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Abstract. In this paper, we consider the Herz–Morrey space H
p(·),q,ω
{x0}

(G) of variable exponent

consisting of all measurable functions f on a bounded open set G ⊂ R
n satisfying

‖f‖
H

p(·),q,ω

{x0}
(G)

=

(
ˆ 2dG

0

(
ω(x0, r)‖f‖Lp(·)(B(x0,r)\B(x0,r/2))

)q
dr/r

)1/q

< ∞,

and set Hp(·),q,ω(G) =
⋂

x0∈G H
p(·),q,ω
{x0}

(G).

Our first aim in this paper is to give the boundedness of the maximal and Riesz potential
operators in Hp(·),q,ω(G) when q = ∞.

In connection with H
p(·),q,ω
{x0}

(G) and Hp(·),q,ω(G), let us consider the families H
p(·),q,ω
{x0}

(G),

Hp(·),q,ω(G),H
p(·),q,ω

{x0} (G) and H̃p(·),q,ω(G). Following Fiorenza–Rakotoson [18], Di Fratta–Fiorenza

[17] and Gogatishvili–Mustafayev [19], we next discuss the duality properties among these Herz–

Morrey spaces.

1. Introduction

Let Rn denote the n-dimensional Euclidean space. We denote by B(x, r) the
open ball centered at x of radius r, and by |E| the Lebesgue measure of a measurable
set E ⊂ Rn.

It is well known that the maximal operator is bounded in the Lebesgue space
Lp(Rn) if p > 1 (see [34]). In [12], the boundedness of the maximal operator is still
valid by replacing the Lebesgue space by several Morrey spaces; the original one was
introduced by Morrey [30] to estimate solutions of partial differential equations; for
Morrey spaces, we also refer to Peetre [32] and Nakai [31].

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

‖Iα ∗ f‖
Lp♯(Rn)

≤ C‖f‖Lp(Rn)

for f ∈ Lp(Rn), 0 < α < n and 1 < p < n/α, where Iα is the Riesz kernel of order α
and 1/p♯ = 1/p−α/n (see, e.g. [2, Theorem 3.1.4]). Sobolev’s inequality for Morrey
spaces was given by Adams [1] (also [12]). Further, Sobolev’s inequality was also
studied on generalized Morrey spaces (see [31]). This result was extended to local
and global Morrey type spaces by Burenkov, Gogatishvili, Guliyev and Mustafayev
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[8] (see also [7, 9, 10]). The local Morrey type spaces are also called Herz spaces
introduced by Herz [23]. In our paper, those Morrey type spaces are referred to as
Herz–Morrey spaces.

In [13], Diening showed that the maximal operator is bounded on the variable
exponent Lebesgue space Lp(·)(Rn) if the variable exponent p(·), which is a constant
outside a ball, satisfies the locally log-Hölder condition and inf p(x) > 1 (see condition
(P2) in Section 2). In the mean time, variable exponent Lebesgue spaces were used to
discuss nonlinear partial differential equations with non-standard growth condition.
These spaces have attracted more and more attention, in connection with the study
of elasticity and fluid mechanics; see [16, 33]. On the other hand, variable exponent
Morrey or Herz versions were discussed in [4, 5, 24, 26, 29].

Let G be a bounded open set in Rn, whose diameter is denoted by dG. Let
ω(·, ·) : G× (0,∞) → (0,∞) be a uniformly almost monotone function on G× (0,∞)
satisfying the uniformly doubling condition. For x0 ∈ G, 0 < q ≤ ∞ and a variable

exponent p(·), we consider the Herz–Morrey space H
p(·),q,ω
{x0}

(G) of variable exponent

consisting of all measurable functions f on G satisfying

‖f‖
H

p(·),q,ω
{x0}

(G)
=

(
ˆ 2dG

0

(
ω(x0, r)‖f‖Lp(·)(B(x0,r)\B(x0,r/2))

)q
dr/r

)1/q

< ∞;

when q = ∞,

‖f‖
H

p(·),∞,ω
{x0}

(G)
= sup

0<r<dG

ω(x0, r)‖f‖Lp(·)(B(x0,r)\B(x0,r/2)) < ∞.

Set

Hp(·),q,ω(G) =
⋂

x0∈G

H
p(·),q,ω
{x0}

(G),

whose norm is defined by

‖f‖Hp(·),q,ω(G) = sup
x0∈G

‖f‖
H

p(·),q,ω
{x0}

(G)
.

In connection with H
p(·),q,ω
{x0}

(G), let us consider the families H
p(·),q,ω
{x0}

(G) and H
p(·),q,ω

{x0} (G)

of all functions f on G satisfying

‖f‖
H

p(·),q,ω
{x0}

(G)
=

(
ˆ 2dG

0

(
ω(x0, r)‖f‖Lp(·)(B(x0,r))

)q dr

r

)1/q

< ∞

and

‖f‖
H

p(·),q,ω
{x0}

(G)
=

(
ˆ 2dG

0

(
ω(x0, r)‖f‖Lp(·)(G\B(x0,r))

)q dr

r

)1/q

< ∞,

respectively. In the paper by Fiorenza and Rakotoson [18], the Herz–Morrey space

H
p(·),q,ω
{x0}

(G) is referred to as the generalized Lorentz space denoted by GΓ(p, q, ω).

Note here that

H
p(·),q,ω
{x0}

(G) ∪ H
p(·),q,ω

{x0} (G) ⊂ H
p(·),q,ω
{x0}

(G).

Similarly we consider the space

Hp(·),q,ω(G) =
⋂

x0∈G

H
p(·),q,ω
{x0}

(G),
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whose norm is defined by

‖f‖Hp(·),q,ω(G) = sup
x0∈G

‖f‖
H

p(·),q,ω
{x0}

(G)
.

Our first aim in this paper is to establish the boundedness of the maximal oper-
ator and the Riesz potential operator in Hp(·),∞,ω(G); when q < ∞, we refer to [27].
In the borderline case, Trudinger’s exponential integrability is discussed.

Next, following Di Fratta–Fiorenza [17] and Gogatishvili–Mustafayev [19] , we
study the duality properties among those Herz–Morrey spaces. In particular, we

show the associate spaces of H
p(·),∞,ω
{x0}

(G) and H
p(·),∞,ω

{x0}
(G), which give another char-

acterizations of Morrey spaces by Adams–Xiao [3] (see also [20]).

2. Preliminaries

Throughout this paper, let C denote various constants independent of the vari-
ables in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch for some constant
C > 1. Set A(x, r) = B(x, r) \B(x, r/2).

Consider a function p(·) on G such that

(P1) 1 < p− := infx∈G p(x) ≤ supx∈G p(x) =: p+ < ∞, and
(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤
cp

log(2dG/|x− y|)
for x, y ∈ G

with a constant cp ≥ 0; p(·) is referred to as a variable exponent.

We also consider the family Ω(G) of all positive functions ω(·, ·) : G× (0,∞) →
(0,∞) satisfying the following conditions:

(ω0) ω(x, 0) = limr→+0 ω(x, r) = 0 for all x ∈ G or ω(x, 0) = ∞ for all x ∈ G;
(ω1) ω(x, ·) is uniformly almost monotone on (0,∞), that is, there exists a constant

Q1 > 0 such that ω(x, ·) is uniformly almost increasing on (0,∞), that is,

ω(x, r) ≤ Q1ω(x, s) for all x ∈ G and 0 < r < s

or ω(x, ·) is uniformly almost decreasing on (0,∞), that is,

ω(x, s) ≤ Q1ω(x, r) for all x ∈ G and 0 < r < s;

(ω2) ω(x, ·) is uniformly doubling on (0,∞), that is, there exists a constant Q2 > 0
such that

Q−1
2 ω(x, r) ≤ ω(x, 2r) ≤ Q2ω(x, r) for all x ∈ G and r > 0; and

(ω3) there exists a constant Q3 > 0 such that

Q−1
3 ≤ ω(x, 1) ≤ Q3 for all x ∈ G.

Then one can find constants a, b > 0 and C > 1 such that

(2.1) C−1ra ≤ ω(x, r) ≤ Cr−b

for all x ∈ G and 0 < r ≤ dG.
For later use, it is convenient to note the following result, which is proved by

(P1), (P2) and (2.1).
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Lemma 2.1. There exists a constant C > 0 such that

ω(x, r)p(x) ≤ Cω(x, r)p(y)

whenever |x− y| < r ≤ dG.

For a locally integrable function f on G, set

‖f‖Lp(·)(G) = inf

{
λ > 0:

ˆ

G

(
|f(y)|

λ

)p(y)

dy ≤ 1

}
;

in what follows, set f = 0 outside G. We denote by Lp(·)(G) the family of locally
integrable functions f on G satisfying ‖f‖Lp(·)(G) < ∞.

Lemma 2.2. Let 0 < q < ∞. Then

(1)

ˆ 2dG

0

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ∼

∞∑

j=1

(
ω(x, 2−j+1dG)‖f‖Lp(·)(A(x,2−j+1dG))

)q
;

(2)

ˆ 2dG

0

(
ω(x, r)‖f‖Lp(·)(B(x,r))

)q
dr/r ∼

∞∑

j=1

(
ω(x, 2−j+1dG)‖f‖Lp(·)(B(x,2−j+1dG))

)q
;

and

(3)

ˆ 2dG

0

(
ω(x, r)‖f‖Lp(·)(G\B(x,r))

)q
dr/r ∼

∞∑

j=1

(
ω(x, 2−jdG)‖f‖Lp(·)(G\B(x,2−jdG))

)q

for all x ∈ G and measurable functions f on G.

Proof. We only prove (1), since the remaining assertions can be proved similarly.
Since A(x, r) ⊃ B(x, 3t/2) \B(x, t) when 3t/2 < r < 2t ≤ 2dG, we have by (ω1) and
(ω2) that

ˆ 2t

3t/2

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)‖f‖Lp(·)(B(x,3t/2)\B(x,t))

)q

and similarly, we have
ˆ 3t/2

t

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)‖f‖Lp(·)(B(x,t)\B(x,3t/4))

)q
.

Thus
ˆ 2t

t

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)‖f‖Lp(·)(B(x,3t/2)\B(x,3t/4))

)q
.

Therefore, letting 3t/2 = 2−j+1dG for a positive integer j, we see that
ˆ 2−j+2dG

2−jdG

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, 2−j+1dG)‖f‖Lp(·)(A(x,2−j+1dG))

)q
,

so that
ˆ 2dG

0

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r ≥

1

2

∞∑

j=1

ˆ 2−j+2dG

2−jdG

(
ω(x, r)‖f‖Lp(·)(A(x,r))

)q
dr/r

≥ C
∞∑

j=1

(
ω(x, 2−j+1dG)‖f‖Lp(·)(A(x,2−j+1dG))

)q
.

The converse inequality is easily obtained. �
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Further, we obtain the next result.

Lemma 2.3. Suppose 0 < q ≤ ∞. If ‖f‖hp(·),q,ω(G) ≤ 1, then there exists a

constant C > 0 such that ‖f‖hp(·),∞,ω(G) ≤ C, for h = H{x0},H{x0},H{x0},H,H.

By Lemma 2.1, we have the following result.

Lemma 2.4. There is a constant C > 0 such that
ˆ

B(x0,r)

|f(y)|p(y) dy ≤ Cω(x0, r)
−p(x0)

when x0 ∈ G, 0 < r < dG and ω(x0, r)‖f‖Lp(·)(B(x0,r)) ≤ 1.

Lemma 2.5. There is a constant C > 0 such that

1

|A(x0, r)|

ˆ

A(x0,r)

|f(y)| dy ≤ Cr−n/p(x0)ω(x0, r)
−1

when x0 ∈ G, 0 < r < dG and ω(x0, r)‖f‖Lp(·)(A(x0,r)) ≤ 1.

Proof. Fix x0 ∈ G and 0 < r < dG. Let f be a nonnegative measurable function
on G satisfying ω(x0, r)‖f‖Lp(·)(A(x0,r)) ≤ 1. Then we have by (P2) and Lemmas 2.1
and 2.4,

1

|A(x0, r)|

ˆ

A(x0,r)

f(y) dy

≤ r−n/p(x0)ω(x0, r)
−1 +

1

|A(x0, r)|

ˆ

A(x0,r)

f(y)

(
f(y)

r−n/p(x0)ω(x0, r)−1

)p(y)−1

dy

≤ r−n/p(x0)ω(x0, r)
−1 + C

(
r−n/p(x0)ω(x0, r)

−1
)1−p(x0) 1

|A(x0, r)|

ˆ

A(x0,r)

f(y)p(y) dy

≤ Cr−n/p(x0)ω(x0, r)
−1,

as required. �

3. Boundedness of the maximal operator for q = ∞

Let us consider the following conditions: let η ∈ Ω(G) and x0 ∈ G.

(ω3.1) There exists a constant Q > 0 such that
ˆ r

0

tn−n/p(x0)ω(x0, t)
−1dt

t
≤ Qrn−n/p(x0)η(x0, r)

−1

for all 0 < r ≤ dG; and
(ω3.2) there exists a constant Q > 0 such that

ˆ 2dG

r

t−n/p(x0)ω(x0, t)
−1dt

t
≤ Qr−n/p(x0)η(x0, r)

−1

for all 0 < r ≤ dG.

By the doubling condition on ω, one notes from (ω3.1) or (ω3.2) that

ω(x0, r)
−1 ≤ Cη(x0, r)

−1.
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Lemma 3.1. If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant Q,

then there is a constant C > 0 such that
ˆ

B(x,r)

|f(y)|dy ≤ Crn−n/p(x)η(x, r)−1

and
ˆ

G\B(x,r)

|f(y)||x− y|−ndy ≤ Cr−n/p(x)η(x, r)−1

for all x ∈ G, 0 < r ≤ dG and f with ‖f‖Hp(·),∞,ω(G) ≤ 1.

Proof. Let f be a nonnegative measurable function on G satisfying ‖f‖Hp(·),∞,ω(G) ≤
1. By Lemma 2.5 and (ω3.1), we have

ˆ

B(x,r)

f(y) dy =

∞∑

j=1

ˆ

A(x,2−j+1r)

f(y) dy ≤ C

∞∑

j=1

(2−jr)n−n/p(x)ω(x, 2−jr)−1

≤ Crn−n/p(x)η(x, r)−1.

Similarly, we obtain by use of Lemma 2.5 and (ω3.2)
ˆ

G\B(x,r)

|f(y)||x− y|−n dy ≤ C
∑

j≥1,2j−1r≤dG

(2jr)−n

ˆ

A(x,2jr)

f(y) dy

≤ C
∑

j≥1,2j−1r≤dG

(2jr)−n/p(x)ω(x, 2jr)−1

≤ Cr−n/p(x)η(x, r)−1,

as required. �

For a locally integrable function f on G, the Hardy–Littlewood maximal operator
M is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

ˆ

B(x,r)

|f(y)| dy;

recall that f = 0 outside G. Now we state the celebrated result by Diening [13].

Lemma 3.2. The maximal operator M is bounded in Lp(·)(G), that is, there

exists a constant C > 0 such that

‖Mf‖Lp(·)(G) ≤ C‖f‖Lp(·)(G).

Theorem 3.3. If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant

Q, then the maximal operator M is bounded from Hp(·),∞,ω(G) to Hp(·),∞,η(G).

Guliyev, Hasanov and Samko [21, 22] proved that if (ω3.2) holds for all x0 ∈ G

with the same constant Q, then the maximal operator M is bounded from Hp(·),∞,ω(G)

to Hp(·),∞,η(G) and if (ω3.1) holds for x0 ∈ G, then the maximal operator M is

bounded from H
p(·),∞,ω

{x0} (G) to H
p(·),∞,η

{x0} (G).

Proof of Theorem 3.3. Let f be a nonnegative measurable function on G such
that ‖f‖Hp(·),∞,ω(G) ≤ 1. For x ∈ G and 0 < r < dG, it suffices to show that

‖Mf‖Lp(·)(A(x,r)) ≤ Cη(x, r)−1.

For this purpose, set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,
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where χE denotes the characteristic function of E. We note from Lemma 3.2 that

‖Mf2‖Lp(·)(A(x,r)) ≤ C‖f2‖Lp(·)(G) ≤ C‖f2‖Lp(·)(B(x,2r)\B(x,r/4))

≤ C{‖f2‖Lp(·)(B(x,2r)\B(x,r)) + ‖f2‖Lp(·)(B(x,r)\B(x,r/2))

+ ‖f2‖Lp(·)(B(x,r/2)\B(x,r/4))}

≤ Cω(x, r)−1 ≤ Cη(x, r)−1.

For z ∈ A(x, r), Lemma 3.1 gives

Mf3(z) ≤ Cr−n

ˆ

B(x,r/4)

f(y) dy ≤ Cr−n/p(x)η(x, r)−1,

so that

‖Mf3‖Lp(·)(A(x,r)) ≤ Cr−n/p(x)η(x, r)−1‖1‖Lp(·)(A(x,r)) ≤ Cη(x, r)−1.

Moreover, Lemma 3.1 again gives

Mf1(z) ≤ C

ˆ

G\B(x,2r)

f(y)|x− y|−n dy ≤ Cr−n/p(x)η(x, r)−1

and hence

‖Mf1‖Lp(·)(A(x,r)) ≤ Cr−n/p(x)η(x, r)−1‖1‖Lp(·)(A(x,r)) ≤ Cη(x, r)−1,

as required. �

Remark 3.4. If the conditions on ω hold at x0 ∈ G only, then one can see that

M is bounded from H
p(·),∞,ω
{x0}

(G) to H
p(·),∞,η
{x0}

(G).

Corollary 3.5. For bounded functions ν(·) : G → (−∞,∞) and β(·) : G →
(−∞,∞), set ω(x, r) = rν(x)(log(2dG/r))

β(x). If −n/p+ < ν− ≤ ν+ < n (1− 1/p−),
then the maximal operator M is bounded in Hp(·),∞,ω(G).

Define

ω∗(x, r) =

(
ˆ r

0

ω(x, t)−1 dt

t

)−1

and

ω∗(x, r) =

(
ˆ 2dG

r

ω(x, t)−1 dt

t

)−1

for x ∈ G and 0 < r ≤ dG.

Theorem 3.6. (1) If ω∗(·, dG) is bounded in G, then Hp(·),∞,ω(G) ⊂ Hp(·)∞,ω∗(G).

(2) For each x0 ∈ G, H
p(·),∞,ω
{x0}

(G) ⊂ H
p(·)∞,ω∗

{x0}
(G).

Proof. Let f be a measurable function on G such that ‖f‖Hp(·),∞,ω(G) ≤ 1. We
show only (1), because (2) can be proved similarly.

For (1), we see that

‖f‖Lp(·)(B(x,r)) ≤

∞∑

j=1

‖f‖Lp(·)(A(x,2−j+1r)) ≤

∞∑

j=1

ω(x, 2−jr)−1 ≤ Cω∗(x, r)
−1

for all x ∈ G and 0 < r ≤ dG, as required. �
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Remark 3.7. Let ω(x, r) = (log(2dG/r))
β(x)+1 for a bounded function β(·) : G →

(−∞,∞).

(1) If ess infx∈G β(x) > 0, then

ω∗(x, r) ∼

(
log

2dG
r

)β(x)

for all x ∈ G and 0 < r < dG; and
(2) if β(x0) < 0 for x0 ∈ G, then

ω∗(x0, r) ∼

(
log

2dG
r

)β(x0)

for all 0 < r < dG.

Remark 3.8. Let ω(x, r) = rν(x) for a bounded function ν(·) : G → (−∞,∞).

(1) If ess supx∈G ν(x) < 0, then

ω∗(x, r) ∼ ω(x, r)

for all x ∈ G and 0 < r < dG; and
(2) if ν(x0) > 0 for x0 ∈ G, then

ω∗(x0, r) ∼ ω(x0, r)

for all 0 < r < dG.

Corollary 3.9. (1) Suppose (ω3.1) and (ω3.2) hold for all x0 ∈ G with the

same constant Q. If ω∗(·, dG) is bounded in G, then the maximal operator M

is bounded from Hp(·),∞,ω(G) to Hp(·),∞,ω∗(G).
(2) If (ω3.1) and (ω3.2) hold for x0 ∈ G, then the maximal operator M is bounded

from H
p(·),∞,ω
{x0}

(G) to H
p(·),∞,ω∗

{x0}
(G).

Remark 3.10. Let us consider a singular integral operator T associated with a
standard kernel k(x, y) in [15, Section 6.3] such that

|k(x, y)| ≤ K1|x− y|−n

for all x, y ∈ Rn and

‖Tf‖Lp(·)(Rn) ≤ K2‖f‖Lp(·)(Rn)

for all f ∈ Lp(·)(Rn).
If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant Q, then every

singular integral operator T is bounded from Hp(·),∞,ω(G) to Hp(·),∞,η(G).

4. Sobolev’s inequality for q = ∞

We consider the following condition: let η ∈ Ω(G) and x0 ∈ G.

(ω4.1) For 0 < α < n, there exists a constant Q > 0 such that
ˆ 2dG

r

tα−n/p(x)ω(x, t)−1dt

t
≤ Qrα−n/p(x)η(x, r)−1

for all 0 < r < dG.

As in the proof of Lemma 3.1, we have the following result.
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Lemma 4.1. If (ω4.1) holds for all x0 ∈ G with the same constant Q, then there

is a constant C > 0 such that
ˆ

G\B(x,r)

|x− y|α−n|f(y)| dy ≤ Crα−n/p(x)η(x, r)−1

for all x ∈ G, 0 < r < dG and f with ‖f‖Hp(·),∞,ω(G) ≤ 1.

For 0 < α < n, the Riesz potential Iαf is defined by

Iαf(x) = Iα ∗ f(x) =

ˆ

G

|x− y|α−nf(y) dy

for measurable functions f on G; and define

1

p♯(x)
=

1

p(x)
−

α

n
.

Let us begin with Sobolev’s inequality proved by Diening [14, Theorem 5.2]:

Lemma 4.2. If 0 < α < n/p+, then there exists a constant C > 0 such that

‖Iαf‖Lp♯(·)(G)
≤ C‖f‖Lp(·)(G)

for all f ∈ Lp(·)(G).

Our result is stated in the following:

Theorem 4.3. Let 0 < α < n/p+. If (ω3.1) and (ω4.1) hold for all x0 ∈ G with

the same constant Q, then there exists a constant C > 0 such that

‖Iαf‖Hp♯(·),∞,η(G)
≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

In view of Guliyev, Hasanov and Samko [21, 22], if (ω4.1) holds for all x0 ∈ G
with the same constant Q, then there exists a constant C > 0 such that

‖Iαf‖Hp♯(·),∞,η(G)
≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G) and if (ω3.1) holds for x0 ∈ G, then there exists a constant
C > 0 (which may depend on x0) such that

‖Iαf‖
H

p♯(·),∞,η
{x0}

(G)
≤ C‖f‖

H
p(·),∞,ω
{x0}

(G)

for all f ∈ H
p(·),∞,ω

{x0}
(G).

Proof of Theorem 4.3. Let f be a nonnegative measurable function on G such
that ‖f‖Hp(·),∞,ω(G) ≤ 1. For x ∈ G and 0 < r < dG, we have only to show the
inequality

‖Iαf‖Lp♯(·)(A(x,r))
≤ Cη(x, r)−1.

Set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,

as before. We note from Lemma 4.2 that

‖Iαf2‖Lp♯(·)(A(x,r))
≤ C‖f2‖Lp(·)(G) ≤ C‖f2‖Lp(·)(B(x,2r)\B(x,r/4))

≤ Cω(x, r)−1 ≤ Cη(x, r)−1.
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If z ∈ A(x, r), then Lemma 3.1 gives

Iαf3(z) ≤ Crα−n

ˆ

B(x,r/4)

f(y) dy ≤ Crα−n/p(x)η(x, r)−1,

so that

‖Iαf3‖Lp♯(·)(A(x,r))
≤ Crα−n/p(x)η(x, r)−1‖1‖

Lp♯(·)(A(x,r))
≤ Cη(x, r)−1.

Moreover, Lemma 4.1 gives

Iαf1(z) ≤

ˆ

G\B(x,2r)

|x− y|α−nf(y) dy ≤ Crα−n/p(x)η(x, r)−1,

so that

‖Iαf1‖Lp♯(·)(A(x,r))
≤ Crα−n/p(x)η(x, r)−1‖1‖

Lp♯(·)(A(x,r))
≤ Cη(x, r)−1,

as required. �

Corollary 4.4. Let 0 < α < n/p+ and let ν, β and ω be as in Corollary 3.5. If

α− n/p+ < ν− ≤ ν+ < n(1− 1/p−), then there exists a constant C > 0 such that

‖Iαf‖Hp♯(·),∞,ω(G)
≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

Corollary 4.5. Assume that 0 < α < n/p+.

(1) Suppose (ω3.1) and (ω4.1) hold for all x0 ∈ G with the same constant Q. If

ω∗(·, dG) is bounded in G, then the operator Iα is bounded from Hp(·),∞,ω(G)

to H
p♯(·),∞,ω∗

(G).
(2) If (ω3.1) and (ω4.1) hold for x0 ∈ G, then the operator Iα is bounded from

H
p(·),∞,ω
{x0}

(G) to H
p♯(·),∞,ω∗

{x0} (G).

5. Exponential integrability for q = ∞

Set
E1(x, t) = exp

(
tq(x)

)
− 1,

where 1/p(x) + 1/q(x) = 1. For a locally integrable function f on G, set

‖f‖LE1(G) = inf

{
λ > 0:

ˆ

G

E1

(
x,

|f(y)|

λ

)
dy ≤ 1

}
.

We denote by LE1(G) the class of locally integrable functions f on G satisfying
‖f‖LE1(G) < ∞.

In connection with Hp(·),q,ω(G), let us consider HE1,q,ω(G) of all functions f sat-
isfying

‖f‖HE1,q,ω(G) = sup
x0∈G

(
ˆ 2dG

0

(
ω(x0, r)‖f‖LE1(A(x0,r))

)q dr

r

)1/q

< ∞.

Similarly, we define HE1,q,ω(G) and H
E1,q,ω

{x0}
(G).

Lemma 5.1.

‖1‖LE1(B(x,r)) ∼ (log(1 + 1/r))−1/q(x)

for all x ∈ G and 0 < r < dG.
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Lemma 5.2. [28, Theorem 4.1, Corollary 4.2] If α ≥ n/p−, then there exists a

constant C > 0 such that

‖Iαf‖LE1(G) ≤ C‖f‖Lp(·)(G)

for all f ∈ Lp(·)(G).

Our result is stated in the following:

Theorem 5.3. Let α ≥ n/p−.

(1) If (ω3.1) and (ω4.1) hold for all x0 ∈ G with the same constant Q, then there

exists a constant C > 0 such that

‖Iαf‖HE1,∞,η(G) ≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).
(2) If (ω4.1) holds for all x0 ∈ G with the same constant Q, then there exists a

constant C > 0 such that

‖Iαf‖HE1,∞,η(G) ≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).
(3) If (ω3.1) holds for x0 ∈ G, then there exists a constant C > 0 (which may

depend on x0) such that

‖Iαf‖HE1,∞,η

{x0}
(G)

≤ C‖f‖
H

p(·),∞,ω
{x0}

(G)

for all f ∈ H
p(·),∞,ω

{x0} (G).

Proof. We give only a proof of assertion (1). Let f be a nonnegative measurable
function on G such that ‖f‖Hp(·),∞,ω(G) ≤ 1. We have only to show the inequality

‖Iαf‖LE1(A(x,r)) ≤ Cη(x, r)−1

for all x ∈ G and 0 < r < dG. Set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,

as before. We note from Lemma 5.2 that

‖Iαf2‖LE1(A(x,r)) ≤ C‖f2‖Lp(·)(B(x,2r)\B(x,r/4)) ≤ Cη(x, r)−1.

If z ∈ A(x, r), then Lemma 3.1 gives

Iαf3(z) ≤ Crα−n

ˆ

B(x,r/4)

f(y) dy ≤ Cη(x, r)−1

since α ≥ n/p−, so that

‖Iαf3‖LE1 (A(x,r)) ≤ Cη(x, r)−1‖1‖LE1(A(x,r)) ≤ Cη(x, r)−1

by Lemma 5.1. Moreover, Lemma 4.1 gives

Iαf1(z) ≤ C

ˆ

G\B(x,2r)

|x− y|α−nf(y) dy ≤ Cη(x, r)−1

since α ≥ n/p−, so that

‖Iαf1‖LE1(A(x,r)) ≤ Cη(x, r)−1‖1‖LE1(A(x,r)) ≤ Cη(x, r)−1,

as required. �
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Corollary 5.4. Let α ≥ n/p− and let ν, β and ω be as in Corollary 3.5.

(1) When α − n/p+ < ν− ≤ ν+ < n(1 − 1/p−), there exists a constant C > 0
such that

‖Iαf‖HE1,∞,ω(G) ≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).
(2) When α− n/p+ < ν−, there exists a constant C > 0 such that

‖Iαf‖HE1,∞,ω(G) ≤ C‖f‖Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).
(3) When ν(x0) < n(1 − 1/p(x0)) for x0 ∈ G, there exists a constant C > 0

(which may depend on x0) such that

‖Iαf‖HE1,∞,ω

{x0}
(G)

≤ C‖f‖
H

p(·),∞,ω
{x0}

(G)

for all f ∈ H
p(·),∞,ω

{x0} (G).

6. Associate spaces of H
p(·),∞,ω

{x0}
(G)

Recall that for x0 ∈ G and measurable functions f on G,

‖f‖
H

p(·),∞,ω
{x0}

(G)
= sup

0<t<dG

ω(x0, t)‖f‖Lp(·)(G\B(x0,t))

and

‖f‖
H

p(·),1,ω
{x0}

(G)
=

ˆ 2dG

0

ω(x0, t)‖f‖Lp(·)(B(x0,t))

dt

t
.

Remark 6.1. Let x0 ∈ G. Note here that if ω(x0, 0) = ∞, then ‖f‖
H

p(·),∞,ω
{x0}

(G)
<

∞ if and only if f = 0 a.e. Hence we may assume that ω(x0, 0) = 0 and then ω(x0, ·)
is uniformly almost increasing on (0,∞) when ‖f‖

H
p(·),∞,ω
{x0}

(G)
< ∞.

By the above remark, in this section, suppose

ω(x, 0) = 0 for all x ∈ G.

For x ∈ G and 0 < t < dG, we set

p+(B(x, t)) = sup
y∈B(x,t)

p(y),

as before. We define 1/q(x) = 1− 1/p(x).
Following Di Fratta and Fiorenza [17], we have the following Hölder type inequal-

ity for log-type weights.

Theorem 6.2. For x0 ∈ G, suppose

(ω6.1) there exist constants b, Q > 0 such that

ˆ t

0

(
log

2dG
r

)−bp(x0)−1

ω(x0, r)
−p+(B(x0,t))

dr

r
≤ Q

(
log

2dG
t

)−bp(x0)

ω(x0, t)
−p(x0)

for all 0 < t < dG.
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Then there exists a constant C > 0 such that

ˆ

G

|f(x)g(x)| dx ≤ C‖f‖
H

q(·),1,η
{x0}

(G)
‖g‖

H
p(·),∞,ω
{x0}

(G)

for all measurable functions f and g on G, where

η(x0, r) =

(
log

2dG
r

)−1

ω(x0, r)
−1.

Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ‖f‖

H
q(·),1,η
{x0}

(G)
≤ 1 and ‖g‖

H
p(·),∞,ω
{x0}

(G)
≤ 1. We have by Fubini’s theorem and

Hölder’s inequality

ˆ

G

f(x)g(x) dx

=

ˆ

G

f(x)g(x)

(
b

(
log

2dG
|x− x0|

)−b ˆ 2dG

|x−x0|

(
log

2dG
t

)b−1
dt

t

)
dx

= b

ˆ 2dG

0

(
ˆ

B(x0,t)

f(x)g(x)

(
log

2dG
|x− x0|

)−b

dx

)(
log

2dG
t

)b−1
dt

t

≤ C

ˆ 2dG

0

‖f‖Lq(·)(B(x0,t))

∥∥∥∥∥g
(
log

2dG
| · −x0|

)−b
∥∥∥∥∥
Lp(·)(B(x0,t))

(
log

2dG
t

)b−1
dt

t
.

Here it suffices to show

∥∥∥∥∥g
(
log

2dG
| · −x0|

)−b
∥∥∥∥∥
Lp(·)(B(x0,t))

≤ C

(
log

2dG
t

)−b

ω(x0, t)
−1

= C

(
log

2dG
t

)−b+1

η(x0, t)

for 0 < t < dG. In fact, we obtain

ˆ

B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)−bp(x)

dx

≤ C

ˆ

B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)−bp(x0)

dx

≤ C

ˆ

B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(
ˆ |x−x0|

0

(
log

2dG
r

)−bp(x0)−1
dr

r

)
dx

≤ C

ˆ t

0

(
ˆ

B(x0,t)\B(x0,r)

g(x)p(x)
(
log

2dG
t

)bp(x)

ω(x0, t)
p(x)

(
log

2dG
r

)−bp(x0)−1

dx

)
dr

r
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≤ C

(
log

2dG
t

)bp(x0)

ω(x0, t)
p(x0)

ˆ t

0

(
log

2dG
r

)−bp(x0)−1

·

(
ˆ

B(x0,t)\B(x0,r)

(
g(x)

‖g‖Lp(·)(G\B(x0,r))

)p(x)

‖g‖
p(x)

Lp(·)(G\B(x0,r))
dx

)
dr

r

≤ C

(
log

2dG
t

)bp(x0)

ω(x0, t)
p(x0)

ˆ t

0

(
log

2dG
r

)−bp(x0)−1

ω(x0, r)
−p+(B(x0,t))

dr

r
≤ C

by (P2), Lemma 2.1 and (ω6.1). �

Power weights can be treated simpler than Theorem 6.2 in the following manner.

Theorem 6.3. For x0 ∈ G, suppose

(ω6.2) there exist constants b, Q > 0 such that

ˆ t

0

rbω(x0, r)
−1dr

r
≤ Qtbω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that
ˆ

G

|f(x)g(x)| dx ≤ C‖f‖
H

q(·),1,η
{x0}

(G)
‖g‖

H
p(·),∞,ω
{x0}

(G)

for all measurable functions f and g on G, where η(x0, r) = ω(x0, r)
−1.

Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ‖f‖

H
q(·),1,η
{x0}

(G)
≤ 1 and ‖g‖

H
p(·),∞,ω
{x0}

(G)
≤ 1. For b > 0, we have by Fubini’s theorem

and Hölder’s inequality

ˆ

G

f(x)g(x) dx ≤ C

ˆ 2dG

0

(
ˆ

B(x0,t)

f(x)g(x)|x− x0|
b dx

)
t−bdt

t

≤ C

ˆ 2dG

0

‖f‖Lq(·)(B(x0,t))

∥∥g| · −x0|
b
∥∥
Lp(·)(B(x0,t))

t−bdt

t
.

First, we show that
∥∥g| · −x0|

b
∥∥
Lp(·)(B(x0,2s)\B(x0,s))

≤ Csbω(x0, s)
−1 ≤ Csbη(x0, s)

for all 0 < s < dG. In fact, we obtain

ˆ

B(x0,2s)\B(x0,s)

(
g(x)

sbω(x0, s)−1

)p(x)

|x− x0|
bp(x) dx

≤ C

ˆ

B(x0,2s)\B(x0,s)

(
g(x)

‖g‖Lp(·)(B(x0,2s)\B(x0,s))

)p(x)

·
(
ω(x0, s)‖g‖Lp(·)(B(x0,2s)\B(x0,s))

)p(x)
dx ≤ C
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by (P2) and Lemma 2.1, which gives

∥∥g| · −x0|
b
∥∥
Lp(·)(B(x0,t))

≤
∞∑

j=1

∥∥g| · −x0|
b
∥∥
Lp(·)(B(x0,2−j+1t)\B(x0,2−jt))

≤ C

ˆ t

0

rbω(x0, r)
−1dr

r
≤ Ctbω(x0, t)

−1

by (ω6.2). Thus we obtain the required result. �

Theorem 6.4. Let η(·, ·) ∈ Ω(G). For x0 ∈ G, suppose

(ω6.3) there exists a constant Q > 0 such that
ˆ 2dG

t

η(x0, r)
dr

r
≤ Qω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

‖f‖
H

q(·),1,η
{x0}

(G)
≤ C sup

g

ˆ

G

|f(x)g(x)| dx

for all measurable functions f on G, where the supremum is taken over all measurable

functions g on G such that ‖g‖X ≤ 1 with X = H
p(·),∞,ω

{x0}
(G).

Proof. Let x0 ∈ G. Let f be a nonnegative measurable function on G. To show
the claim, we may assume that

sup
g

ˆ

G

|f(x)g(x)| dx ≤ 1,

where the supremum is taken over all measurable functions g on G such that ‖g‖X ≤
1. Take a compact set K ⊂ G \ {x0}. Since Lp(·)(K) = {gχK : g ∈ Lp(·)(G)} ⊂ X,
fχK ∈ Lq(·)(G), in view of [25] or [16, Theorem 3.2.13]. By (ω6.3), we find

‖fχK‖Hq(·),1,η
{x0}

(G)
< ∞

and, moreover, we have by Lemma 2.2
∑

j∈N0

η(x0, 2
−j+1dG)Fj ∼ ‖fχK‖Hq(·),1,η

{x0}
(G)

,

where Fj = ‖fj‖Lq(·)(G), fj = fχK∩B(x0,2−j+1dG) and N0 is the set of positive integers
j such that Fj > 0. Set

g(x) =
∑

j∈N0

η(x0, 2
−j+1dG)|fj(x)/Fj |

q(x)−2fj(x)/Fj .

Then we see that

‖g‖Lp(·)(G\B(x0,r)) ≤
∑

j∈N0,2−j+1dG>r

η(x0, 2
−j+1dG)‖|fj/Fj |

q(·)−2fj/Fj‖Lp(·)(G)

≤
∑

j≥1,2−j+1dG>r

η(x0, 2
−j+1dG) ≤ Cω(x0, r)

−1

for all 0 < r < dG by (ω6.3) and hence

‖g‖
H

p(·),∞,ω
{x0}

(G)
≤ C.



404 Yoshihiro Mizuta and Takao Ohno

Consequently it follows that
ˆ

G

f(x)g(x) dx =
∑

j∈N0

η(x0, 2
−j+1dG)

ˆ

G

f(x)|fj(x)/Fj |
q(x)−2fj(x)/Fj dx

=
∑

j∈N0

η(x0, 2
−j+1dG)Fj ≥ C‖fχK‖Hq(·),1,η

{x0}
(G)

.

Hence, by the monotone convergence theorem, we have

sup
g

ˆ

G

f(x)g(x) dx ≥ C‖f‖
H

q(·),1,η
{x0}

(G)
,

which gives the required inequality. �

Let X be a family of measurable functions on G with a norm ‖ · ‖X . Then the
associate space X ′ of X is defined as the family of all measurable functions f on G
such that

‖f‖X′ = sup
g∈X : ‖g‖X≤1

ˆ

G

|f(x)g(x)| dx < ∞.

Theorems 6.2, 6.3 and 6.4 give the following result.

Corollary 6.5. For x0 ∈ G, suppose (ω6.1) and (ω6.3) hold. Then
(
H

p(·),∞,ω

{x0} (G)
)′

= H
q(·),1,η
{x0}

(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω6.2) and (ω6.3) hold, then the same

conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.

For 0 < q ≤ ∞, set

H̃p(·),q,ω(G) =
∑

x0∈G

H
p(·),q,ω

{x0}
(G),

whose quasi-norm is defined by

‖f‖H̃p(·),q,ω(G) = inf
|f |=

∑
j |fj |,{xj}⊂G

∑

j

‖fj‖Hp(·),q,ω
{xj}

(G)
.

The Hölder type inequality in Theorem 6.2 or 6.3, under the same assumptions,
implies
ˆ

G

|f(x)g(x)| dx =
∑

j

ˆ

G

|f(x)gj(x)| dx ≤ C‖f‖Hq(·),1,η(G)

∑

j

‖gj‖Hp(·),∞,ω
{xj}

(G)
,

so that
ˆ

G

|f(x)g(x)| dx ≤ C‖f‖Hq(·),1,η(G)‖g‖H̃p(·),∞,ω(G).

Theorem 6.4 gives the converse inequality.
Theorems 6.2, 6.3 and 6.4 give the following result.

Corollary 6.6. If (ω6.1) and (ω6.3) hold for all x0 ∈ G with the same constant

Q, then (
H̃p(·),∞,ω(G)

)′
= Hq(·),1,η(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω6.2) and (ω6.3) hold for all x0 ∈ G with

the same constant Q, then the same conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.
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Remark 6.7. For 0 < q ≤ ∞, set

H
p(·),q,ω

(G) =
⋂

x0∈G

H
p(·),q,ω

{x0} (G)

and define the norm

‖f‖
H

p(·),q,ω
(G)

= sup
x0∈G

‖f‖
H

p(·),q,ω
{x0}

(G)
,

as usual. Then note that

H
p(·),∞,ω

(G) =

{
Lp(·)(G), ω(x, 0) = 0 for all x ∈ G;

{0}, ω(x, 0) = ∞ for all x ∈ G.

For related results, we refer the reader to the paper by Di Fratta and Fiorenza
[17] with logarithmic weights, and the paper by Gagatishvili and Mustafayev [19]
with general weights.

Remark 6.8. If ω(t) = (log(2dG/t))
−a with a > 0, then (ω6.1) and (ω6.3) hold

for η(t) = (log(2dG/t))
a−1; and if ω(t) = ra with a > 0, then (ω6.2) and (ω6.3) hold

for η(t) = t−a.

7. Associate spaces of H
p(·),∞,ω

{x0}
(G)

Recall that for x0 ∈ G and measurable functions f on G,

‖f‖
H

p(·),∞,ω
{x0}

(G)
= sup

0<t<dG

ω(x0, t)‖f‖Lp(·)(B(x0,t))

and

‖f‖
H

p(·),1,ω
{x0}

(G)
=

ˆ 2dG

0

ω(x0, t)‖f‖Lp(·)(G\B(x0,t))

dt

t
.

We have the Hölder type inequality for log type weights ω.

Theorem 7.1. For x0 ∈ G, suppose

(ω7.1) there exist constants r0, b, Q > 0 such that

ˆ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)((
log

2dG
r

)b

ω(x0, r)
−1

)p(x0)

·

(
log

2dG
r

)−1
dr

r
≤ Q

((
log

2dG
t

)b

ω(x0, t)
−1

)p(x0)

for all 0 < t < r0.

Then there exists a constant C > 0 such that
ˆ

G

|f(x)g(x)| dx ≤ C‖f‖
H

q(·),1,η
{x0}

(G)
‖g‖

H
p(·),∞,ω
{x0}

(G)

for all measurable functions f , g on G, where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1.

Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ‖f‖

H
q(·),1,η
{x0}

(G)
≤ 1 and ‖g‖

H
p(·),∞,ω
{x0}

(G)
≤ 1. For b > 0 we have by Fubini’s theorem
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and Hölder’s inequality

ˆ

G

f(x)g(x) dx

≤ C

ˆ dG

0

‖f‖Lq(·)(G\B(x0,t))

∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,t))

(
log

2dG
t

)−b−1
dt

t
,

as in the proof of Theorem 6.2. It suffices to show

∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,t))

≤ C

(
log

2dG
t

)b

ω(x0, t)
−1

= C

(
log

2dG
t

)b+1

η(x0, t)

for all 0 < t < dG. In fact, we obtain for 0 < r0 < dG

ˆ

B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)bp(x)

dx

≤ C

ˆ

B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)bp(x0)

dx

≤ C

ˆ

B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(
ˆ 2r0

|x−x0|

(
log

2dG
r

)bp(x0)−1
dr

r

)
dx

≤ C

ˆ 2r0

t

(
ˆ

B(x0,r)\B(x0,t)

g(x)p(x)

((
log

2dG
t

)−b

ω(x0, t)

)p(x)

·

(
log

2dG
r

)bp(x0)−1

dx

)
dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

ˆ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)

·

(
log

2dG
r

)bp(x0)−1(ˆ

B(x0,r)

g(x)p(x) dx

)
dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

ˆ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)

·

((
log

2dG
r

)b

ω(x0, r)
−1

)p(x0)(
log

2dG
r

)−1
dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

((
log

2dG
t

)b

ω(x0, t)
−1

)p(x0)

≤ C
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by (P2), condition (ω7.1) and Lemmas 2.1 and 2.4, which gives
∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(B(x0,r0)\B(x0,t))

≤ C

(
log

2dG
t

)b

ω(x0, t)
−1

for all 0 < t < r0. Moreover,
∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,r0))

≤ C ‖g‖Lp(·)(G\B(x0,r0))
≤ C,

which completes the proof. �

Remark 7.2. We show that ω(t) = (log(2dG/t))
a with a > 0 satisfies (ω7.1).

To show this, for b, c > 0 one can find constants r0, Q > 0 such that
ˆ 2r0

t

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ Q

(
log

2dG
t

)b

for all 0 < t < r0 and x0 ∈ G. In fact, first find 0 < r0 < dG/e such that ε =

1/ log(dG/r0) < b/2c, and note for t̃ = 2dGe
−(log(2dG/t))1/2 that

ˆ t̃

t

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ C

ˆ 2dG

t

(
log

2dG
r

)b−1
dr

r

≤ Q

(
log

2dG
t

)b

since (log(2dG/t))
c/ log(2dG/r) ≤ C for all t < r < t̃ and

ˆ 2r0

t̃

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ C

(
log

2dG
t

)cεˆ 2r0

t̃

(
log

2dG
r

)b−1
dr

r

≤ Q

(
log

2dG
t

)cε+b/2

≤ Q

(
log

2dG
t

)b

,

as required.

For power weights ω, we obtain the following result.

Theorem 7.3. For x0 ∈ G, suppose

(ω7.2) there exist constants b, Q > 0 such that
ˆ 2dG

t

r−bω(x0, r)
−1dr

r
≤ Qr−bω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that
ˆ

G

|f(x)g(x)| dx ≤ C‖f‖
H

q(·),1,η
{x0}

(G)
‖g‖

H
p(·),∞,ω
{x0}

(G)

for all measurable functions f , g on G, where η(x0, r) = ω(x0, r)
−1.

As in the proof of Theorem 6.4, we have the following result.

Theorem 7.4. Let η(·, ·) ∈ Ω(G). For x0 ∈ G, suppose
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(ω7.3) there exists a constant Q > 0 such that

ˆ t

0

η(x0, r)
dr

r
≤ Qω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

‖f‖
H

{x0}

q(·),1,η(G)
≤ C sup

g

ˆ

G

|f(x)g(x)| dx

for all measurable functions f on G, where the supremum is taken over all measurable

functions g on G such that ‖g‖X ≤ 1 with X = H
p(·),∞,ω
{x0}

(G).

Theorems 7.1, 7.3 and 7.4 give the following result.

Corollary 7.5. If (ω7.1) and (ω7.3) hold for x0 ∈ G, then

(
H

p(·),∞,ω
{x0}

(G)
)′

= H
q(·),1,η

{x0}
(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω7.2) and (ω7.3) hold for x0 ∈ G, then

the same conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.

Remark 7.6. If ω(t) = (log(2dG/t))
a with a > 0, then (ω7.1) and (ω7.3) hold

for η(t) = (log(2dG/t))
−a−1; and if ω(t) = t−a with a > 0, then (ω7.2) and (ω7.3)

hold for η(t) = ta.

For 0 < q ≤ ∞, we may consider

H
∼

p(·),q,ω(G) =
∑

x0∈G

H
p(·),q,ω
{x0}

(G),

whose quasi-norm is defined by

‖f‖H
∼

p(·),q,ω(G) = inf
|f |=

∑
j |fj |,{xj}⊂G

∑

j

‖fj‖Hp(·),q,ω
{xj}

(G)
.

One can show that

H
∼

p(·),q,ω(G) = Lp(·)(G).

For this, we only show the inclusion Lp(·)(G) ⊂ H
∼

p(·),q,ω(G). Take f ∈ Lp(·)(G)

and x1, x2 ∈ G (x1 6= x2). Write

f = fχB(x2,|x1−x2|/2) + fχG\B(x2,|x1−x2|/2) = f1 + f2.

Then

‖f1‖Hp(·),q,ω
{x1}

(G)
≤

(
ˆ 2dG

|x1−x2|/2

(
ω(x1, r)‖f1‖Lp(·)(B(x1,r))

)q
dr/r

)1/q

≤ ‖f1‖Lp(·)(G)

(
ˆ 2dG

|x1−x2|/2

ω(x1, r)
qdr/r

)1/q

= A‖f1‖Lp(·)(G)
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and

‖f2‖Hp(·),q,ω
{x2}

(G)
≤

(
ˆ 2dG

|x1−x2|/2

(
ω(x2, r)‖f2‖Lp(·)(B(x2,r))

)q
dr/r

)1/q

≤ ‖f2‖Lp(·)(G)

(
ˆ 2dG

|x1−x2|/2

ω(x2, r)
qdr/r

)1/q

= B‖f2‖Lp(·)(G).

Hence

‖f‖H
∼

p(·),q,ω(G) ≤ ‖f1‖Hp(·),q,ω
{x1}

(G)
+ ‖f2‖Hp(·),q,ω

{x2}
(G)

≤ A‖f1‖Lp(·)(G) +B‖f2‖Lp(·)(G)

≤ (A+B)‖f‖Lp(·)(G) < ∞,

as required.

8. Associate spaces of H
p(·),1,ω
{x0}

(G)

Theorem 8.1. Let η(·, ·) ∈ Ω(G), x0 ∈ G and X = H
p(·),1,ω
{x0}

(G). Suppose

(ω8.1) there exists a constant Q > 0 such that
ˆ 2dG

t

ω(x0, r)
dr

r
≤ Qη(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

‖f‖
H

q(·),∞,η
{x0}

(G)
≤ C‖f‖X′

for all measurable functions f on G.

Proof. Let x0 ∈ G. First we show

(8.1)

ˆ

G\B(x0,R)

f(x)g(x) dx ≤ Cη(x0, R)−1‖g‖Lp(·)(G\B(x0,R))‖f‖X′

for 0 < R < dG and nonnegative measurable functions f, g on G. To show this, we
consider

h = η(x0, R)gχG\B(x0,R)/‖g‖Lp(·)(G\B(x0,R))

when 0 < ‖g‖Lp(·)(G\B(x0,R)) < ∞. Then we have by (ω8.1)
ˆ 2dG

0

ω(x0, t)‖h‖Lp(·)(B(x0,t))

dt

t
≤ η(x0, R)

ˆ 2dG

R

ω(x0, t)
dt

t
≤ C,

and hence
ˆ

G\B(x0,R)

f(x)h(x) dx ≤ C‖f‖X′.

Now we obtain
ˆ

G\B(x0,R)

f(x)g(x) dx ≤ Cη(x0, R)−1‖g‖Lp(·)(G\B(x0,R))‖f‖X′.

If we take g(x) = |f(x)/‖f‖Lq(·)(G\B(x0,R))|
q(x)−1χG\B(x0,R) when 0 < ‖f‖Lq(·)(G\B(x0,R)) <

∞, then we have by (8.1) that
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1 =

ˆ

G\B(x0,R)

{f(x)/‖f‖Lq(·)(G\B(x0,R))}
q(x)dx

≤ Cη(x0, R)−1‖{f/‖f‖Lq(·)(G\B(x0,R))}
q(·)−1‖Lp(·)(G\B(x0,R))‖f/‖f‖Lq(·)(G\B(x0,R))‖X′

≤ Cη(x0, R)−1
{
‖f‖Lq(·)(G\B(x0,R))

}−1
‖f‖X′,

which shows

η(x0, R)‖f‖Lq(·)(G\B(x0,R)) ≤ C‖f‖X′.

Thus it follows that

‖f‖
H

q(·),∞,η
{x0}

(G)
≤ C‖f‖X′,

as required. �

Corollary 8.2. If (ω8.1) holds for x0 ∈ G and (ω6.1) holds for x0 ∈ G, η and

q(·), then (
H

p(·),1,ω
{x0}

(G)
)′

= H
q(·),∞,η

{x0}
(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω8.1) holds for x0 ∈ G and (ω6.2) holds

for x0 ∈ G, η and q(·), then the same conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.

As in Fiorenza–Rakotoson [18, Corollary 1], we see that the associate and dual

spaces of H
p(·),1,ω
{x0}

(G) coincides with each other.

Remark 8.3. If ω(t) = (log(2dG/t))
−1/a with a > 1, then (ω8.1) holds for

η(t) = (log(2dG/t))
−1/a′ ; and if ω(t) = t−a with a > 0, then (ω8.1) holds for η(t) = ta.

9. Associate space of H
p(·),1,ω

{x0}
(G)

As in the proof of Theorem 8.1, we have the following result.

Theorem 9.1. Let η(·, ·) ∈ Ω(G), x0 ∈ G and X = H
p(·),1,ω

{x0}
(G). Suppose

(ω9.1) there exists a constant Q > 0 such that
ˆ t

0

ω(x0, r)
dr

r
≤ Qη(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

‖f‖
H

q(·),∞,η
{x0}

(G)
≤ C‖f‖X′

for all measurable functions f on G.

Corollary 9.2. If (ω9.1) holds for x0 ∈ G and (ω7.1) holds for x0 ∈ G, η and

q(·), then (
H

p(·),1,ω

{x0}
(G)
)′

= H
q(·),∞,η
{x0}

(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω9.1) holds for x0 ∈ G and (ω7.2) holds

for x0 ∈ G, η and q(·), then the same conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.
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Corollary 9.3. If (ω9.1) holds for all x0 ∈ G with the same constant Q and

(ω7.1) holds for η, q(·) and all x0 ∈ G with the same constant Q, then
(
H̃p(·),1,ω(G)

)′
= Hq(·),∞,η(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω9.1) holds for all x0 ∈ G with the same

constant Q and (ω7.2) holds for η, q(·) and all x0 ∈ G with the same constant Q,

then the same conclusion is fulfilled with η(x0, r) = ω(x0, r)
−1.

This corollary gives a characterization of Morrey spaces of variable exponents;
see also the paper by Gogatishvili and Mustafayev [19] for constant exponents.

Remark 9.4. If ω(t) = (log(2dG/t))
−a−1 with a > 0, then (ω9.1) holds for

η(t) = (log(2dG/t))
a; and if ω(t) = ta with a > 0, then (ω9.1) holds for η(t) = t−a.

10. Grand and small Lebesgue spaces

Following Capone–Fiorenza [11], for 0 < θ < 1 and measurable functions f on
the unit ball B = B(0, 1), we define the norm

‖f‖
H

p(·),∞,θ
{0} (B)

= sup
0<t<1

(
log

2

t

)−θ/p(0)

‖f‖Lp(·)(B\B(0,t))

and

‖f‖Lp(·)−0,θ(B) = sup
0<ε<p−−1

εθ/p(0)‖f‖Lp(·)−ε(B).

Theorem 10.1. There exists a constant C > 0 such that

‖f‖Lp(·)−0,θ(B) ≤ C‖f‖
H

p(·),∞,θ
{0} (B)

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that ‖f‖
H

p(·),∞,θ
{0} (B)

≤

1 or

(10.1)

ˆ

B\B(0,t)

((
log

2

t

)−θ/p(0)

f(x)

)p(x)

dx ≤ 1

for all 0 < t < 1. For 0 < ε < p− − 1, we take 0 < s < 1 such that ε = (p− −
1)(log 2)/ log(2/s). We have
ˆ

B\B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx ≤

ˆ

B\B(0,s)

1 dx+

ˆ

B\B(0,s)

(
εθ/p(0)f(x)

)p(x)
dx ≤ C.

By multiplying (10.1) by (log(2/t))−b−1 for (large) b > 1, integration gives

ˆ r

0

(
log

2

t

)−b−1
dt

t

≥

ˆ r

0

(
log

2

t

)−b−1


ˆ

B(0,r)\B(0,t)

((
log

2

t

)−θ/p(0)

f(x)

)p(x)

dx


 dt

t
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≥

ˆ r

0

(
log

2

t

)−b−1
(
ˆ

B(0,r)\B(0,t)

(
log

2

t

)−θ−cp/ log(2/|x|)

f(x)p(x) dx

)
dt

t

=

ˆ

B(0,r)

f(x)p(x)

(
ˆ |x|

0

(
log

2

t

)−b−1−θ−cp/ log(2/|x|) dt

t

)
dx

≥ C

ˆ

B(0,r)

f(x)p(x)
(
log

2

|x|

)−b−θ

dx,

or
ˆ

B(0,r)

f(x)p(x)
(
log

2

|x|

)−b−θ

dx ≤ C

(
log

2

r

)−b

for 0 < r < 1.
First consider the case when

A =

ˆ

B(0,s)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx ≥ 1.

For k > 1, we obtain
ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx

≤

ˆ

B(0,s)

(
εkA−1/p(0)

(
log

2

|x|

)(θ+b)/ε
)p(x)−ε

dx

+

ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε

(
εθ/p(0)f(x)

εkA−1/p(0) (log(2/|x|))(θ+b)/ε

)ε

dx

≤ C

{
εkp(0)

ˆ

B(0,s)

A−(p(x)−ε)/p(0)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx

+ εθAε/p(0)

ˆ

B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}

since εp(x)−ε ≤ Cεp(0) by (P2) for all x ∈ B(0, s). Since log(2/t) ≤ (2a/a)t−a for
0 < t < 1 and a = ε/{2(p(0)− ε)(θ + b)}, we find

A ≤

ˆ

B(0,s)

(
2a

a
|x|−a

)1/(2a)

dx ≤

(
2a

a

)1/(2a) ˆ

B

|x|−1/2 dx ≤ Ca−1/(2a),

so that we have by (P2)

A−p(x)/p(0) ≤ CA−1+cε/p(0) for x ∈ B(0, s) and some constant c > 0

and

Aε/p(0) ≤ Cε−(b+θ).
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Hence we have
ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx

≤ C

{
εkp(0)A−(p(0)−(1+c)ε)/p(0)

ˆ

B(0,s)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx

+ εθAε/p(0)

ˆ

B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}

≤ C

{
εkp(0)Aε(1+c)/p(0) + εθAε/p(0)

ˆ

B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}

≤ C
{
εkp(0)Aε(1+c)/p(0) + εθ+bAε/p(0)

}
≤ C

{
εkp(0)−(b+θ)(1+c) + 1

}
.

If we take b and k such that kp(0)− (b+ θ)(1 + c) ≥ 0, then the present case is
obtained.

If A ≤ 1, then we obtain by (P2)

ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx

≤

ˆ

B(0,s)

(
log

2

|x|

)(θ+b)(p(x)−ε)/ε

dx+

ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε

(
εθ/p(0)f(x)

(log(2/|x|))(θ+b)/ε

)ε

dx

≤ C +

ˆ

B(0,s)

(
εθ/p(0)f(x)

)p(x)
(
log

2

|x|

)−(θ+b)

dx

≤ C

{
1 + εθ

ˆ

B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}
≤ C

{
1 + εθ

(
log

2

s

)−b
}

≤ C,

which completes the proof. �

Given f on Rn, recall the definition of the symmetric decreasing rearrangement
of f by

f ⋆(x) =

ˆ ∞

0

χEf (t)⋆(x) dt,

where E⋆ = {x : |B(0, |x|)| < |E|} and Ef(t) = {y : |f(y)| > t}; see Burchard [6].

Theorem 10.2. There exists a constant C > 0 such that

‖f ⋆‖
H

p(·),∞,θ
{0} (B)

≤ C‖f ⋆‖Lp(·)−0,θ(B)

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that ‖f ⋆‖Lp(·)−0,θ(B) ≤
1. Note that

(10.2)

ˆ

B\B(0,t/2)

(
εθ/p(0)f ⋆(x)

)p(x)−ε
dx ≤ 1
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for all 0 < t < 1 and ε = (p− − 1)(log 2)/ log(2/t). We have
ˆ

B\B(0,t)

(
εθ/p(0)f ⋆(x)

)p(x)
dx

≤ C

(
1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x) dx

)ε ˆ

B\B(0,t)

εθp(x)/p(0)f ⋆(x)p(x)−ε dx

since f ⋆ is radially decreasing. Set

I =
1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x) dx

and

J =

(
1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x)p(x)−ε dx

)1/(p(0)−ε)

.

If J ≥ 1, then we have by (10.2)

I ≤ J + C
1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x)

(
f ⋆(x)

J

)p(x)−ε−1

dx

≤ J + CJ−p(0)+ε+1 1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x)p(x)−ε dx ≤ CJ

by (P2) since J ≤ Ct−n/p(0) (log(2/t))θ/p(0) for all 0 < t < 1 and if J ≤ 1, then

I ≤ 1 +
1

|B(0, t) \B(0, t/2)|

ˆ

B(0,t)\B(0,t/2)

f ⋆(x)p(x)−ε dx ≤ C.

Hence

Iε ≤ C
(
t−nε/p(0) (log(2/t))θε/p(0) + 1

)
≤ C,

so that
ˆ

B\B(0,t)

(
εθ/p(0)f ⋆(x)

)p(x)
dx ≤ C

ˆ

B\B(0,t/2)

(
εθ/p(0)f ⋆(x)

)p(x)−ε
dx ≤ C,

which completes the proof. �
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