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Abstract. In this paper, we consider the Herz—Morrey space H” ;ﬁ’f’w(G) of variable exponent
consisting of all measurable functions f on a bounded open set G C R" satisfying

1/q

2da
|f|’*’fi’3}q’“’<c>:(/o (w(xo’r)|f'LP”<B<zo-,r>\B<zo,r/2>>)qdr/r) =

and set HPO11(G) =, oo HE ().

Our first aim in this paper is to give the boundedness of the maximal and Riesz potential
operators in HP():%% (@) when ¢ = oco.
In connection with H?i'z’}q’w(G) and HP()9%(@), let us consider the families ﬂ?gg’}q’w(G),

ﬂ“"qu“’(c),ﬁﬁ'z’}"’”(c) and HP()4¥(@). Following Fiorenza-Rakotoson [18], Di Fratta-Fiorenza
[17] and Gogatishvili-Mustafayev [19], we next discuss the duality properties among these Herz—
Morrey spaces.

1. Introduction

Let R™ denote the n-dimensional Euclidean space. We denote by B(z,r) the
open ball centered at x of radius r, and by | F| the Lebesgue measure of a measurable
set &/ C R"™.

It is well known that the maximal operator is bounded in the Lebesgue space
LP(R™) if p > 1 (see [34]). In [12], the boundedness of the maximal operator is still
valid by replacing the Lebesgue space by several Morrey spaces; the original one was
introduced by Morrey [30] to estimate solutions of partial differential equations; for
Morrey spaces, we also refer to Peetre [32] and Nakai [31].

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

Mo % L gy < Ol o

for f € L’(R"), 0 < @ <n and 1 < p < n/a, where I, is the Riesz kernel of order o
and 1/p* = 1/p—a/n (see, e.g. |2, Theorem 3.1.4]). Sobolev’s inequality for Morrey
spaces was given by Adams [1] (also [12]). Further, Sobolev’s inequality was also
studied on generalized Morrey spaces (see [31]). This result was extended to local
and global Morrey type spaces by Burenkov, Gogatishvili, Guliyev and Mustafayev
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[8] (see also [7, 9, 10]). The local Morrey type spaces are also called Herz spaces
introduced by Herz [23|. In our paper, those Morrey type spaces are referred to as
Herz—Morrey spaces.

In [13], Diening showed that the maximal operator is bounded on the variable
exponent Lebesgue space LP()(R") if the variable exponent p(-), which is a constant
outside a ball, satisfies the locally log-Hélder condition and inf p(z) > 1 (see condition
(P2) in Section 2). In the mean time, variable exponent Lebesgue spaces were used to
discuss nonlinear partial differential equations with non-standard growth condition.
These spaces have attracted more and more attention, in connection with the study
of elasticity and fluid mechanics; see [16, 33]. On the other hand, variable exponent
Morrey or Herz versions were discussed in [4, 5, 24, 26, 29].

Let G be a bounded open set in R", whose diameter is denoted by dg. Let
w(+,+): Gx(0,00) = (0,00) be a uniformly almost monotone function on G x (0, c0)
satisfying the uniformly doubling condition. For zy € G 0 < ¢ < oo and a variable
exponent p(-), we consider the Herz—Morrey space 2t (z } “(@) of variable exponent
consisting of all measurable functions f on G satlsfymg

2dc 1/q
q
||f||H,{J(.>,}q,w(G) = (/ (w(xoaT)||.f||LP(')(B(xo,r)\B(xo,r/2))) dr/r) < 05
x(Q 0

when ¢ = oo,

||f||H,{J(.>,oo,w(G) = Ssup w(x()?T)||f||LP(')(B(xO,r)\B(xo7r/2)) < 0.
=0} 0<r<dg
Set
p(')7qw
H = () HL (@),
ro€eG

whose norm is defined by

£ {13410 () = sup ||f||Hp<)}qw(G)

roeG {=z

In connection with H?Q(Cg’}q’w(G) let us consider the families %' Hy, } “(@) and H; {xo} “(@)
of all functions f on G satisfying

2d¢ . dr 1/q
g = ([ @annlflowmn)’ T ) <o
—{zo} 0 r

and

2dg . dr 1/q
g = ([ @annlflooesmn)’ ) <o

r

respectively. In the paper by Fiorenza and Rakotoson [18|, the Herz—Morrey space
ﬂ?ggiq’w(G) is referred to as the generalized Lorentz space denoted by GT'(p, q,w).
Note here that

O (G) U (G) € HIOP(G).

Similarly we consider the space

(')7 w
HPOa ﬂ H{xo} ’

ro€eG
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whose norm is defined by

),q,w = Su ),q,w .
Il = 510 1 g0

Our first aim in this paper is to establish the boundedness of the maximal oper-
ator and the Riesz potential operator in HP()**(G); when ¢ < oo, we refer to [27].
In the borderline case, Trudinger’s exponential integrability is discussed.

Next, following Di Fratta—Fiorenza [17] and Gogatishvili-Mustafayev [19] , we
study the duality properties among those Herz—Morrey spaces. In particular, we
show the associate spaces of ﬂ]{)ggfo’w(G) and ﬂ?gi’}m’w(G), which give another char-
acterizations of Morrey spaces by Adams—Xiao [3] (see also [20]).

2. Preliminaries

Throughout this paper, let C' denote various constants independent of the vari-
ables in question. The symbol g ~ h means that C~'h < g < Ch for some constant
C > 1. Set A(z,r) = B(x,r) \ B(z,r/2).

Consider a function p(-) on G such that

(P1) 1 <p :=infieqp(z) <sup,eqp(x) = pT < oo, and
(P2) p(-) is log-Holder continuous, namely
“p

2da/|r = yl)

with a constant ¢, > 0; p(-) is referred to as a variable exponent.

— <
Ip(x) — p(y)| < Tog( for z,y € G

We also consider the family (G) of all positive functions w(-,-): G x (0, 00) —
(0, 00) satisfying the following conditions:

(w0) w(x,0) = lim,,ow(z,r) =0 for all z € G or w(z,0) = oo for all x € G,
(wl) w(z, ) is uniformly almost monotone on (0, 00), that is, there exists a constant
()1 > 0 such that w(x,-) is uniformly almost increasing on (0, c0), that is,

w(z,r) < Qw(z,s) forallz€e Gand0<r<s
or w(x,-) is uniformly almost decreasing on (0, c0), that is,
w(z,s) < Qw(x,r) forallz e Gand 0 <r <s;

(w2) w(x,-) is uniformly doubling on (0, co), that is, there exists a constant 3 > 0
such that

Qy 'w(z,r) < w(z,2r) < Quw(x,r) forall z € G and r > 0; and
(w3) there exists a constant ()3 > 0 such that
Q' <w(r, 1)< Qs foralzed.
Then one can find constants a,b > 0 and C' > 1 such that
(2.1) C™ro <w(x,r) < Cr=

forallz € Gand 0 <r < dg.
For later use, it is convenient to note the following result, which is proved by

(P1), (P2) and (2.1).
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Lemma 2.1. There exists a constant C' > 0 such that
w(z, r)p(x) < Cw(z, r)p(y)
whenever |z —y| <r < dg.

For a locally integrable function f on G, set

p(y)
||f||Lp<->(G):inf{)\>O: [ (1) dygl};

in what follows, set f = 0 outside G. We denote by LP()(G) the family of locally
integrable functions f on G' satisfying || f{|,»¢) () < 0.

Lemma 2.2. Let 0 < ¢ < oo. Then

2da .
(1) / (s )l dr/mz (£, 27746 |l o a0

2d; .
(2) / (W@, P fll o (o) drfr ~ Z (w(@, 277 de) | £l oo (B 2-+1da)) s
and

2da
(3) / (W(ZBaT)HfHLP(-)(G\B(w dr/r ~ Z w(z, 27 dG ||.f||LP() (G\B(z,2~ JdG)))q
0

for all x € G and measurable functions f on G.

Proof. We only prove (1), since the remaining assertions can be proved similarly.
Since A(z,r) D B(x,3t/2) \ B(x,t) when 3t/2 < r < 2t < 2d, we have by (wl) and
(w2) that

2
// (W(i’f 7’)||f||Lp<) ) dr/r > C( (xat)||f||LP(')(B(m,3t/2)\B(gc,t)))q
3t/2
and similarly, we have
3t/2
q
/ (W(i’? 7’)||f||Lp<) ) dr/r > C( (xat)||f||LP(')(B(m,t)\B(m,Bt/4))) :
t
Thus
2 .
/ (w(, 7)1 f | oo ag ) dr/r > C (w(@, )| fll o) (Bst/20\Bst/ay)) -
t
Therefore, letting 3t/2 = 27971d for a positive integer j, we see that
2791 2dq
i q
/ id (w(x 7’)||f||LP<) ) dr/r> C( (z,2 J—HdG)Hf||LP(')(A(:c,2*j+1dg))) )
27 dg
so that

oo

2d¢g q 1 27j+2dg
| @@ lmouen) arr= 53 [ @ o) dr
j=1

,JdG

= CZ (w(:n, 2_HlalG)||f||LP<->(A(gc,zﬂ‘ﬂdc)))q-

The converse inequality is easily obtained. U
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Further, we obtain the next result.

Lemma 2.3. Suppose 0 < ¢ < oo. If Hf||hp(.),q,w(G) < 1, then there exists a
constant C' > 0 such that || f||ppc).000(q) < C, for h = ”H{xo},ﬂ{xo},ﬁ{xo}, H, H.

By Lemma 2.1, we have the following result.

Lemma 2.4. There is a constant C > 0 such that
/ ‘f(y)|p(y) dy < Cw(xo, r)—P(mo)
B(zo,r)

when g € G, 0 <1 < dg and w(zo, 7)|| fll o) (B(zo,r)) < 1-

Lemma 2.5. There is a constant C > 0 such that
|A 20,7)] / y)ldy < Cr=Pe(zg, )"
) A(zo,r)

when zo € G, 0 <1 < dg and w(zo, 7)|| || ) (Ao < 1-

A(zo,r)
Proof. Fix xg € G and 0 < r < dg. Let f be a nonnegative measurable function
on G satistying w(zo, )| |l Le¢)(a(me,ry) < 1. Then we have by (P2) and Lemmas 2.1

A(zo,r)
and 2.4,

[ fwa
AT N y)ay
|A(ZI§'0, T)| A(zo,r)

- - 1 F(y) p(y)—1
< p—n/plxo) 1 d
sr w(SCo, 7") + |A(SC(], 7”)| Y- f(y> <r—"/1’(1‘0)w(:¢0, 7”)_1 Y

—n/p(x —n/p(x —1y\ 1—p(z0) 1
< P (ao,r) ™+ C (e, )™)Y e / ( )f(y)”(y)dy
) x0,T

< Cr_"/p(%)w(xo, 7’)_1,

as required. O]

3. Boundedness of the maximal operator for ¢ = oo

Let us consider the following conditions: let n € Q(G) and xy € G.
(w3.1) There exists a constant () > 0 such that

! dt
/ P, 7 O < QI g, )
0

for all 0 < r < dg; and
(w3.2) there exists a constant ) > 0 such that

2d¢g dt
/ t_n/p(xO)W(l'(),t)_17 S Q,r.—n/P(SL‘O)n(xO”r’)_l

forall 0 < r <dg.
By the doubling condition on w, one notes from (w3.1) or (w3.2) that

w(xo,r)_l < C’n(a:o,r)_l
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Lemma 3.1. If (w3.1) and (w3.2) hold for all xy € G with the same constant @),
then there is a constant C' > 0 such that

| Wrwldy < o,
B(z,r)
and
[ U@l — iy < ey,
G\B(z,r)
forallz € G, 0 <r < dg and f with || f[[3p().c00(q) < 1.

Proof. Let f be a nonnegative measurable function on G satisfying || f{|3p().00.0(q) <
1. By Lemma 2.5 and (w3.1), we have

| dy—Z/ g dy < O @)z, 279r) )
B(z,r) A(z,2=3+1y

7j=1
< Cpnnire )n(x,r) L
Similarly, we obtain by use of Lemma 2.5 and (w3.2)

—yl™"d C j’r‘ _n J
[ le-srase S @[

j>1,2i-1r<dg
<C Z (2j7’)_"/p(x)w(x, 27r)~t
j>1,2i-1r<dg
< Cr P (e, r)
as required. O

For a locally integrable function f on G, the Hardy-Littlewood maximal operator

M is defined by
Mf(x) =su / dy;
/() T>18|er\ - y)l dy

recall that f = 0 outside G. Now we state the celebrated result by Diening [13].

Lemma 3.2. The maximal operator M is bounded in LP")(G), that is, there
exists a constant C' > 0 such that

IMFllrory < Cllf Il

Theorem 3.3. If (w3.1) and (w3.2) hold for all xy € G with the same constant
Q, then the maximal operator M is bounded from HP")><(G) to HPO>n(Q).

Guliyev, Hasanov and Samko [21, 22| proved that if (w3.2) holds for all 2y € G
with the same constant (), then the maximal operator M is bounded from H” (')’OO’“(G)
to HPO (@G and if (w3.1) holds for xy € G, then the maximal operator M is

bounded from ﬁ’{’io)’}m’“(G) to H{xo} (@)

Proof of Theorem 3.3. Let f be a nonnegative measurable function on G such
that || flype)cw@ < 1. For z € G and 0 < r < dg, it suffices to show that

M1 oo agery < Cnla,r)~
For this purpose, set

f = fXG\B(w,2r) + fXB(w,2r)\B(w,r/4) + fXB(w,r/4) = fl + .f2 + f3>
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where yg denotes the characteristic function of £. We note from Lemma 3.2 that
[IMFalleey @y < Cllfalleo ) < Cllfall o6 (B2 B2y
< C{||f2HLP(')(B(Z‘,2T)\B(Z‘,T’)) + ||f2||LP(')(B(:(:,T)\B($,T’/2))
+ [ fall Lo (B 20\ B 4)) }
< Cw(z,r)™" < Oz, r)~".
For z € A(z,r), Lemma 3.1 gives
Mp) 20 [ fl)dy < O
B(z,r/4)
so that
IM 3]l oo agery < CrP (@, ) 1 oo (agery < Cnla, )™
Moreover, Lemma 3.1 again gives
MAERZC [ fle =yl " dy < Cr ()
G\ B(z,2r)
and hence
IM 1l oo agery < Cr7P (@, ) 1 oo (agery < Cnla, )™

as required. O

Remark 3.4. If the conditions on w hold at xy € G only, then one can see that
M is bounded from H?i'gfo’w(G) to H?igfo’n(G).

Corollary 3.5. For bounded functions v(:): G — (—o0,00) and f(-): G —
(—00,00), set w(z,r) = r*@(log(2dg/r))?®. If —n/pt < v~ < vt <n(l—1/p7),
then the maximal operator M is bounded in HPO)>>(G).

Define X
w7 = ( [ te. @)
0 t

w*(z,r) = </T2dc w(z,t)™! %)_1

forx € G and 0 <7r < dg.
Theorem 3.6. (1) Ifw,(-,dg) is bounded in G, then HPO) >« (G) € HPD“+(@).
-),00,w =70(-)oo,w*
(2) For each xy € G, ”H’{’;g} (G) C %{{)xo} (G).

Proof. Let f be a measurable function on G such that || f||3p¢).c0w@ < 1. We
show only (1), because (2) can be proved similarly.
For (1), we see that

and

1Nl e By < Z Nl oo a2-i+1r)) < ZW(ZE, 279r) 7t < Cuw(a, )™

j=1 7j=1

for all z € G and 0 < r < dg, as required. O
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Remark 3.7. Let w(z,r) = (log(2dg/r))*™ " for a bounded function 8(-): G —
(_OO> OO)
(1) If essinf e B(x) > 0, then

2d B(x)
wi(z,7) ~ (log —G)
,

forall x € G and 0 < r < dg; and
(2) if B(xp) < 0 for zy € G, then

w*(zg, 1) ~ (log MTG)ﬁ( "
for all 0 < r < dg.
Remark 3.8. Let w(z,r) = "™ for a bounded function v(-): G — (—o0, c0).
(1) If esssup, e v(z) < 0, then
we(z, ) ~w(z,r)
forall z € G and 0 < r < dg; and
(2) if v(xo) > 0 for zg € G, then
w*(xg, ) ~ w(xo,T)
forall 0 < r < dg.

Corollary 3.9. (1) Suppose (w3.1) and (w3.2) hold for all xy € G with the
same constant Q). If w.(-,dq) is bounded in G, then the maximal operator M

is bounded from HP)>« (@) to HPD*<(@).
(2) If (w3.1) and (w3.2) hold for zy € G, then the maximal operator M is bounded

from H?U,(Cgfo’w(G) to ﬁ?f;g’}"‘”“*(a).

Remark 3.10. Let us consider a singular integral operator T associated with a
standard kernel k(z,y) in [15, Section 6.3] such that

|k, )| < Ko —y[™"
for all x,y € R™ and
HTfHLP(')(R”) < K2||f||LP(')(R”)
for all f € LPC)(R™).
If (w3.1) and (w3.2) hold for all 2y € G with the same constant (), then every
singular integral operator 7" is bounded from HP()>¢(G) to HP()>n(G).

4. Sobolev’s inequality for g = oo

We consider the following condition: let n € Q(G) and z( € G.
(w4.1) For 0 < a < m, there exists a constant ) > 0 such that

2dg dt
/ ta_n/p(x)W(Zlf,t)_l7 S Q,,,,oe—n/p(x)n(l,’,r,)—l

for all 0 < r < dg.
As in the proof of Lemma 3.1, we have the following result.
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Lemma 4.1. If (w4.1) holds for all o € G with the same constant (), then there
is a constant C' > 0 such that

/ 2 — y*|f ()] dy < Cro="m@n(z, r)~!
G\B(z,r)

forallz € G, 0 <r < dg and f with || f|3p0).c0w(q) < 1.
For 0 < a < n, the Riesz potential [, f is defined by

Iof(2) = I % f(z) = /G & — g () dy

for measurable functions f on G; and define
1 1 «

p(e)  plx) 0
Let us begin with Sobolev’s inequality proved by Diening [14, Theorem 5.2|:

Lemma 4.2. If0 < o < n/p™, then there exists a constant C' > 0 such that
||IafHLpﬁ(->(G) < CHfHLP(')(G)
for all f € LPO)(Q).
Our result is stated in the following:

Theorem 4.3. Let 0 < o < n/p*. If (w3.1) and (w4.1) hold for all zy € G with
the same constant (), then there exists a constant C' > 0 such that

Mo Fllsirmeney < Cll ooy

for all f € HPL=#(@).
In view of Guliyev, Hasanov and Samko [21, 22|, if (w4.1) holds for all zy € G
with the same constant ), then there exists a constant C' > 0 such that

||]af’|ﬂpﬁ(-),oo,n(g) S C||f“ﬂp(-),oo,w((;)

for all f € HPW)*(@) and if (w3.1) holds for zy € G, then there exists a constant
C' > 0 (which may depend on z) such that

< (-
||[af||ﬁ?ig;'wm(0) — CHfHHT{’;SV}wVW((D

for all f € gﬁg’}w’w(G).

Proof of Theorem 4.3. Let f be a nonnegative measurable function on G such
that || fllzpre0wg < 1. For x € G and 0 < r < dg, we have only to show the
inequality

||Iaf||Lpﬁ(-)(A(x,r)) < 077(1%7“)_1-
Set
= fxe\B@ar) + fXB@2)\B@r/a) T [XB@ra) = fi + f2+ f3,
as before. We note from Lemma 4.2 that

||Iaf2||Lpﬁ(-)(A(m,r)) < C||f2HLP(‘)(G) < C||f2HLP(‘)(B(x,2r)\B(x,r/4))
< Cw(x,r)™' < Cn(x,r)™.
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If z € A(z,r), then Lemma 3.1 gives
LAG) Crn [ flyydy < 0o
B(z,r/4)
so that
||Iaf3||Lpﬁ(->(A(x,r)) < Cra_n/p(x)n(%T)_l||1||Lpﬁ(->(A(x,r)) < 077(1%7“)_1-

Moreover, Lemma 4.1 gives

Lfi(z) < / |z —y|* " f(y) dy < Cro7" Py (e, r) 7
G\B(z,2r)

so that
HIaleLpﬁm(A(x,r)) < Cra_n/p(x)n(xa7’)_1||1’|Lpﬁ(->(,4(x,r)) < Cﬁ(xar)_l,

as required. O]

Corollary 4.4. Let 0 < o < n/p* and let v, 3 and w be as in Corollary 3.5. If
a—n/pt <v” <vt <n(l—1/p7), then there exists a constant C' > 0 such that

gy < Ol
for all f € HPL=ow(@).

Corollary 4.5. Assume that 0 < o < n/p™.
(1) Suppose (w3.1) and (w4.1) hold for all xy € G with the same constant Q). If
wi (-, dg) is bounded in G, then the operator I, is bounded from HP()>« (@)
to 7" “@).
(2) If (w3 1) and (w4. 1) ho]d for xy € G, then the operator I, is bounded from

HIOS (@) to Ty ™ (@).

5. Exponential integrability for ¢ = oo

Set
Ei(x,t) = exp (tq(w)) -1,
where 1/p(z) 4+ 1/q(x) = 1. For a locally integrable function f on G, set

£l =inf{A>o: [ (M) dy < 1}.

We denote by LEl(G) the class of locally integrable functions f on G satisfying
£l L1y < oo

In connectlon with HP()49 (@), let us consider HF1%«(G) of all functions f sat-
isfying

2dg dr 1/q
e = s ([ o lamaan) L) <oc

z0€G

—F1,qw

Similarly, we define H**%*(G) and Higy (G).

Lemma 5.1.

1l o1 (o ~ (log(1 + 1/r))~ 1@
forallz € G and 0 < r < dg.
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Lemma 5.2. |28, Theorem 4.1, Corollary 4.2| If « > n/p~, then there exists a
constant C' > 0 such that

Haflle @ < Cllflleeor
for all f € LPO)(G).
Our result is stated in the following:
Theorem 5.3. Let o« > n/p~.
(1) If (w3.1) and (w4.1) hold for all xy € G with the same constant @), then there
exists a constant C' > 0 such that
[ o f l3¢mr0micy < Cllf llaperoos(cy

for all f € HPL>=o ().
(2) If (w4.1) holds for all xy € G with the same constant (), then there exists a
constant C' > 0 such that

o fll3gzroomcy < Cllf llgperocwa)

for all f € HPO>(@).
(3) If (w3.1) holds for xq € G, then there exists a constant C' > 0 (which may
depend on z4) such that

||[af||ﬁleo’§°’n(G) S CH.fHﬁT{’;(;'}OOW(G)

=p(+),00,w
for all f € ”Hl{)mo} (G).
Proof. We give only a proof of assertion (1). Let f be a nonnegative measurable
function on G such that || f||ee) .00y < 1. We have only to show the inequality
[ Laf 1Ly Ay < Crlz,r) ™!
forallz € Gand 0 <r < dg. Set
= Ixe\B@ar) + XB@2)\B@r/a) + [XBa@rmay) = fi + fa+ f3,
as before. We note from Lemma 5.2 that
ool iy < Cllfoll ooy B2 s my < Cnlx,r)~
If z € A(z,r), then Lemma 3.1 gives
LAG <Co [ fy)dy< Onar)
B(z,r/4)
since & > n/p~, so that
1o fsll Los Ay < Cna, ) I Lo,y < Co(z,r)™
by Lemma 5.1. Moreover, Lemma 4.1 gives
LAG SC [ fo—yl* ") dy < Cofar)
G\B(z,2r)

since « > n/p~, so that

1o fill Lo Ay < Cn(a,r) Il Loy < Cn(z,r) ™

as required. O



400 Yoshihiro Mizuta and Takao Ohno

Corollary 5.4. Let o > n/p~ and let v, f and w be as in Corollary 3.5.

(1) When o — n/pt < v~ < vt < n(l—1/p™), there exists a constant C' > 0
such that

o fllzroew @) < Cllf laworeowa)
for all f € HPO=#(@).
(2) When o« — n/p™ < v~, there exists a constant C' > 0 such that
ol iy < Cll gy

for all f € HPO>o(@).

(3) When v(zg) < n(l — 1/p(xy)) for zy € G, there exists a constant C' > 0
(which may depend on xq) such that

a7 00,w < —p(-),00,w

for all | € Hpoy™(G).

6. Associate spaces of ’Hp( )’oo “(@)

Recall that for zy € G and measurable functions f on G,

Hf”ﬁ?{’ggfovw(g) = O<S;1<IZG w(o, t)HfHLP(‘)(G\B(xO,t))
and
2dg dt
||f||ﬂ?<-J,1»W(G) = / w(930>t)||f||Lp<-)(B(mo,t))7-
zo} 0

Remark 6.1. Let zy € G. Note here that if w(zg,0) = oo, then || f|| 7O <

oo if and only if f = 0 a.e. Hence we may assume that w(zg,0) = 0 and then w(zo, *)

is uniformly almost increasing on (0, c0) when Hf||ﬁp(.>,oo,w(G) < 0.
{zo}

By the above remark, in this section, suppose
w(z,0)=0 forall zedG.

For z € G and 0 < t < dg, we set

p*(B(x,t)) = sup p(y),
yEB(z,t)

as before. We define 1/¢q(z) =1 — 1/p(z).

Following Di Fratta and Fiorenza [17], we have the following Holder type inequal-
ity for log-type weights.

Theorem 6.2. For xy € GG, suppose
(w6.1) there exist constants b, () > 0 such that

t 2d —bp(zo)—1 d 2d —bp(zo)
/ <l g—) w(ig,r) 7P (BEot) < <Q (log TG) w(g, t) P
0

for all 0 < t < dg.
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Then there exists a constant C' > 0 such that

[ @@ de < Cllyoo ol

for all measurable functions f and g on GG, where

Hwo, ) = Q%%i)ame*

Proof. Let xq € G. Let f and g be nonnegative measurable functions on G such
that [|f|l,,e000m o < 1 and [|gllpe)cew,,y < 1. We have by Fubini’s theorem and
HIOL() T (G)

Holder’s inequality

| @) do
_ /Gf(x)g(x) <b (10g |I2_dc;0|)‘b/|j:0 <1og %)b 1%) de
:bAMG(émmf@m@gowwﬁf%o_im>(Mg%?)hl%

2dg 2 -b 20\t at
SC/)Hﬂmw%m log & log 296} &
0 \ 0\ t t

LrO) (B(xo.b))

Here it suffices to show

( 2 )‘*’
g | log
| : —930|

LrO) (B(ao,b))

for 0 < t < dg. In fact, we obtain

p(x)
/ g(x) (
Bot) \ (log(2de/t)) " w(xg, t)~! |7 — o
C/ (:L’) < )—bp(mo) "
Baow) \ (log(2de/t)) P w(a, t |IL'—5E0|
|m x0| —bp(z0)—1
<C / 9(z) dG) )
B(xzot) \ (log(2dg/t)) ™" w(wo,t T r
t 9 p(x) 9 —bp(zo)—1
< C/ / g(z)P@ <log ﬁ) (o, 1)P® <log ﬁ) PR
0 \JB(zo,t)\B(zo,r) t r r

QdG )—bp(m) dz

IN




402 Yoshihiro Mizuta and Takao Ohno

2 bp(zo) t 2 —bp(z0)—1
<C <10g %) w(a:o,t)p(:”‘))/ <log i)
0

(/ (2 ) ol g )
Bo\Bwo.r) \ NIl Lre) @\ B(zo.m) LPO/(G\B(zo,r)) r
2 bp(zo) t 2dg —bp(z0)—1 d
<C <10g —G) w(zo, t)p(:”‘))/ <log —) w(zq, )P (BEot) ar <C
0

by (P2), Lemma 2.1 and (w6.1). O

Power weights can be treated simpler than Theorem 6.2 in the following manner.

Theorem 6.3. For xy € G, suppose
(w6.2) there exist constants b, () > 0 such that

! b _ydr b 1
r’w(xg,r) — < Qt’w(zo, t)
0 r

for all 0 < t < dg.

Then there exists a constant C' > 0 such that
| @@ o < 1oy 19

for all measurable functions f and g on G, where 1(xg,7) = w(wg, )"

Proof. Let xq € G. Let f and g be nonnegative measurable functions on G such
that || fllzg0.1m .y < 1and ||g|l,p000 oy < 1. For b > 0, we have by Fubini’s theorem
{zo}  (G) Hizgy (@)

and Holder’s inequality

2
[ fwpwar<c | (/B (W)f<x>g<x>|a:—xo|bdx)t-b%

< C/o HfHL‘I(')(B(mo,t)) H9| ' _$0| HLp(-)(B(mo,t))t 7

First, we show that

b b — b
g1 =20l || s (a0 20 B0y S ' w(0,5) ™ < Cs"n(o,5)

for all 0 < s < dg. In fact, we obtain

p(z)
/ 9@ N ) gy
Blzo,25)\B(x0,5) \5°W(To, )7

p(z)
S
B(x0,25)\B(z0,5) gl Lr()(B(z0,25)\B(z0,s))

(x)
: (w(:co, 8)||gHLP(‘)(B(mo,2s)\B(gc0,s)))p de <C
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by (P2) and Lemma 2.1, which gives
Hg| —o| HLP( I (B(xo,t)) Z Hg| $0|bHLP(-)(B(:co,2*J’+1t)\B(:c072*jt))

! dr b
< C’/ rPw(xg, )T — < Cthw(zo, t) !
0 r
by (w6.2). Thus we obtain the required result. O

Theorem 6.4. Let n(-,-) € Q(G). For zy € G, suppose
(w6.3) there exists a constant () > 0 such that

2d dr
[ ) < Qi)
t

for all 0 < t < dg.
Then there exists a constant C > 0 such that

gty < Csup [ 17(@)a(w)]de

for all measurable functions f on GG, where the supremum is taken over all measurable
functions g on G such that ||g||x <1 with X = gl{)g’}oo’w(G).

Proof. Let zy € G. Let f be a nonnegative measurable function on G. To show
the claim, we may assume that

sup/|f x)|dr <1,

where the supremum is taken over all measurable functions g on G such that ||g||x <
1. Take a compact set K C G\ {xo}. Since LPV)(K) = {gxx: g € LPV(G)} C X,
fxx € L1(@), in view of [25] or [16, Theorem 3.2.13]. By (w6.3), we find

HfXKHﬂ‘g())}L’?(G) <0

and, moreover, we have by Lemma 2.2

Z 77(550> 2_j+1dG)F’j ~ HfXKHﬂ?gg'}l’"(G)’

JENo
where Fj = || fjll a0y q) [i = [XKNB(0,2-i+1ds) and No is the set of positive integers
J such that F; > 0. Set

g(x) = > nlx0, 279 de) | ()| F;|*D 7 f(x) [ F
JENo

Then we see that

19l v @\ Bosr)) < Z (o, 277 d) I £/ F51%O 72 f5/ Fyll 1o

JENQ,2 it dg>r
< Z n(z0, 277 dg) < Cw(xg, )"
j>1,2-itldg>r
for all 0 < r < dg by (w6.3) and hence
=p(+),00,w < .
||g||H7{J;3'} ’ (G) — C
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Consequently it follows that

| 1@ty de = 3 a2 de) [ 1@/ FI o)/ da

JENo
- Z 1'0,2 ]+1dG)F > CHfXKHH‘I()l"(G)
JENo

Hence, by the monotone convergence theorem, we have

sup [ F@)o(@)d > Cl gy
which gives the required mequahty. 0
Let X be a family of measurable functions on G with a norm || - ||x. Then the

associate space X’ of X is defined as the family of all measurable functions f on G
such that

Il = sup /|f )| de < oo,

geX: |lgllx <1
Theorems 6.2, 6.3 and 6.4 give the following result.

Corollary 6.5. For zy € G, suppose (w6.1) and (w6.3) hold. Then
77P(),00,w
(”H{m} @) =L@,
where n(zg,7) = (log2%2)" w(xo,r)_l. If (w6.2) and (w6.3) hold, then the same
conclusion is fulfilled with n(zy,r) = w(ze, )"t
For 0 < ¢ < o0, set

] ()7 UJ
HET Z %{xo} );

roEG
whose quasi-norm is defined by

() q,w = inf ill552(),q,w .
1Al 00002 ﬂzzjfj,{mj}CGEj:IIfJIIH?%}q ©

The Hoélder type inequality in Theorem 6.2 or 6.3, under the same assumptions,
implies

@@l e =3 [ @@l de < Ol X 1ol
J J !

so that
[ @t do < 1ol -

Theorem 6.4 gives the converse inequality.
Theorems 6.2, 6.3 and 6.4 give the following result.

Corollary 6.6. If (w6.1) and (w6.3) hold for all zy € G with the same constant
@, then

(ﬁp('),mvw(g))/ — 4a0(@),

where n(xo,7) = (log QdG) w(zg, 7)™t If (w6.2) and (w6.3) hold for all zy € G with
the same constant @, then the same conclusion is fulfilled with n(xg,r) = w(xe, 7)™ .
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Remark 6.7. For 0 < ¢ < o0, set
_p(')quw _p(')7Q7w
HG) = [ Hi) ™ (G)
roEG
and define the norm
=—p(+),q,w = su —p(+),q,w y
Hf”q_[p()q (G) SC()E% ||f“7_[1{’(13}q ©)
as usual. Then note that
gp(-),oo,w(G _ LPO(G), w(x,0) =0 for all x € G
{0}, w(z,0) = oo for all z € G.

For related results, we refer the reader to the paper by Di Fratta and Fiorenza
[17] with logarithmic weights, and the paper by Gagatishvili and Mustafayev [19]
with general weights.

Remark 6.8. If w(t) = (log(2dg/t))* with a > 0, then (w6.1) and (w6.3) hold
for n(t) = (log(2d¢/t))*"; and if w(t) = r* with a > 0, then (w6.2) and (w6.3) hold
for n(t) =t

. p(+),00,w
7. Associate spaces of H 37 (G)
Recall that for ¢ € G and measurable functions f on G,

fllpereow o~ = sup w(xo, )| fllrr0) (B2
gy = 590 a0, Ol Lty

and

2da dt
||f||gz{);-3,}1,w(g) :/0 w(xo,t)||f||Lp<->(G\B(xo,t)>7-

We have the Hélder type inequality for log type weights w.
Theorem 7.1. For xy € G, suppose
(w7.1) there exist constants ry,b,Q > 0 such that

cp/ log(2dg /)
2ro 2 b 2 b
/ (<lOg &) w(x()at)_l) (<lOg &) W(Z'O’T')_l
‘ t r
2\ " dr 2d\° o)
(et) " < (e et
r r

for all 0 <t <.
Then there exists a constant C > 0 such that

[ 1@t de < €l 910

p(0)

for all measurable functions f, g on G, where n(xg,r) = (log MTG)_I w(xg, )7L
Proof. Let xg € G. Let f and g be nonnegative measurable functions on G such
that || fll-e)1m, . < 1 and ||g],p()00w, -~ < 1. For b > 0 we have by Fubini’s theorem
Hioy " (@) Higoy (@)
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and Holder’s inequality

/G f()g(x) da

da
SC/ £l 2ot 6\ Bo.t))
0

2de \" 2d¢
log ——— P log -
FOL ] o) @\ Blao 1)

as in the proof of Theorem 6.2. It suffices to show

2 b
< (ue25) innn”

2d
=C (log TG) n(zo, t)

for all 0 < t < dg. In fact, we obtain for 0 < ry < dg

p(x) bp(z)
2d, P
/ g(xb) <log G ) dr
Bwo,ro)\B(zo.t) \ (10g(2dc/t))" w(zo, )~ |2 — ol

p(z) bp(xo)
C / g(xb) log — 246 ) da
B(zoro)\B(zo,t) \ (10g(2dg/t))” w(xg,t)~? |z — o
(
)

LrO) (G\B(0.1))

IN

IN

(2)
2ro 2d ’
< C’/ / g(x)P@ <log —G) w(xg, t)
i B(zo,r)\B(xo.t) t
2d bp(zo)— d
(log —) d:): !
r
_ cp/log(2da/T)
2dg )~ 20 2dc "
<C <log TG) W(ifo,t)p(m)/ (log TG) w(wo, 1)~
t
2dg ) " d
<1og —) (/ g(x)P@ dx) &
B(zo,r) r
_ cp/log(2da/r)
2dg\ P 210 2de \"
<C <log TG) W(ifo,t)p(%)/ (log TG) w(wo, 1)~
t

p(z) 90 bp(0)—1
2d
C / J :’;) / (log —G)
B(zor0)\B(zo,t) \ (log(2dg/t))” w(wo,t)~? o —aol r
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by (P2), condition (w7.1) and Lemmas 2.1 and 2.4, which gives

g | log
| : —930|

for all 0 < t < rg. Moreover,

2de \"
g | log 7| .

which completes the proof. O

2 b
< (625 iann”

LPC) (B(zo,r0)\B(z0,t))

<C HQHLP(')(G\B(mo,To)) < C’
Lr() (G\B(z0,r0))

Remark 7.2. We show that w(t) = (log(2dg/t))* with a > 0 satisfies (w7.1).
To show this, for b,c¢ > 0 one can find constants 7y, () > 0 such that

2rg 2d.-\ ¢/ og(2dc/r) 2d-\""1 g 24\ °
[ e () % oo
‘ r r t

for all 0 < t < rg and zy € G. In fact, first find 0 < rg < dg/e such that ¢ =
1/log(dg /7o) < b/2¢, and note for & = 2dge~10s@dc/D)? that

i 2d c/log(2dg /r) 2d b—1 d 2d¢ 2d b—1 d
/ (log —G) (log —G) & < C’/ (log —G) &
+ t T T ‘ T T

2dc\"
SQO%—f)

since (log(2dg/t))"*5®4¢/") < C for all t < r < { and

2ro 2d ¢/ log(2dg /r) 2d b—1 d 2d ce  p2rg 2d b—1 d
[ ) ) [ )
7 t r T t 7 T r
9 ce+b/2 9 b

SQQ%{?) SQQ%{?),

For power weights w, we obtain the following result.

as required.

Theorem 7.3. For xy € G, suppose
(w7.2) there exist constants b, ) > 0 such that

2a —b _pdr b -1
rw(z, )T — < Qrw(xg, t)
t T

forall 0 < t < dg.
Then there exists a constant C' > 0 such that

< A7a(- m p(+),00,w
| 1 @9(@) do < Cll ool lagoe o

for all measurable functions f, g on G, where n(xq,r) = w(xe, 7).
As in the proof of Theorem 6.4, we have the following result.

Theorem 7.4. Let n(-,-) € Q(G). For zg € G, suppose
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(w7.3) there exists a constant () > 0 such that

/ 77(1'0#’)@ < Qu(zo, t)~"
0 T

for all 0 < t < dg.
Then there exists a constant C > 0 such that

g, e < Ot / F(@)g(@)] da

for all measurable functions f on GG, where the supremum is taken over all measurable
functions g on G such that ||g||x <1 with X = ﬂpg’}w’w((}).

Theorems 7.1, 7.3 and 7.4 give the following result.
Corollary 7.5. If (w7.1) and (w7.3) hold for xy € G, then

-),00,w ! 17/ (')717
(202 (6)) = Hiy"(@),

where n(xg,r) = (log 2 )™ w(xo,r)_l. If (w7.2) and (w7.3) hold for xy € G, then
the same conclusion is fulfilled with n(zy, 1) = w(zg, )"

Remark 7.6. If w(t) = (log(2dg/t))" with a > 0, then (w7.1) and (w7.3) hold
for n(t) = (log(2de/t))"*"; and if w(t) = ¢~ with a > 0, then (w7.2) and (w7.3)
hold for n(t) =t

For 0 < ¢ < 0o, we may consider
WOR(G) = 30 HI(G)
ro€eG

whose quasi-norm is defined by

()aw = inf j (),q,w .
1 llo0ec f|=zjfj,{mj}cazj:”f]”“?wj}q (@

One can show that
Hp('),q,w(G) — L”(')(G).
For this, we only show the inclusion LPO)(G) c HPW4¥(@). Take f € LPO(G)

and r1,19 € G (ZL’l 7& 1'2). Write
.f = .fXB(x27|:c1—:c2\/2) + fXG\B(x2,\x1—x2|/2) = fl + .f2-
Then

2dG 1/(]
11l ) = ( [ @il dr/r)
)

x1—x2|/2

2dc 1/q
<o ([ wtewrrarir) = Alilwoe

|z1—22|/2
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and
2dc 1/q
q
g < ([ lonn)lfalioeme) i)
z2 |z1—22|/2
2dc 1/q
< [ fallror) (/ W(%,r)qdr/r) = Bl foll v (-
|z1—x2|/2
Hence

1 lgperaecy < Mftllgporae ) + 1 fallypoee gy < Allfillro@ + Bllf2llroe)
< (A4 B[ fllrora) < o0,

as required.

8. Associate spaces of ﬂ?g’}l’w(G)

Theorem 8.1. Let n(-,-) € Q(G), xp € G and X = ﬂ?gf’w(G). Suppose
(w8.1) there exists a constant () > 0 such that

2da dr
/ W(SC(J,?”)? < Qn(zo,t)"
t

forall 0 < t < dg.
Then there exists a constant C' > 0 such that

I lgreen) < Cl e

for all measurable functions f on G.

Proof. Let xo € G. First we show
(8.1) / F(@)g(x) dz < Cno, B) Mgl oo cnsen.ry /11
G\B(.’EQ,R)

for 0 < R < dg and nonnegative measurable functions f, g on G. To show this, we
consider

h = n(zo, R)gXc\B(o.R)/ 191l Lro) @\ B2, 1))
when 0 < gl o0) @\ B(ao,r)) < 00- Then we have by (w8.1)

2de dt 2de dt
/ W(ﬂfo,t)||h||Lp<-)(B(xo,t))7 < 77(930>R)/R W(CEOJ)? <C,
0

and hence
[ rwhe)de < Ol
G\B(z0,R)
Now we obtain

/ F(@)g() dz < Cn(zo, B gl o siao.iy | 1l
G\B(zo,R)

If we take g(z) = | () /| fl| a0 (@ Bao.r) | "™ ™ X\ Bzo.r) When 0 < || fl| ooy Blao.)) <
0o, then we have by (8.1) that
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G\B(zo,R)

< 077(1'0> R)_l||{f/HfHL‘I(')(G\B(:UO,R))}q(.)_lHLP(')(G\B(xo,R))||f/||fHL‘I(')(G\B(:UO,R))HX’
_ -1
< On(zo, B) " I fleo @ Baory ) I1fllxs
which shows

n(o, R)HfHLfI(')(G\B(:vo,R)) < Cllfllx-
Thus it follows that

Hf”ﬁ%;g’}"ovn(g) S CHfHX'v
as required. O

Corollary 8.2. If (w8.1) holds for o € G and (w6.1) holds for zy € G, n and
q(+), then

() Lw " Za()00m
(ﬂl{)xo} (G)> = Hiwy (G,
where 1(zo,7) = (log MTG)_lw(xo,r)_l. If (w8.1) holds for zy € G and (w6.2) holds
for xy € G, n and q(-), then the same conclusion is fulfilled with n(zg,r) = w(xo, )" .
As in Fiorenza—Rakotoson [18, Corollary 1|, we see that the associate and dual
spaces of ﬂl{)gg}l’w(G) coincides with each other.

Remark 8.3. If w(t) = (log(2dg/t)) " with @ > 1, then (w8.1) holds for
n(t) = (log(2de/t)) ™" and if w(t) =t~ with a > 0, then (w8.1) holds for n(t) = ¢°.

9. Associate space of ﬁ?g;’w(G)

As in the proof of Theorem 8.1, we have the following result.
Theorem 9.1. Let n(-,-) € Q(G), v € G and X = ﬁ?gif’w(G). Suppose
(w9.1) there exists a constant () > 0 such that

/ W(,’L‘O”f’)ﬁ < Qn(x()vt)_l
0 T

for all 0 < t < dg.
Then there exists a constant C > 0 such that

1706y < Ol

for all measurable functions f on G.

Corollary 9.2. If (w9.1) holds for o € G and (w7.1) holds for zy € G, n and
q(+), then

(), 1w / )00
(7 (@) =),

where 1(zo,7) = (log 2dTG)_lw(:co,r)_l. If (w9.1) holds for xy € G and (w7.2) holds

for zy € G, n and q(-), then the same conclusion is fulfilled with n(zo,r) = w(xg, 7)™ "
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Corollary 9.3. If (w9.1) holds for all o € G with the same constant () and
(w7.1) holds for n, q(-) and all xy € G with the same constant (), then

(ﬁp(->,1,w(G)>’ _ 1000 (@),

where 1(zo,7) = (log QdTG)_lw(xo, r)~L. If (w9.1) holds for all zy € G with the same
constant ) and (w7.2) holds for n, q(-) and all xy € G with the same constant (@,

then the same conclusion is fulfilled with n(zg,r) = w(xg, 7)™t

This corollary gives a characterization of Morrey spaces of variable exponents;
see also the paper by Gogatishvili and Mustafayev [19] for constant exponents.

Remark 9.4. If w(t) = (log(2dg/t))™ " with a > 0, then (w9.1) holds for
n(t) = (log(2dg/t))"; and if w(t) = t* with a > 0, then (w9.1) holds for n(t) = ¢t~

10. Grand and small Lebesgue spaces

Following Capone-Fiorenza [11], for 0 < # < 1 and measurable functions f on
the unit ball B = B(0, 1), we define the norm
9\ ~0/p(0)
Hf||gz{’(()-}>’ooﬂ(3) = os<1£1 <log ;) ||fHLP(‘)(B\B(O,t))

and
||f||LP(')*0’9(B) = Ssup Eg/p(O)HfHLP(-)*E(B)-
O<e<p——1
Theorem 10.1. There exists a constant C' > 0 such that
1 lrr-00m) < Cllf Nl omn )

for all measurable functions f on B.

N

Proof. Let f be a nonnegative measurable function on B such that || f Hﬁp(.),oo,e ® =
{0}

1 or
p(z)

9\ ~0/2(0)
(10.1) /B\B(o,t) <<log ;) f(x)) dr <1

forall0 <t < 1. For 0 < e < p” —1, we take 0 < s < 1 such that e = (p~ —
1)(log2)/log(2/s). We have

/ (770 £ ()" g < / Lde + / (PO (@)™ de < C.
B\B(0,s) B\B(0,s) B\B(0,s)

By multiplying (10.1) by (log(2/t))"""" for (large) b > 1, integration gives

/r < 2) Tt
log — —
0 t t
. ~b-1 ~0/p(0) P()
> / <log 2) / (log 2) f(x) dz dt
0 t BO.\BO.Y) t t
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r 2) —b—1 2 —0—cp/log(2/|z]) dt
> / <log —) / <log —) f(@)P@ dx | =
0 t B0,)\B(0,) t t
ol ;o ~b-1-0-en/log/lel) g
:/ f(x)p(:”) / <log —) — | dx
B(0,7) 0 t t

9\ "¢
>C / f ()P (1og —) dz,
B(0,r) |z

9 —b—0 9 —b
/ f(z)r@ (log —) de < C (log —)
B(0,r) || r
for0<r<1.

First consider the case when

9\ (P(O)—e)(0+b)/e
A= / <10g —) dx > 1.
B(0,s) |z]

For k > 1, we obtain

/ (89/p(0)f(x))p(x)—€ dr
B(0,s)

9\ (O+b)/=\ P e
< / gk 4=1/PO) <log —) dx
B(0,s) ||
0/p(0 ©
+/ (go/p(o)f(aj))p(x)—a € /p( )f(il?) "
B(0,s) ek A=1/70) (log(2/]x])) "/
9 (p(0)—€)(0+b) /e
<C { _kp(0) / A~ (@) -2)/p(0) (bg _)
B(0,s) |z

9 —(6+b)
+ €% A=/PO) / f ()@ <10g —) d:c}
B(0,s) ||

since e?®)=¢ < CeP) by (P2) for all z € B(0,s). Since log(2/t) < (2%/a)t™® for
0<t<landa=¢e/{2(p(0) —e)(@+b)}, we find

2a 1/(2a) 2a 1/(2a)
A< / (—\x|_“) dx < (—) / 2|72 doe < Ca™ V),
B(0,s) \ @ a B

so that we have by (P2)

or

dx

ATP@/PO) < oA~/ for 2 € B(0, s) and some constant ¢ > 0

and

AEIPO) < = (40),
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Hence we have

/ (Eﬁ/p(O)f(z))P(x)_e da
B(0,s)

o\ ((0)-2)(04)/2
< C{ 0) A= (P(0)~(1+¢)2)/p(0) / <log _) I
B(0,s) ||

—(6+b)
4 20 4</n(0) / F ()@ <1Og 3) df}
B(0,s) ||

9\ ~(6+0)
< C{gkp(O)Aa(HC)/p(O) + 9 Ae/p(0) / f(z)P® (log ﬂ) dx}
B(0,s) z

<C {gkp As(l—l—c /p(0) + 6€+bA€/p(0 } <C {gkp —(b+0)(14c) + 1}

If we take b and k such that kp(0) — (b+6)(1 + ¢) > 0, then the present case is
obtained.

If A <1, then we obtain by (P2)

/ ((‘,59/;0(0)f(x))17(:0)—E du
B(0,s)

(04b)(p(z)—€)/= £6/p(0) c
2 z)—e
§/ (log ) dx +/ (59/p(0)f(x))p( : ( f((elb ) dx
BOs\ 17| B(0,5) (log(2/lx1))

@) 9\ ~0+b)
<C+ / (77O f(x))" <log —) dx
B(0,s) ||

, - 9 \ ~(6+0) , 9\
<Cl1l+4+¢ f(x)P log — dr y <C<1+¢"(log— < C,
B(0,5) || s

which completes the proof. O

Given f on R", recall the definition of the symmetric decreasing rearrangement
of f by

(o) = /0 oy (@) db,

where E* = {x: |B(0, |z])| < |E|} and E¢(t) = {y: |f(y)| > t}; see Burchard [6].
Theorem 10.2. There exists a constant C > 0 such that

Hf HHP(})OM <C||f ||Lp() 0.0(B)

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that || f*|| o) -0.6m) <
1. Note that

(10.2) / (2770 ()" dz < 1
B\B(0,1/2)



414 Yoshihiro Mizuta and Takao Ohno

forall 0 <t <1lande=(p~ —1)(log2)/log(2/t). We have

/ (ge/p(())f*(x))p(w) da
B\B(0,)
<C ( !
B 1B(0,1) \ B(0,t/2)| Jpo.0)\B(o,t/2)
since f* is radially decreasing. Set
1

I = f*(x)dx
BOONBO.72)] uonsoys’

e
f*(;(;) d;L’) / €9p(m)/p(0)f* (x)p(m)_g de
B\B(0,t)

and

1 1/(p(0)=)

J p—
( |B(0,£) \ B(0,/2)] JB0.0\B0./2)
If J > 1, then we have by (10.2)
1
ro
|B(0,8) \ B(0,t/2)] Jp0.0\B(0,/2)

1
< J+ CJ—p(O)—l—s—l—l
1B(0,t) \ B(0,t/2)] Jp0,0\50,/2)

by (P2) since J < Ct=/7© (log(2/t))?"® for all 0 < t < 1 and if J < 1, then
1
1B(0,t) \ B(0,t/2)| J po.0)\B(0.¢/2)

s

* p(z)—e—1
[<J+C f (‘C)) dx

J
frz)P@=cde < CJ

I<1+ fz)P@==dz < C.

Hence
F<C (t—nE/p(O) (log(2/t))9€/p(0) n 1) <c
so that
/B\B(O,t) (5€/p(0)f*(x))p(x) dr < C Y. (ge/p(o)f*(x»p(x)—a v < C.

which completes the proof. O
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