sometimes we use the symbol “.”
instead of “≤”. The meaning of A . B is given by: there exists a positive constant
C such that A ≤ C B. The symbol A ≍ B is used as an abbreviation of A . B . A.

2. Besov-type spaces

Sobolev and Besov spaces have been widely used in various areas of analysis such
as harmonic analysis and partial differential equations. There is a rich literature with
respect to these spaces, we refer, for example, to the monographs [2, 3, 4, 26, 41, 42,
43].

Here we would like to concentrate on Besov-type spaces which are related to
a relatively new family of function spaces, so-called Qα spaces; see, for example,
[8, 14, 45, 46]. These spaces, in general, do not coincide with Besov-Morrey spaces
(Besov spaces built on Morrey spaces), but they are not so far from each other. In
the following subsection we recall definitions and state some basic properties of these
scales including their relations to each other. The second subsection in this section
is devoted to the study of a particular atomic decomposition of Besov-type spaces,
which is adapted to the radial situation and serves as the main tool for dealing with
the smoothness and decay properties of radial functions belonging to a Besov-type
space.

2.1. Definitions and basic properties. Let S(Rn) be the collection of all
Schwartz functions on R

n endowed with the usual topology and denote by S ′(Rn)
its topological dual, namely, the space of all bounded linear functionals on S(Rn)
endowed with the weak ∗-topology. The symbol ϕ̂ refers to the Fourier transform of
ϕ ∈ S ′(Rn).
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We introduce the scale Bs,τ
p,q (R

n) by using smooth dyadic decompositions of unity.
Let ϕ0, ϕ ∈ S(Rn) such that

(2.1) supp ϕ̂0 ⊂ {ξ ∈ R
n : |ξ| ≤ 2} and |ϕ̂0(ξ)| ≥ C for |ξ| ≤ 5/3

and

(2.2) supp ϕ̂ ⊂ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ C for 3/5 ≤ |ξ| ≤ 5/3,

where C is a positive constant independent of ξ.
Now we recall the notion of Besov-type spaces Bs,τ

p,q (R
n); see [53, Definition 2.1].

In what follows, for all j ∈ N, x ∈ R
n and ϕ ∈ S(Rn), let ϕj(x) := 2jnϕ(2jx).

Definition 2.1. Let s ∈ R, τ ∈ [0,∞), p, q ∈ (0,∞] and ϕ0, ϕ ∈ S(Rn) be as
in (2.1) and (2.2), respectively. The Besov-type space Bs,τ

p,q (R
n) is defined to be the

collection of all f ∈ S ′(Rn) such that

‖f‖Bs,τ
p,q (Rn) := sup

P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

2jsq
[
ˆ

P

|ϕj ∗ f(x)|p dx
]q/p





1/q

<∞

with the usual modifications made in case p = ∞ and/or q = ∞.

Remark 2.2. (i) The Besov-type space Bs,τ
p,q (R

n) is a complete quasi-normed
space, namely, a quasi-Banach space (see [53, Lemma 2.1]).

(ii) In case τ = 0, we are back to the standard Besov spaces, namely, Bs,0
p,q(R

n) =
Bs

p,q(R
n).

(iii) We have the monotonicity, respectively, with respect to s and with respect
to q, namely,

Bs0,τ
p,q0 (R

n) →֒ Bs1,τ
p,q1 (R

n) if s0 > s1 and 0 < q0, q1 ≤ ∞,

as well as Bs,τ
p,q0

(Rn) →֒ Bs,τ
p,q1

(Rn) if q0 ≤ q1.

(iv) Let s ∈ R and p ∈ (0,∞]. Then, it holds true Bs,τ
p,q (R

n) = B
s+n(τ−1/p)
∞,∞ (Rn)

if either q ∈ (0,∞) and τ ∈ (1/p,∞), or q = ∞ and τ ∈ [1/p,∞); see [50]. In case

s + n(τ − 1/p) > 0, the space B
s+n(τ−1/p)
∞,∞ (Rn) is a Hölder–Zygmund space with a

transparent description in terms of differences; see, for example, [41, Section 2.5.7].
(v) Of course, the spaces defined above are complicated. The definition is not

really transparent. For this reason, the authors have studied in [53, Section 4.3] also
their characterizations in terms of differences.

(vi) The Besov-type space Bs,τ
p,q (R

n) and its homogeneous counterpart Ḃs,τ
p,q (R

n),
restricted to the Banach space case, were first introduced by El Baraka in [9, 10, 11].
The extension to quasi-Banach spaces has been done in [47, 48]; see also [49, 22].
For a first systematic study of these spaces, we refer to the lecture note [53]; see also
[31, 32, 51].

Of particular importance for us are the following embeddings. Recall that Cub(R
n)

denotes the class of all complex-valued, uniformly continuous and bounded functions

on R
n.

Proposition 2.3. Let s ∈ R, τ ∈ [0,∞) and p, q ∈ (0,∞].

(i) If s+ n(τ − 1/p) > 0, then Bs,τ
p,q (R

n) →֒ Cub(R
n).

(ii) If p ∈ (0,∞), q ∈ (0,∞], τ ∈ (0, 1/p) and s + nτ − n
p
= 0, then Bs,τ

p,q (R
n) 6⊂

Cub(R
n).
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(iii) If p ∈ (0,∞) and q ∈ (0,∞], then B
0,1/p
p,q (Rn) 6⊂ Cub(R

n).

For a proof of Proposition 2.3, we refer to [53, Proposition 2.6(i)] and [31]. For
the convenience of the reader, we also recall the notion of Besov–Morrey spaces as
follows.

Definition 2.4. Let ϕ0 and ϕ ∈ S(Rn) be as in (2.1) and (2.2), respectively. Let
s ∈ R, 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞. Then, the Besov–Morrey space N s

u,p,q(R
n)

is defined to be the set of all f ∈ S ′(Rn) such that

‖f‖N s
u,p,q(R

n) :=

[
∞∑

j=0

2jsq ‖ϕj ∗ f ‖qMu
p (R

n)

]1/q
<∞

with the usual modifications made in case p = ∞ and/or q = ∞.

Remark 2.5. (i) The Besov–Morrey spaces N s
u,p,q(R

n) represent the Besov scale
built on the Morrey space Mu

p(R
n). Kozono and Yamazaki [19] in 1994 and later

on Mazzucato [25] have been the first who investigated spaces of this type. Indeed,
they studied two, slightly different, types of spaces. The first modification consists
in restricting the supremum within the definition of the Morrey norm to balls with
volume ≤ 1. Secondly, they studied homogeneous Besov–Morrey spaces Ṅ s

u,p,q(R
n).

For more information on these spaces, we refer to [19, 25, 40, 28, 52] and the surveys
[31, 32, 51].

(ii) A further family of relatives of Bs,τ
p,q (R

n) and N s
u,p,q(R

n) has been introduced
and investigated by Triebel in his recent book [44].

Lemma 2.6. Let s ∈ R and 0 < p ≤ u ≤ ∞.

(i) If q ∈ (0,∞), then N s
u,p,q(R

n) →֒ B
s, 1

p
− 1

u
p,q (Rn).

(ii) It holds true that N s
u,p,∞(Rn) = B

s, 1
p
− 1

u
p,∞ (Rn) in the sense of equivalent quasi-

norms.
(iii) If m ∈ Z+ and 1 ≤ p ≤ u <∞, then

Nm
u,p,min(2,p)(R

n) →֒ WmMu
p(R

n) →֒ Nm
u,p,∞(Rn).

Parts (i) and (ii) of Lemma 2.6 have been proved in [29]; see also [31, Propo-
sition 7]. There the authors argued with atomic decompositions. In addition, they
have been able to show that the embedding in Lemma 2.6(i) is proper if p < u.
Concerning Lemma 2.6(iii), we refer to Sawano [27] and [31, Lemma 5].

2.2. Radial subspaces. Let U be an isometry of Rn and g ∈ S(Rn). Then,
we define gU(x) := g(Ux) for all x ∈ R

n. For f ∈ S ′(Rn), we put

fU(g) := f(gU
−1

), g ∈ S(Rn),

where U−1 denotes the isometry inverse to U . Then, fU is also a distribution in
S ′(Rn).

Let SO(Rn) be the group of rotations around the origin in R
n. We say that

f ∈ S ′(Rn) is invariant with respect to SO(Rn) if fU = f for all U ∈ SO(Rn). Now
we are able to define the radial subspaces which we are interested in.
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Definition 2.7. Let s, τ, p and q be as in Definition 2.1. The radial subspace

RBs,τ
p,q (R

n) of the space Bs,τ
p,q (R

n) is defined by

RBs,τ
p,q (R

n) :=
{
f ∈ Bs,τ

p,q (R
n) : f is invariant with respect to SO(Rn)

}
.

Since the linear operator TUf := fU − f is bounded on Bs,τ
p,q (R

n) for all U ∈
SO(Rn) and

RBs,τ
p,q (R

n) =
⋂

U∈SO(Rn)

Ker TU ,

we know that RBs,τ
p,q (R

n) is a closed subspace of Bs,τ
p,q (R

n), and hence a quasi-Banach
space with respect to the induced quasi-norm.

2.3. Atomic decompositions and regular coverings. As mentioned above,
our main tool in all our investigations is the description of these radial subspaces
RBs,τ

p,q (R
n) by means of atoms. Starting point is a rather general characterization of

Bs,τ
p,q (R

n) in terms of atoms. Since this is, in a certain sense, parallel to what has
been done in Frazier and Jawerth [15, 16] and also [33], we shifted this more technical
part to the Appendix at the end of this article.

Atomic decompositions are always connected with a sequence of coverings of Rn.
Here we are interested in a very special sequence adapted to the radial situation. To
begin with, we recall some notions; see Skrzypczak in [37], but also [33, Definition 1].
The notion of an atom, we are using here, represents a certain modification of the
definition given in Frazier and Jawerth [15, 16]. For any open set Q ⊂ R

n and
r ∈ (0,∞), we put rQ := {x ∈ R

n : dist (x,Q) < r}. Also we use the abbreviations
p′ := p/(p− 1) if 1 < p ≤ ∞, and p′ := ∞ if 0 < p ≤ 1.

Definition 2.8. Let s ∈ R, p ∈ (0,∞], r ∈ (0,∞), L and M be integers such
that L ≥ 0 and M ≥ −1. Assume that Q ⊂ R

n is an open connected set with
diamQ = r.

(i) A smooth function a is called a 1L-atom centered in Q, if supp a ⊂ r
2
Q and

sup
y∈Rn

|∂αa(y)| ≤ 1 for |α| ≤ L.

(ii) A smooth function a is called an (s, p)L,M-atom centered in Q, if supp a ⊂ r
2
Q,

sup
y∈Rn

|∂αa(y)| ≤ rs−|α|−n
p for |α| ≤ L,

and ∣∣∣∣
ˆ

Rn

a(y)ϕ(y) dy

∣∣∣∣ ≤ rs+M+1+n/p′‖ϕ‖CM+1(rQ)

for all ϕ ∈ C∞(Rn), where ‖ϕ‖CM+1(rQ) := supx∈rQ sup|α|≤M+1 |∂αϕ(x)|.
Remark 2.9. We recall that, when M = −1, then the second condition in

Definition 2.8(ii) is void. Of certain use is the following simple observation: if a is
an (s0, p)L,M -atom, then rs1−s0 a is also an (s1, p)L,M -atom.

Following [33], let {Qℓ}ℓ be a covering of Rn, where Qℓ for ℓ is a connected open
set, and put

CQ := sup
x∈Rn

|{ℓ : Qℓ contains x}|

(here | · | denotes the cardinality of the set), which is called the multiplicity of the

covering {Qℓ}ℓ. A covering with finite multiplicity is said to be uniformly locally
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finite. Let {Ωj}∞j=0 := {{Ωj,ℓ}∞ℓ=0}∞j=0 be a sequence of uniformly locally finite cov-
erings of Rn. The supremum of multiplicities of the coverings {Ωj}∞j=0 is called the
multiplicity of the sequence {Ωj}∞j=0.

Definition 2.10. A sequence {Ωj}∞j=0 := {{Ωj,ℓ}∞ℓ=0}∞j=0 of coverings of R
n is

said to be regular, if the following conditions are satisfied:

(i) R
n ⊂ ∪ℓ∈Z+

Ωj,ℓ for all j ∈ Z+;
(ii) there exists some positive number ε0 such that, for all ε ∈ (0, ε0), the se-

quences of coverings, {{ε2−jΩj,ℓ}∞ℓ=0}∞j=0, have finite multiplicities which are
uniformly bound with respect to ε;

(iii) there exist positive numbers Bn and Cn, depending only on the dimension n,
such that diamΩj,ℓ ≤ Bn2

−j and Cn2
−jn ≤ |Ωj,ℓ|.

Remark 2.11. (i) By ωn we denote the volume of the unit ball in R
n. Let An :=

(Cn/ωn)
1/n. Then, Definition 2.10(iii) implies that An 2

−j ≤ diamΩj,ℓ ≤ Bn2
−j and,

for all j and ℓ, Cn 2
−jn ≤ |Ωj,ℓ| ≤ Bn

nωn2
−jn.

(ii) If {{Ωj,ℓ}∞ℓ=0}∞j=0 is a regular sequence of coverings, the cardinality of the sets,

Ij,ℓ := {k ∈ Z+ : Ωj,ℓ ∩ Ωj,k 6= ∅}, j, ℓ ∈ Z+,

is uniformly bounded; see [33, Lemma 1].

Next we define some sequence spaces with respect to a regular sequence
{{Ωj,ℓ}∞ℓ=0}∞j=0 of coverings.

Definition 2.12. Let τ ∈ [0,∞) and p, q ∈ (0,∞]. Let Ω := {{Ωj,ℓ}∞ℓ=0}∞j=0 be a
regular sequence of coverings. Then, the sequence space b(p, q, τ,Ω) is defined to be
the set of all sequences t := {tj,ℓ}∞j,ℓ=0 ⊂ C such that

‖t‖b(p,q,τ,Ω) := sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}



∑

ℓ∈Z+

Ωj,ℓ∩P 6=∅

|tj,ℓ|p




q/p




1/q

<∞.

Remark 2.13. In case τ < 1/p, the replacement of the sum
∑∞

j=max{jP ,0} in

Definition 2.12 by
∑∞

j=0 yields an equivalent quasi-norm. For a proof, we refer to

[29].

Definition 2.14. Let s ∈ R, τ ∈ [0,∞) and p, q ∈ (0,∞]. The space Bs,τ
p,q (R

n)
is said to admit an atomic decomposition with respect to the sequence {{Ωj,ℓ}∞ℓ=0}∞j=0,
if there exist integers L and M such that

(i) any f ∈ Bs,τ
p,q (R

n) can be represented by

f =
∞∑

j=0

∞∑

ℓ=0

tj,ℓ aj,ℓ(2.3)

in S ′(Rn), where a0,ℓ is a 1L-atom centered at the set Ω0,ℓ, aj,ℓ with j ∈ N

is an (s, p)L,M -atom centered at the set Ωj,ℓ, and {tj,ℓ}j,ℓ∈Z+
is a sequence of

complex numbers satisfying that

‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω) <∞;(2.4)

(ii) any f ∈ S ′(Rn) given by (2.3) with (2.4) is an element of Bs,τ
p,q (R

n);
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(iii) the infimum of (2.4) with respect to all admissible representations of f is an
equivalent norm in Bs,τ

p,q (R
n).

Next we show that, if {Ωj}∞j=0 is a regular sequence of coverings, then, for some L
and M , the space Bs,τ

p,q (R
n) admits an atomic decomposition with respect to {Ωj}∞j=0.

In what follows, the symbol ⌊α⌋ for any α ∈ R denotes the maximal integer not more
than α.

Theorem 2.15. Let s ∈ R, τ ∈ [0,∞) and p, q ∈ (0,∞]. Let {Ωj}∞j=0 be a
regular sequence of coverings and let L and M be integers such that

L ≥ max{⌊s+ nτ⌋ + 1, 0} and M ≥ max{⌊σp − s⌋,−1},
where σp := n(max{0, 1/p−1}). Then, the space Bs,τ

p,q (R
n) admits an atomic decom-

position with respect to {Ωj}∞j=0.

Remark 2.16. This theorem represents an extension of the well-known atomic
characterization discussed by Frazier and Jawerth [15, 16]. More exactly, choosing

Ωj := {Qj,k : k ∈ Z
n}, j ∈ Z+,

(see (1.5)) and τ = 0, then Theorem 2.15 has been proved in the quoted papers by
Frazier and Jawerth. Regular coverings and related atomic decompositions, also re-
stricted to τ = 0, have been discussed in [33]; see also [38]. Atomic decompositions of
Besov-type spaces have been investigated in [53] and [23]. Our proof of Theorem 2.15
is more or less parallel to those given in the quoted papers. For that reason, we shift
it into the Appendix at the end of this article.

2.4. Atomic decompositions of radial subspaces. Now, we make use of
the flexibility in the choice of the regular coverings. In [33, Section 3.2], Sickel and
Skrzypczak constructed a sequence of regular coverings which is well adapted to the
radial situation.

A basic role in this construction is played by the following shells (balls if k = 0):

Pj,k :=
{
x ∈ R

n : k2−j ≤ |x| < (k + 1) 2−j
}
, j, k ∈ Z+.

Lemma 2.17. Let n ≥ 2. Then, there exists a regular sequence

{ΩR
j }j∈Z+

:=
{
{ΩR

j,k,ℓ}k∈Z+,ℓ∈{1,...,C(n,k)}

}
j∈Z+

of coverings with finite multiplicity satisfying that

(a) all ΩR
j,k,ℓ are balls with centers yj,k,ℓ satisfying that

|yj,k,ℓ| =
{
2−j (k + 1/2), if k ∈ N;

0, if k = 0;

(b) Pj,k ⊂ ∪C(n,k)
ℓ=1 ΩR

j,k,ℓ for all j ∈ Z+;

(c) diamΩR
j,k,ℓ = 12 · 2−j;

(d) the sums
∑∞

k=0

∑C(n,k)
ℓ=1 χj,k,ℓ(x) are uniformly bounded in x ∈ R

n and j ∈ Z+

(here χj,k,ℓ denotes the characteristic function of ΩR
j,k,ℓ);

(e) ΩR
j,k,ℓ = {x ∈ R

n : 2jx ∈ ΩR
0,k,ℓ}, j ∈ Z+;

(f) C(n, 0) = 1, C(n, k) ∈ N and C(n, k) ≍ kn−1, when k ∈ N;
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(g) with an appropriate enumeration, it holds true that

{(x1, 0, . . . , 0) : x1 ≥ 0} ⊂
∞⋃

k=0

ΩR
j,k,1

and ∣∣{(x1, 0, . . . , 0) : x1 ∈ R} ∩ ΩR
j,k,1

∣∣ ≍ 2−j;

(h) for all k ∈ N and ℓ ∈ {1, . . . , C(n, k)}, there exists an element Uk,ℓ ∈ SO(Rn)
such that ΩR

j,k,ℓ = Uk,ℓ(Ω
R
j,k,1);

(i) Let ε ∈ (0, ε0). Then, the multiplicity of the sequence
{{
εΩR

j,k,ℓ : ℓ ∈ {1, . . . , C(n, k)}, k ∈ Z+

}}
j∈Z+

is finite with multiplicity constant independent of ε.

If k = 0, we sometimes use the notation ΩR
j,0 to replace ΩR

j,0,1. Lemma 2.17(g)
is not stated explicitly in [33], but it follows immediately from the construction
described there; see also [20]. Most transparent is the case n = 2. Here is a picture:

Figure 1. A piece of the covering {ΩR
j,k,ℓ}∞j=0

in case n = 2.

Here the angle α is taken to be (2π)/(2k + 1), k ∈ N.
Applying Theorem 2.15 and Lemma 2.17, we obtain the following atomic decom-

position of radial spaces. In what follows, we use the following abbreviation

ω(P, j, k) := |{ℓ ∈ N : 1 ≤ ℓ ≤ C(n, k) and ΩR
j,k,ℓ ∩ P 6= ∅}|.

Obviously, 0 ≤ ω(P, j, 0) ≤ 1 for all j and dyadic cubes P .

Theorem 2.18. Let n ≥ 2, s ∈ R, τ ∈ [0,∞), p, q ∈ (0,∞], integers L,M
satisfy that

L ≥ max{⌊s+ nτ⌋ + 1, 0} and M ≥ max{⌊σp − s⌋,−1},
and {ΩR

j }j∈Z+
:= {{ΩR

j,k,ℓ}k∈Z+,ℓ∈{1,...,C(n,k)}}j∈Z+
be as in Lemma 2.17.
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(i) Then, RBs,τ
p,q (R

n) admits an atomic decomposition with respect to {ΩR
j }j∈Z+

.
(ii) If f ∈ RBs,τ

p,q (R
n), then f admits an atomic decomposition

(2.5) f =

∞∑

j=0

tj,0 aj,0 +

∞∑

j=0

∞∑

k=1

tj,k

C(n,k)∑

ℓ=1

aj,k,ℓ,

where aj,k,ℓ is an (s, p)L,M -atom with respect to ΩR
j,k,ℓ for all j ∈ N, aj,0 an

(s, p)L,M -atom with respect to ΩR
j,0 for all j ∈ N, a0,k,ℓ a 1L-atom with respect

to ΩR
0,k,ℓ, a0,0 a 1L-atom with respect to ΩR

0,0 and

(2.6) sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

[
∞∑

k=0

ω(P, j, k)|tj,k|p
] q

p





1

q

≤ C‖f‖Bs,τ
p,q (Rn).

Here C is a positive constant independent of f .

Proof. Part (i) is an immediate consequence of Theorem 2.15 and Lemma 2.17.
Concerning (ii), we employ the particular decomposition constructed in Step 1 of the
proof of Theorem 2.15. Rewriting (5.1), we obtain

tj,k,ℓ :=





D(n,M) sup
y∈ΩR

0,k,ℓ

|ϕ0 ∗ f(y)|, if j = 0;

E(n,M) 2j(s−n/p) sup
y∈ΩR

j,k,ℓ

|ϕj ∗ f(y)|, if j ∈ N.

Since ϕ0 ∗ f and ϕj ∗ f are radial functions if f , ϕ0 and ϕ are radial, we conclude,
by using Lemma 2.17(h) of our regular covering, that

tj,k,ℓ = tj,k,1 for all j, k, ℓ.

This proves (ii) and hence finishes the proof of Theorem 2.18. �

Remark 2.19. Epperson and Frazier [12, 13] independently developed a theory
of radial subspaces of Besov and Triebel–Lizorkin spaces. They preferred to work
with atomic decompositions, where the atoms themselves are radial. We did not
follow their treatment here, but sometimes this different point of view has some
advantages.

3. On the smoothness of radial functions outside the origin

To begin with, we study the continuity of radial functions outside the origin. As
usual, we call an element f of Bs,τ

p,q (R
n) continuous, if it has a continuous represen-

tative.
Before we start to investigate this problem, we explain how we use the atomic

decomposition in (2.5). This is also of some importance for all other proofs here. The
main feature is the local structure in the following sense. Let f be given by (2.5),
namely,

f =

∞∑

j=0

tj,0aj,0 +

∞∑

j=0

∞∑

k=1

tj,k

C(n,k)∑

ℓ=1

aj,k,ℓ.

We fix |x| ≥ 1. Observe that, for all j ∈ Z+, there exists kj ∈ N such that

(3.1) kj2
−j ≤ |x| < (kj + 1)2−j.
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Then, employing the restrictions on the supports of our atoms, we see that f(x) is
given by

∑

|rj |≤N

∑

|tj |≤N

∞∑

j=0

tj,kj+rjaj,kj+rj ,ℓj+tj (x),

where N ∈ N is a universal number independent of f and x. Here ℓj depends on x.
To avoid technicalities, we simply deal in our investigations with the function

(3.2) fP (x) =
∞∑

j=0

tj,kj aj,kj,ℓj(x)

instead of f itself. In case 0 < |x| < 1, these arguments have to be modified. Let

(3.3) 2−j0 ≤ |x| < 2−j0+1

for some j0 ∈ N. Then, we deal with the function

(3.4) fP (x) :=

j0−1∑

j=0

tj,0 aj,0(x) +
∞∑

j=j0

tj,kj aj,kj,ℓj(x),

as a replacement of f at the point x. Here kj is defined as in (3.1).

Theorem 3.1. Let n ≥ 2, p ∈ (0,∞) and τ ∈ [0,∞). Let either s > 1/p and
q ∈ (0,∞], or s = 1/p and q ∈ (0, 1]. Every radial element f in Bs,τ

p,q (R
n) has a

representative f̃ which is continuous outside of the origin.

Proof. Step 1. Let τ ≥ 1/p. Then, by [53, Proposition 2.6], we know that

Bs,τ
p,q (R

n) →֒ Bs
∞,∞(Rn) if s > 0.

Hence, all functions in Bs,τ
p,q (R

n) are continuous on R
n, not only the radial functions.

Step 2. Let 0 ≤ τ < 1/p. By the monotonicity of the spaces Bs,τ
p,q (R

n) (see

Remark 2.2(iii)), it suffices to deal with B
1

p
, τ

p,1 (Rn).
Substep 2.1. Let |x| ≥ 1. We investigate the sequence

SNf
P (x) :=

N∑

j=0

tj,kjaj,kj ,ℓj(x), N ∈ N.

Since our atoms are at least continuous, also SNf
P is continuous. Furthermore,

employing the normalization of our atoms (see Definition 2.8), we find that

|SNf
P (x)| ≤

N∑

j=0

2−j(s−n/p) |tj,kj | =
N∑

j=0

(kj)
1−n
p 2−j(s−n/p) (kn−1

j |tj,kj |p)1/p.

Let P be the smallest dyadic cube containing all points (kj + 1) 2−j x/|x|, j ∈ Z+,
and 0. Hence

|P | ≍ |x|n ≍ (kj + 1)n2−jn and ω(P, j, kj) ≍ C(n, kj) ≍ kn−1
j ,

since kj ∈ N. We add a short explanation for the last relation. Take x such that all
components are nonnegative. Let 2L < (kj + 1) 2−j ≤ 2L+1. Then, P = Q−L,0 (see
(1.5)), and P contains the part of the shell (3.1) which is contained in

{y = (y1, . . . , yn) ∈ R
n : yi ≥ 0 for all i}.
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By the uniform distribution of the balls ΩR
j,kj ,ℓ

on the shell, this implies that

|{ℓ ∈ Z+ : P ∩ ΩR
j,kj ,ℓ

6= ∅}| ≍ C(n, kj)

2n
.

Since we ignore the dependence on n, the claim follows. This results in that, for all
|x| ≥ 1,

|SNf
P (x)| .

N∑

j=0

(kj)
1−n
p 2−j(s−n/p)

[
∞∑

ℓ=1

ω(P, j, ℓ)|tj,ℓ|p
]1/p

(3.5)

. |x|nτ |x|
1−n
p

|P |τ
∞∑

j=0

2−j(s−1/p)

[
∞∑

ℓ=1

ω(P, j, ℓ)|tj,ℓ|p
]1/p

. |x| 1−n
p

+nτ‖f‖
B

1
p ,τ

p,1 (Rn)
,

where the last inequality follows from (2.6), and the constants behind . do not
depend on f and x. Practically, the same set of inequalities as in (3.5) implies that,
for all |x| ≥ 1,

|SN1+N2
fP (x)− SN1

fP (x)| . |x| 1−n
p

+nτ

|P |τ
∞∑

j=N1

2−j(s−1/p)

[
∞∑

ℓ=1

ω(P, j, ℓ)|tj,ℓ|p
]1/p

. ε,

if N1 is sufficiently large (depending on ε and |x|) and N2 ∈ N arbitrary. Let
b > 1. Then, this implies the uniform convergence of the sequence SNf

P on any shell
{x ∈ R

n : 1 < |x| ≤ b} to a continuous limit. Coming back to the original situation,
we obtain the continuity of f on these regions, which means on |x| ≥ 1.

Substep 2.2. Let |x| < 1. In this case, there exists a natural number j0 such that
2−j0 ≤ |x| < 2−j0+1. The arguments are similar to those used in Substep 2.1 with a
few modifications.

We work with

SNf
P (x) :=

j0−1∑

j=0

tj,0aj,0(x) +

N∑

j=j0

tj,kjaj,kj ,ℓj(x), N ≥ j0,

instead of f itself. As in the previous substep, we obtain

|SNf
P (x)| ≤

j0−1∑

j=0

2−j(s−n/p)|tj,0|+
N∑

j=j0

2−j(s−n/p)|tj,kj |.

To estimate the second sum on the right-hand side, we argue as in Substep 2.1.
Indeed, let P be the smallest dyadic cube containing (kj + 1)2−jx/|x|, j ∈ Z+,
2−j0+1x/|x| and 0. Then,

|P | ≍ |x|n ≍ 2−j0n and ω(P, j, kj) ≍ C(n, kj) ≍ kn−1
j , j ≥ j0.

Thus, repeating the argument in Substep 2.1, we conclude that

N∑

j=j0

2−j(s−n/p)|tj,kj | . |x| 1−n
p

+nτ‖f‖
B

1/p,τ
p,1 (Rn)
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with a positive constant behind . independent of f , N , j0 and x. Observe that, for
all j ∈ Z+,

|tj,0| . 2−jnτ‖f‖
B

1/p,τ
p,1 (Rn)

;

see (2.6). We choose P as above and use ω(P, j, 0) = 1. By means of this inequality,
we obtain

j0−1∑

j=0

2−j(1/p−n/p)|tj,0| . ‖f‖
B

1/p,τ
p,1 (Rn)

j0−1∑

j=0

2−j(1/p−n/p+nτ),

which, together with an easy calculation, implies that

j0−1∑

j=0

2−j(1/p−n/p+nτ) .





1, τ ∈ (n−1
np
, 1
p
];

j0, τ = n−1
np

;

2−j0(1/p−n/p+nτ), τ ∈ [0, n−1
np

)

≍





1, τ ∈ (n−1
np
, 1
p
];

1− log2 |x|, τ = n−1
np

;

|x| 1−n
p

+nτ , τ ∈ [0, n−1
np

).

Summarizing, we find that

(3.6) |SNf
P (x)| ≤ w(|x|, τ)‖f‖

B
1/p,τ
p,1 (Rn)

,

where

w(|x|, τ) :=





1, τ ∈ (n−1
np
, 1
p
];

1− log2 |x|, τ = n−1
np

;

|x| 1−n
p

+nτ , τ ∈ [0, n−1
np

).

Having established this estimate, we may proceed as at the end of Substep 2.1 to
convert it into the continuity of f in all shells (3.3), j0 ∈ N. The proof is complete.

�

Remark 3.2. (i) For fixed p and τ , the largest space Bs,τ
p,q (R

n) with the indicated

property in Theorem 3.1 is given by B
1/p,τ
p,1 (Rn); see Remark 2.2 and Proposition 2.3.

(ii) As mentioned in the introduction, this result has many forerunners in case τ =
0. Let us mention Strauss [39] (H1(Rn) =W 1

2 (R
n) = B1

2,2(R
n)), Lions [24] (W 1

p (R
n))

and Sickel and Skrzypczak [33] (general case with τ = 0). A much more detailed
analysis of the smoothness of radial functions belonging to some Besov or Triebel–
Lizorkin spaces has been given in Sickel, Skrzypczak and Vybiral [36]. In particular,
it is shown there that, in case τ = 0, the results are unimprovable within the scale

Bs
p,q(R

n). More exactly, in B
1/p
p,q (Rn), q > 1, there exist radial and unbounded

functions f such that

supp f ⊂ {x ∈ R
n : a < |x| < b}, 0 < a < b <∞.

Here a and b are at our disposal.
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4. Decay near infinity and controlled unboundedness

near the origin of radial functions

The proof of Theorem 3.1 allows some immediate conclusions about the pointwise
behavior of radial functions. Observe that, under the restrictions of Theorem 3.1,
our radial functions in Bs,τ

p,q (R
n) are continuous outside the origin, hence pointwise

inequalities make sense.

Theorem 4.1. Let n ≥ 2 and p ∈ (0,∞).

(i) Let τ ∈ (n−1
np
,∞), s + n(τ − 1/p) > 0 and q ∈ (0,∞]. Then, there exists a

positive constant C, such that, for all f ∈ RBs,τ
p,q (R

n) and x ∈ R
n, it holds

true that

(4.1) |f(x)| ≤ C‖f‖Bs,τ
p,q (Rn).

(ii) Let τ ∈ [0, n−1
np

]. Let either s > 1/p and q ∈ (0,∞], or s = 1/p and q ∈ (0, 1].

Then, there exists a positive constant C such that, for all f ∈ RBs,τ
p,q (R

n) and
|x| ≥ 1, it holds true that

(4.2) |f(x)| ≤ C‖f‖Bs,τ
p,q (Rn)|x|

1−n
p

+nτ .

(iii) Let τ ∈ [0, n−1
np

]. Let either s > 1/p and q ∈ (0,∞], or s = 1/p and q ∈ (0, 1].

In addition, assume that s ≤ n(1
p
− τ). Then, there exists a positive constant

C such that, for all f ∈ RBs,τ
p,q (R

n) and 0 < |x| < 1, it holds true that

(4.3) |f(x)| ≤ C‖f‖Bs,τ
p,q (Rn)

{
1− log2 |x|, τ = n−1

np
;

|x| 1−n
p

+nτ , τ ∈ [0, n−1
np

).

Proof. Step 1. For the proof of (i), namely, the continuous embedding of Bs,τ
p,q (R

n)
into a certain Hölder–Zygmund space if s + n(τ − 1/p) > 0, see Proposition 2.3. Of
course, the restriction to radial functions is superfluous here.

Step 2. Part (ii) follows from the estimate (3.5) in combination with the embed-
dings for Besov-type spaces mentioned in Remark 2.2(iii).

Step 3. Part (iii) follows from the estimate (3.6), again in combination with the
embeddings for Besov-type spaces mentioned in Remark 2.2(iii), which completes the
proof of Theorem 4.1. �

Remark 4.2. (i) Let us shortly comment on the behavior near infinity. It is an
easy exercise in Fourier analysis to show that the function f ≡ 1 belongs to Bs,τ

p,q (R
n)

if and only if 0 < p ≤ ∞, τ ≥ 1/p, s ∈ R and 0 < q ≤ ∞. Since this function is
radial, it is immediate that functions belonging to RBs,τ

p,q (R
n) need not have decay

near infinity. With this respect, the inequality (4.1) is optimal in case τ ≥ 1/p. Next,
we consider the particular case τ = n−1

np
. Then, we have

1− n

p
+ nτ = 0 and s+ n(τ − 1/p) > 0 ⇐⇒ s >

1

p
.

Hence, the passage from Theorem 4.1(i) (global boundedness and no decay) to The-
orem 4.1(ii) (decay near infinity) is “continuous”.

(ii) We comment on the behavior near the origin. First of all, let us mention
that, in case s > n(1

p
− τ), we have the global boundedness of all functions in

Bs,τ
p,q (R

n). Hence, the assumption s ≤ n(1
p
− τ) in Theorem 4.1(iii) is natural in our
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context. In case τ = 0 and s = n/p, one knows even more about the behavior of
radial functions near the origin; see [36]. For τ ∈ [0, n−1

np
), the bound near infinity

is also the bound near the origin, the decay near infinity of order |x| 1−n
p

+nτ becomes

controlled unboundedness of order |x| 1−n
p

+nτ near the origin. Again the limiting
situation τ = n−1

np
is of certain interest. Then, singularities of logarithmic order are

possible.
(iii) For fixed p and τ , the largest space Bs,τ

p,q (R
n) in (ii) and (iii) of Theorem 4.1

is given by B
1/p,τ
p,1 (Rn); see Remark 2.2(iii).

(iv) There exists a number of references with respect to the classical case τ =
0. Following Strauss [39] and Coleman, Glazer and Martin [7], who had proved
the inequality (4.2) for radial functions belonging to W 1

2 (R
n), Lions [24] gave the

extension to all first order Sobolev spaces W 1
p (R

n). The extension to Besov spaces
and, in particular, the existence of a bound for s for the validity of these statements
have been found in Sickel and Skrzypczak [33]. More detailed investigations have
been undertaken in Sickel, Skrzypczak and Vybiral [36]. Let us refer also to Cho
and Ozawa [6], who dealed with Hs(Rn) = Bs

2,2(R
n), s > 1/2, using methods from

Fourier analysis. The advantage of this approach consists in its simplicity and the
fact that more information about the constant C in (4.2) is given. In the framework
of Morrey spaces, those investigations seem to be new.

(v) Decay properties of functions under symmetry conditions have been investi-
gated at several places. We refer to Lions [24], Kuzin and Pohozaev [21], Skrzypczak
[38] and the references given there. There also different types of symmetry constraints
are investigated, for example, the block radial symmetry.

Next, we turn to the questions around sharpness in Theorem 4.1. Here we have
some partial answers.

Proposition 4.3. Let p ∈ (0,∞) and τ ∈ [0,∞).

(i) Let p > n−1
n

and τ ∈ [0, n−1
np

]. Assume that either s < 1/p and q ∈ (0,∞],

or s = 1/p and q ∈ (1,∞]. Then, for all |x| ≥ 1, there exists a sequence
{fN}N∈N of smooth and compactly supported radial functions, depending on
x, such that ‖fN‖Bs,τ

p,q (Rn) = 1 and limN→∞ |fN(x)| = ∞.
(ii) Let s < 1/p and q ∈ (0,∞]. Then, there exist a sequence {xN}N∈N of

points in R
n and a corresponding sequence {fN}N∈N of smooth and compactly

supported radial functions such that xN → 0 as N → ∞, ‖fN‖Bs,τ
p,q (Rn) ≤ 1

and |fN(xN)| ≥ N |xN |
1−n
p

+nτ for all N ∈ N.

Proof. Step 1. In this step, we show (i). We follow ideas used in [33, pp. 651–653].
Let ψ ∈ C∞

c (Rn) such that 0 ≤ ψ ≤ 1, ψ(x) = 1 if |x| ≤ 12 and ψ(x) = 0 if |x| ≥ 13.
Denote by yj,k,ℓ the center of the ball ΩR

j,k,ℓ and let

ψ̃j,0(·) := ψ(2j ·) and ψ̃j,k,ℓ(·) := ψ(2j(· − yj,k,ℓ))

for all j ∈ Z+, k ∈ N and ℓ ∈ {1, . . . , C(n, k)}. Then, by Lemma 2.17, we see that

1 ≤ ψ̃j,0 +
∑

k∈N

C(n,k)∑

ℓ=1

ψ̃j,k,ℓ ≤ Mm0,
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where m0 denotes the multiplicity of the sequence of coverings, {ΩR
j,k,ℓ}ℓ, and M is a

positive constant independent of j. Define

ψj,0 :=
ψ̃j,0

ψ̃j,0 +
∑

m∈N

∑C(n,m)
r=1 ψ̃j,m,r

and

ψj,k,ℓ :=
ψ̃j,k,ℓ

ψ̃j,0 +
∑

m∈N

∑C(n,m)
r=1 ψ̃j,m,r

.

Then,

ψj,0 +
∑

m∈N

C(n,m)∑

r=1

ψj,m,r ≡ 1.

Let ψ0 ∈ C∞([0,∞)) be such that 0 ≤ ψ0 ≤ 1, ψ0(x) = 1 when 0 ≤ x ≤ 1, and
ψ0(x) = 0 when x ≥ 2. Define

ϕj,r(x) := ψ0

(∣∣2j|x| − 2r
∣∣) , x ∈ R

n,

for all j, r ∈ Z. Obviously, these functions are radial,

(4.4) suppϕj,r ⊂ {x ∈ R
n : max{0, 2−j(2r − 2)} ≤ |x| ≤ 2−j(2 + 2r)},

and

(4.5) ϕj,r(x) = 1 if |x| = 2r−j.

For this family of functions, it has been proved in [33, p. 652] that

ϕj,r =

2r+r0∑

k=2r−r0

C(n,k)∑

ℓ=1

ψj,k,ℓϕj,r if r ≥ max{j + 4, 5},

where r0 is independent of j and r. Assume that n (max{0, 1
p
−1}) < s < 1/p. In this

region, no moment conditions are needed for our atoms. For some positive constant
C1, the functions C1 2

−j(s−n/p)ψj,k,ℓϕj,r are (s, p)L,−1-atoms with respect to ΩR
j,k,ℓ; see

[33, p. 652]. Then, by Theorem 2.18, we know that

‖ϕj,r‖Bs,τ
p,q (Rn) =

∥∥∥∥∥∥

2r+r0∑

k=2r−r0

C(n,k)∑

ℓ=1

ψj,k,ℓϕj,r

∥∥∥∥∥∥
Bs,τ

p,q (Rn)

(4.6)

≍ sup
P∈Q
jP≤j

1

|P |τ

[
2r+r0∑

k=2r−r0

ω(P, j, k)2j(s−n/p)p

]1/p
;

see (2.6). From our knowledge about the support of ϕj,r (see (4.4)), it becomes clear
that the supremum is realized by dyadic cubes with side-length ≤ C(2r + r0) 2

−j

for some positive constant C independent of r and j. Hence, the supremum in the
previous formula runs only over those dyadic cubes P such that

2−j ≤ ℓ(P ) . (2r + r0)2
−j . 2r−j.

If jP = j−m for some m ∈ Z+, then, for those cubes, m satisfies 0 . m . r. Finally,
the number of balls ΩR

j,k,ℓ satisfying ΩR
j,k,ℓ ∩ P 6= ∅ is at most a constant multiple of

2m(n−1), namely,

(4.7) ω(P, j, k) . 2m(n−1).
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To prove this claim, we proceed as follows. Let 12Pj,k denote the the annulus

{
x ∈ R

n :

(
k − 11

2

)
2−j ≤ |x| <

(
k +

13

2

)
2−j

}
if k >

11

2
,

or the ball B(0, (k + 13
2
)2−j) if k ≤ 11

2
. From diamΩR

j,k,ℓ = 12 · 2−j and the position

of the centers yj,k,ℓ of the balls ΩR
j,k,ℓ in Lemma 2.17(a), we deduce that

C(n,k)⋃

ℓ=1

ΩR
j,k,ℓ ⊂ 12Pj,k.

On the other hand, notice that the volume of P ∩(12Pj,k) is at most a constant multi-
ple of 2−j×2−jP (n−1) = 2−jn2m(n−1), which can be attained in case diam (P∩12Pj,k) ≍√
nℓ(P ). Since |ΩR

j,k,ℓ| ≍ 2−jn and {ΩR
j,k,ℓ}ℓ∈{1,...,C(n,k)} is of finite multiplicity, there

exists at most a positive constant multiple of 2m(n−1) balls in {ΩR
j,k,ℓ}ℓ∈{1,...,C(n,k)} such

that

ΩR
j,k,ℓ ∩ P = ΩR

j,k,ℓ ∩ (P ∩ 12Pj,k) 6= ∅.

Thus, (4.7) holds true. In the picture below, we draw a cube P , ℓ(P ) = 2−jP > 2−j

in a position, where ω(P, j, k) becomes maximal within the family of dyadic cubes Q
of side-length 2−jP .

Figure 2. A dyadic cube P in a position with ω(P, j, k) large.

Therefore, employing τ ≤ (n− 1)/(np), (4.6) and (4.7), we obtain

‖ϕj,r‖Bs,τ
p,q (Rn) . sup

0≤m.r

2(j−m)nτ 2j(s−n/p) 2m(n−1)/p ≍ 2j(s−n/p+nτ) 2r(
n−1

p
−nτ).

Now we turn to a new normalization
∥∥∥ 2−j(s−n/p+nτ) 2−r(n−1

p
−nτ) ϕj,r

∥∥∥
Bs,τ

p,q (Rn)
≤ 1,
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but, thanks to (4.5), we find that

2−j(s−n/p+nτ)2−r(n−1

p
−nτ)ϕj,r((2

r−j, 0, . . . , 0)) = 2−j(s−n/p+nτ)2−r(n−1

p
−nτ)

= 2j(1/p−s)2(r−j)(−n−1

p
+nτ).

Let |x| := 2t for some t ≥ 5. We apply the preceding formulas with t := r − j fixed
and j tending to infinity. This proves the desired result in the case of dyadic values
of |x|. The general case |x| ≥ 1 follows from using the same arguments with some
minor modifications. Moreover, by the monotonicity of the quasi-norms with respect
to s and q, we also obtain the desired result in case s ≤ n(max{0, 1/p− 1}).

Now, we consider the case that s = 1/p and q ∈ (1,∞]. By the assumption on p,
we know that s > n(max{0, 1/p− 1}), which means that the atoms in Theorem 2.18
do not need to satisfy any moment condition. Let

ϕN,r =

N∑

j=1

αjϕj,j+4+r, N ∈ N, r ≥ 0,

where {αj}j is a sequence of positive numbers such that {αj}j ∈ ℓq but {αj}j 6∈ ℓ1.
Then, by an argument similar to that used in case s < 1/p, we see that

‖ϕN,r‖Bs,τ
p,q (Rn) ≍ sup

P∈Q

1

|P |τ





N∑

j=max(jP ,1)

αq
j




2j+4+r+r0∑

k=2j+4+r−r0

ω(P, j, k)2j(1−n)



q/p




1/q

.

Arguing as above, in the supremum, only those dyadic cubes P such that 2−N ≤
ℓ(P ) . 2r are of relevance; see (4.4). Thus, −r . jP ≤ N . By the same argument as
that used in (4.7), we see that, for all j ≥ jP , ω(P, j, k) . 2(j−jP )(n−1). Therefore, it
follows, from τ ∈ [0, n−1

np
], that

‖ϕN,r‖Bs,τ
p,q (Rn) . sup

P∈Q
−r.jP ≤N

2jP [nτ−(n−1)/p]





N∑

j=max(jP ,1)

αq
j





1/q

. 2r(
n−1

p
−nτ)

{
N∑

j=1

αq
j

}1/q

.

Next, observe that

ϕN,r((2
r+4, 0, . . . , 0)) =

N∑

j=1

αj → ∞ as N → ∞;

see (4.5). By taking r fixed, but letting N tend to infinity, we then complete the
proof for the case of dyadic values of |x|. The general case |x| ≥ 1 follows from some
minor modifications.

Step 2. In this step, we show (ii). Assume first that n(max{0, 1/p− 1}) < s <
1/p. Since 2−j(s−n/p)ϕj,0 is a constant multiple of an (s, p)L,−1-atom with respect to
ΩR

j,0, by Theorem 2.18, we know that

‖2−jnτ2−j(s−n/p)ϕj,0‖Bs,τ
p,q (Rn) . 1.

Considering the function 2−jnτ2−j(s−n/p)ϕj,0 on the ring |x| = 2−j, we know that

2−jnτ2−j(s−n/p)|ϕj,0(x)| = |x|s−n/p+nτ ≥ N |x| 1−n
p

+nτ
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when |x| is small enough. The general case s < 1/p follows from a monotonicity
argument. This finishes the proof of Proposition 4.3. �

Remark 4.4. (i) Combining Proposition 4.3 and Theorem 4.1(ii), we know that
the inequality (4.2) can not be true if either s < 1/p and q arbitrary, or s = 1/p and
1 < q ≤ ∞.

(ii) Proposition 4.3(ii) in combination with Theorem 4.1(iii) implies that, in case
s < 1/p, the inequality (4.3) can not be true.

(iii) In case τ = 0, a much more detailed investigation of the sharpness of the
results has been undertaken in [36]. However, the approach used there is based on a
characterization of the trace spaces of RBs

p,q(R
n). That would be of certain interest

also in the present situation.

Finally, for the convenience of the reader, we formulate the consequences of The-
orems 3.1 and 4.1, and Proposition 4.3 in case of Sobolev–Morrey spaces. Applying
the embedding

(4.8) WmMu
p(R

n) →֒ Nm
u,p,∞(Rn) = Bm,τ

p,∞(Rn), τ =
1

p
− 1

u
,

and Theorem 3.1, we have the following conclusion.

Corollary 4.5. Let n ≥ 2, 1 < p ≤ u < ∞ and m ∈ N. Then, every radial

element f in WmMu
p(R

n) has a representative f̃ which is continuous outside of the
origin.

The next result follows from (4.8) and Theorem 4.1.

Corollary 4.6. Let n ≥ 2, 1 < p ≤ u <∞ and m ∈ N.

(i) Let u/p ≤ n. Then, there exists a positive constant C such that, for all
f ∈ RWmMu

p(R
n) and |x| ≥ 1, it holds true that

(4.9) |f(x)| ≤ C ‖f‖WmMu
p (R

n) |x|
1

p
−n

u .

(ii) Let u/p ≤ n. Then, there exists a positive constant C such that, for all
f ∈ RWmMu

p(R
n) and 0 < |x| < 1, it holds true that

(4.10) |f(x)| ≤ C‖f‖WmMu
p (R

n)

{
1− log2 |x|, 1

p
= n

u
;

|x| 1p−n
u , 1

p
< n

u
.

Remark 4.7. Let us mention that, because of the embedding (1.3), only those
situations are of interest where n ≥ u holds true. Of course, Corollary 4.6(i) repre-
sents Theorem 1.4 proved in a totally different way.

5. Appendix—Proof of Theorem 2.15

Step 1. Recall that Bs,τ
p,q (R

n) = B
s+n(τ−1/p)
∞,∞ (Rn) if either q ∈ (0,∞) and τ ∈

(1/p,∞), or q = ∞ and τ ∈ [1/p,∞) (see [50]). The desired conclusion in the above
case and in case τ = 0 has been obtained in [33, Proposition 1].

Step 2. Next, we assume that either τ ∈ (0, 1/p) and q ∈ (0,∞], or τ = 1/p and
q ∈ (0,∞).
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Substep 2.1. Let f ∈ Bs,τ
p,q (R

n) be given. We show the existence of an appropriate
atomic decomposition. Let ψ0, ψ ∈ S(Rn) be such that

|ψ̂0(ξ)| > 0 when |ξ| ≤ 2, and |ψ̂(ξ)| > 0 when 1/2 ≤ |ξ| ≤ 2.

Then, there exist ϕ0, ϕ ∈ S(Rn) such that

supp ϕ̂0 ⊂ {ξ ∈ R
n : |ξ| ≤ 2} and |ϕ̂0(ξ)| > 0 when |ξ| ≤ 1,

ϕ satisfies (2.2), and

ψ̂0(ξ)ϕ̂0(ξ) +
∑

j∈N

ψ̂(2−jξ)ϕ̂(2−jξ) = 1

for all ξ ∈ R
n; see Frazier and Jawerth [15, 16]. Let An be the same as in Re-

mark 2.11(i). In addition, we may assume that

suppψ0, suppψ ⊂ {x ∈ R
n : |x| ≤ An/2}

and
ˆ

Rn

xγψ(x) dx = 0 for all |γ| ≤ M ;

see [33, Proposition 1]. Then, by the Calderón reproducing formula, we see that

f(x) =

ˆ

Rn

ψ0(x− y) ϕ̃0 ∗ f(y) dy +
∑

j∈N

ˆ

Rn

ψj(x− y) ϕ̃j ∗ f(y) dy

in S ′(Rn), where ϕ̃0(·) = ϕ0(−·) and ϕ̃j(·) = ϕj(−·). For all j, ℓ ∈ Z+, we define

(5.1) tj,ℓ :=





D(n,M) sup
y∈Ω0,ℓ

|ϕ̃0 ∗ f(y)|, j = 0;

E(n,M) 2j(s−n/p) sup
y∈Ωj,ℓ

|ϕ̃j ∗ f(y)|, j ∈ N,

where

D(n,M) := Bn
nwn

[
max
|α|≤L

‖DαΨ‖C(Rn)

]

and

E(n,M) := Bn
nwn

[
max
|α|≤L

‖Dαψ‖C(Rn)

]
max
|α|≤L

{
A−s+n/p+|α|

n , B−s+n/p+|α|
n

}

×max



1, wn(3/2)

M+n+1
∑

|γ|=M+1

1

γ!



 .

As in [33, Proposition 1], for all j ∈ Z+, we let Ω∗
j,0 := Ωj,0 and

Ω∗
j,ℓ := Ωj,ℓ \

(
ℓ−1⋃

m=0

Ωj,m

)
for ℓ ∈ N.
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Then, {Ω∗
j,ℓ}ℓ∈Z+

is a family of pairwise disjoint sets and satisfies that ∪ℓ∈Z+
Ω∗

j,ℓ = R
n

for all j ∈ Z+. When tj,ℓ 6= 0, we let

(5.2) aj,ℓ(x) :=





1

t0,ℓ

ˆ

Ω∗
0,ℓ

ψ0(x− y) ϕ̃0 ∗ f(y) dy, j = 0;

1

tj,ℓ

ˆ

Ω∗
j,ℓ

ψj(x− y) ϕ̃j ∗ f(y) dy, j ∈ N.

When tj,ℓ = 0, we define aj,ℓ(x) ≡ 0. Then, by the argument used in the proof
of [33, Proposition 1], we know that a0,ℓ is a 1L-atom centered at the set Ω0,ℓ, aj,ℓ
with j ∈ N an (s, p)L,M -atom centered at the set Ωj,ℓ and f =

∑∞
j=0

∑∞
ℓ=0 tj,ℓ aj,ℓ in

S ′(Rn). Now, we prove that

(5.3) ‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω) . ‖f‖Bs,τ

p,q (Rn).

By definition of the tj,ℓ, we find that

‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω)

≍ sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

2j(s−n/p)q



∑

ℓ∈Z+

Ωj,ℓ∩P 6=∅

sup
y∈Ωj,ℓ

|ϕ̃j ∗ f(y)|p




q/p




1/q

.

Via an argument similar to that used in the proof of [15, (2.11)], we conclude that

sup
y∈Ωj,ℓ

|ϕ̃j ∗ f(y)|p . 2jn
∑

k∈Zn

(1 + |k|)−N

ˆ

Ωj,ℓ

|ϕ̃j ∗ f(y + 2−jk)|p dy,

where N is at our disposal. On the other hand, since diamΩj,ℓ ≤ Bn2
−j , there exists

a constant d ∈ [1,∞) such that, for all j ≥ jP ,
⋃

ℓ∈Z+,Ωj,ℓ∩P 6=∅

Ωj,ℓ ⊂ dP.

Denote by yP the center of P and by B(y, R) the ball with radius R and center in y.
We then see that

‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω)

. sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

2jsq



∑

ℓ∈Z+

Ωj,ℓ∩P 6=∅

∑

k∈Zn

´

Ωj,ℓ
|ϕ̃j ∗ f(y + 2−jk)|p dy

(1 + |k|)N




q/p




1/q

. sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

2jsq

[∑

k∈Zn

´

dP
|ϕ̃j ∗ f(y + 2−jk)|p dy

(1 + |k|)N

]q/p


1/q

. sup
P∈Q

1

|P |τ





∞∑

j=max{jP ,0}

2jsq

[∑

k∈Zn

´

B(yP ,dℓ(P )+|k|ℓ(P ))
|ϕ̃j ∗ f(z)|p dz

(1 + |k|)N

]q/p


1/q

.
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Temporarily we assume q ≤ p. By the definition of ‖ f ‖Bs,τ
p,q (Rn), we conclude that

‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω)

. sup
P∈Q

1

|P |τ




∑

k∈Zn

(1 + |k|)−Nq/p

∞∑

j=max{jP ,0}

2jsq
[
ˆ

B(yP ,dℓ(P )+|k|ℓ(P ))

|ϕ̃j ∗ f(z)|p dz
]q/p





1/q

. ‖f‖Bs,τ
p,q (Rn)

{∑

k∈Zn

(1 + |k|)−Nq/p(d+ |k|)nτq
}1/q

. ‖f‖Bs,τ
p,q (Rn),

where we have chosen N > n(τ + 1/q)p. Now, we turn to the case q > p. With
N > n(τp + 1), we obtain

‖{tj,ℓ}j,ℓ∈Z+
‖b(p,q,τ,Ω)

.




∑

k∈Zn

(1 + |k|)−N sup
P∈Q

1

|P |τp




∞∑

j=max{jP ,0}

2jsq
[
ˆ

B(yP ,dℓ(P )+|k|ℓ(P ))

|ϕ̃j ∗ f(z)|p dz
]q/p


p/q




1/p

. ‖f‖Bs,τ
p,q (Rn)

{∑

k∈Zn

(1 + |k|)−N(d+ |k|)nτp
}1/q

. ‖f‖Bs,τ
p,q (Rn).

Hence, we have proved that any f ∈ Bs,τ
p,q (R

n) admits an atomic decompositions with
respect to the sequence of coverings {{Ωj,ℓ}ℓ∈Z+

}j∈Z+
such that (5.3) holds true with

some constants behind . independent of f .
Substep 2.2. Now we study the regularity of appropriate atomic decompositions

with coefficient sequence belonging to b(p, q, τ,Ω). Associated to the sequence of
coverings, {{Ωj,ℓ}ℓ∈Z+

}j∈Z+
, there exists a regular sequence of coverings by balls

{{Bj,ℓ}ℓ∈Z+
}j∈Z+

such that

Ωj,ℓ ⊂ Bj,ℓ, j ∈ Z+, ℓ ∈ Z+;

see [33, Proposition 1]. Any atomic decomposition with respect to {{Ωj,ℓ}ℓ∈Z+
}j∈Z+

represents trivially an atomic decomposition with respect to {{Bj,ℓ}ℓ∈Z+
}j∈Z+

. But,
for such a standard covering, the desired property is known to be true, we refer to
[53, Theorem 3.3]. Let us mention that this has been the only place, where we use
τ ≤ 1/p in Step 2. This finishes the proof of Theorem 2.15.
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