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Abstract. We consider the length spectrum metric dL in infinite dimensional Teichmüller

space T (R0). It is known that dL defines the same topology as that of the Teichmüller metric

dT on T (R0) if R0 is a topologically finite Riemann surface. In 2003, Shiga proved that dL and

dT define the same topology on T (R0) if R0 is a topologically infinite Riemann surface which can

be decomposed into pairs of pants such that the lengths of all their boundary components except

punctures are uniformly bounded by some positive constants from above and below. In this paper,

we extend Shiga’s result to Teichmüller spaces of Riemann surfaces satisfying a certain geometric

condition.

1. Introduction

Let R0 be a Riemann surface of infinite topological type. We consider a pair
(R, f) of a Riemann surface R and a quasiconformal mapping f : R0 → R. Two such
pairs (R1, f1) and (R2, f2) are called equivalent if f2 ◦ f

−1
1 : R1 → R2 is homotopic to

some conformal mapping, where the homotopy map does not necessarily keep points
of ideal boundary ∂R0 fixed. We denote the equivalence class of (R, f) by [R, f ].
The set of all equivalence classes is called the Teichmüller space of R0; we denote it
by T (R0).

The Teichmüller space T (R0) has a complete metric dT called the Teichmüller

metric which is defined by

dT ([R1, f1], [R2, f2]) = inf
f
logK(f),

where the infimum is taken over all quasiconformal mappings from R1 to R2 that is
homotopic to f2 ◦ f

−1
1 and K(f) is the maximal dilatation of f .

We introduce another metric on T (R0). Let C(R0) be the set of non-trivial and
non-peripheral closed curves in R0. We define the length spectrum metric dL by

dL([R1, f1], [R2, f2]) = sup
α∈C(R0)
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where ℓRi
(fi(α)) is the hyperbolic length of the closed geodesic on Ri which is freely

homotopic to fi(α).

Proposition 1.1. [15, Proposition 3.5] Let S(R0) be the set of simple closed
curves in R0. Then

dL([R1, f1], [R2, f2]) = sup
α∈S(R0)
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In 1972, Sorvali [14] defined dL, and showed the following.

Lemma 1.2. [14] For any [R1, f1], [R2, f2] ∈ T (R0),

dL([R1, f1], [R2, f2]) ≤ dT ([R1, f1], [R2, f2])

holds.

Sorvali conjectured that dL defines the same topolpgy as that of dT on T (R0) if
R0 is a topologically finite Riemann surface. In 1986, Li [9] proved that the statement
holds in the case where R0 is a compact Riemann surface with genus ≥ 2. In 1999,
Liu [10] proved that Sorvali’s conjecture is true and he asked whether or not the
statement holds for any Riemann surface of infinite type. To this question, Shiga
[13] gave a negative answer, that is, he showed that there exists a Riemann surface
R0 of infinite type such that dL and dT do not define the same topology on T (R0).
Also, he gave a sufficient condition for these metrics to define the same topology on
T (R0) as follows.

Theorem 1.3. [13] Let R0 be a Riemann surface. Assume that there exists a
pants decomposition R0 =

⋃

∞

k=1 Pk satisfying the following conditions.

(1) Each connected component of ∂Pk (k = 1, 2, 3 . . .) is either a puncture or a
simple closed geodesic of R0.

(2) There exists a constant M > 0 such that if α is a boundary curve of some Pk

then

0 < M−1 < lR0
(α) < M

holds.

Then dL defines the same topology as that of dT on T (R0).

In our previous paper [8], we showed that the converse of Shiga’s theorem is not
true, that is, there exists a Riemann surface R0 such that R0 does not satisfy Shiga’s
condition, but the two metrics define the same topology on T (R0). In this paper, we
generalize the example and extend Shiga’s theorem as follows.

Theorem 1.4. Let R0 be a Riemann surface. Assume that there exists a con-
stant M > 0 and a decomposition R0 = S ∪ (R0 − S) such that

(1) S is an open subset of R0 whose relative boundary consists of simple closed
geodesics and each connected component of S has a pants decomposition
satisfying the same condition as that of Shiga’s theorem for M , and

(2) R0 − S is of genus 0 and dR0
(x, S) < M for any x ∈ R0 − S, where dR0

(·, ·) is
the hyperbolic distance in R0.

Then dL defines the same topology as that of dT on T (R0).

In Section 2, we show that there exists a Riemann surface such that it satisfies the
condition of Theorem 1.4 but it does not satisfy that of Theorem 1.3. In Section 3,
we introduce lemmas to prove Theorem 1.4. In Section 4, we prove Theorem 1.4.

In Section 5, we consider Riemann surfaces with bounded geometry. Here we say
that a Riemann surface R0 has (M-)bounded geometry if it satisfies the following
condition: There exists a constant M > 0 such that any closed geodesic has the
length greater than 1/M and for any x ∈ R0, there exists a closed curve based on x
with the length less than M .

As a corollary of Theorem 1.4, we obtain the following:
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Corollary 1.5. Suppose that R0 is of finite genus and R0 has bounded geometry.
Then dL define the same topology as that of dT on T (R0).

Remark 1. We consider surfaces after cutting the flares if such cylindrical ends
exist. We assume that the unique complete hyperbolic metric on R0 \ ∂R0 that
uniformizes the complex structure on the surface satisfies the following condition:
Let {Pk} be a pants decomposition of R0. If we replace each boundary component
of Pk (k = 1, 2, . . .) with the closed geodesic in its homotopy class, then Pk becomes
a sphere with three holes, where a hole is either a boundary component which is a
closed geodesic or a cusp.

Acknowledgement. The author would like to thank Professor Hiroshige Shiga
and Professor Katsuhiko Matsuzaki for their valuable comments and suggestions.

2. Examples

First, we give examples of Riemann surfaces satisfying the conditions in Theo-
rem 1.4 and Corollary 1.5.

Example 1. Any Riemann surface satisfying Shiga’s condition satisfies the con-
dition in Theorem 1.4. Hence, in particular, any Riemann surface of finite topological
type satisfies it.

Example 2. The Riemann surface R0 constructed in our previous paper [8]
satisfies conditions in both Theorem 1.4 and Cororally 1.5. For convenience of the
reader, we show the construction.

Let Γ be a hyperbolic triangle group of signature (2,4,8) acting on the unit disk
D and let P be a fundamental domain for Γ with angles (π, π/4, π/4, π/4). (See the
left in Figure 1.) Let O, a, b, c denote the vertices of P , where the angle at O is π.
Now, take a sufficiently small number ε > 0. Let b′ the point on the segment [Ob]
whose hyperbolic distance from b is ε. Similarly, we take a′ and c′ in P . (See the
middle in Figure 1.)

We define a Riemann surface R0 by removing the Γ-orbits of a′, b′, c′ from the
unit disk D. (See the right in Figure 1.)

Figure 1. Left: Tessellation by the (2,4,8) group. Middle: Points a′, b′, c′ in P . Right: A

Riemann surface R0 = D− {γ(a′), γ(b′), γ(c′) | γ ∈ Γ}.

It is not hard to see that the surface R0 does not satisfy Shiga’s condition (cf.
Section 2 in [8]). However, it satisfies the above conditions. Indeed, we decompose R0

into eight times punctured disks and a multiply-connected domain. (See Figure 2.)
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Figure 2. R0 = {punctured disks} ∪ {a multiply-connected domain}.

Let Si be a punctured disk and put S = ∪∞
i=1Si. Then we obtain a decomposition

in Theorem 1.4: R0 = S ∪ (R0−S). On the other hand, R0 satisfies the condition in
Corollary 1.5 obviously.

Also, we can construct a Riemann surfaces satisfying Theorem 1.4 and Corol-
lary 1.5 by replacing a hyperbolic triangle group Γ with an arbitrary Fuchsian group
with a compact fundamental region.

Example 3. In Example 2, R0 is a Riemann surface of genus 0 with ∞ punctures
and 1 flare. By tinkering with R0, we can construct Riemann surfaces of genus ≥ 1
with two or more flares which satisfies the conditions of Theorem 1.4. For example,
in Example 2, we replace a punctured disk Si with a pair of pants. (See the left in
Figure 3.) We regard it as a block and make a copy of it and glue them. (See the right
in Figure 3.) Then we obtain a Riemann surface X0 of genus 1 with ∞ punctures
and two flares. Obviously X0 satisfies Theorem 1.4 and Corollary 1.5. Hence, in
the similar way, we can construct Riemann surfaces of genus ∞ with ∞ flares which
satisfies Theorem 1.4.

Figure 3. Left: A block obtained by replacing Si in Example 2 with a pair of pants. Right: A

Riemann surface X0 of genus 1 with ∞ punctures and two flares.

3. Lemmas

In this section, we present some lemmas to prove Theorem 1.4 and Corollary 1.5.

Lemma 3.1. [4, Lemma 3.1] Let T1, T2 ⊂ D be two hyperbolic triangles with
sides (a1, b1, c1) and (a2, b2, c2) respectively. Suppose all their angles are bounded
below by θ > 0 and

ε := max(| log
a1
a2

|, | log
b1
b2
|, | log

c1
c2
|) ≤ A.

Then there is a constant C = C(θ, A) and a (1 + Cε)-quasiconformal mapping
ϕ : T1 → T2 such that ϕ maps each vertex to the corresponding vertex and ϕ is
affine on the edge of T1.
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Lemma 3.2. [4, Corollary 3.3] Let H,H ′ ⊂ D be two hyperbolic hexagons with
sides (a1, . . . , a6) and (b1, . . . , b6) respectively. Suppose a1, . . . , a6 and b1, . . . , b6 are
≤ B and are comparable with a constant B. Also assume that three alternating
angles of H and the corresponding angles of H ′ are π/2 and the remaining angles are
bounded below by θ > 0 and above by π − θ. If ε = maxi | log ai/bi| ≤ 2, then there
is a constant C = C(θ, B) and a (1 +Cε)-quasiconformal mapping ϕ : H → H ′ such
that ϕ maps each vertex to the corresponding vertex and ϕ is affine on the edge of
H .

Lemma 3.3. [4, Lemma 6.2] Let P1and P2 be pants with boundary lengths
(a1, b1, c1) and (a2, b1, c1) respectively. Suppose a1, a2, b1, c1 ≤ L (punctures count as
length zero). Assume that ε := | log a1/a2| ≤ 2, where we define | log a1/a2| = 0 if
a1 = a2 = 0 and | log a1/a2| = +∞ if one is zero and the other is not. Then there is
a constant C = C(L) and a (1 +Cε)-quasiconformal mapping ϕ : P1 → P2 such that
ϕ is affine on each of the boundary components.

Also we note the following lemma.

Lemma 3.4. Let R0 be a Riemann surface. Suppose α1 and α2 are disjoint
simple closed geodesics . Let β12 be a simple arc connecting α1 and α2. Then there
exists a geodesic β⋆

12 connecting α1 and α2 such that

(1) β12 and β⋆
12 are homotopic, where the homotopy map may not keep end points

of β12 and β∗
12 fixed;

(2) β⋆
12 is orthogonal to α1 and α2;

(3) the length of β⋆
12 is determined by lengths of three simple closed geodesics

which are homotopic to α1, α2 and α12 := α1 · β12 · α2 · β
−1
12 .

Proof. There exists a closed geodesic in R0 homotopic to α12. We denote it by
[α12]. Consider a pair of pants P12 bounded by α1, α2 and [α12]. There are three lines
which divide P12 into two isometric right-hexagons. Let β⋆

12 be a line connecting α1

and α2 in those. We denote the length of β⋆
12 by ℓR0

(β⋆
12). Then, by Theorem 7.19.2

of [3],

cosh ℓR0
(β⋆

12) =
cosh(1

2
ℓR0

(α12)) + cosh(1
2
ℓR0

(α1)) cosh(
1
2
ℓR0

(α2))

sinh(1
2
ℓR0

(α1)) sinh(
1
2
ℓR0

(α2))

holds. �

In the following lemma, for R0 − S in Theorem 1.4 we may consider a decompo-
sition by right-hexagons with a bounded condition.

Lemma 3.5. Let R0 be a Riemann surface satisfying the condition of Theo-
rem 1.4. Then R0 − S can be decomposed hyperbolic right-hexagons {Hj}

∞
j=1 with

sides of lengths less than 2M .

Proof. By assumption, we can decompose S into domains {Si}
∞
i=0 such that

∂Si ∩ (R0 − S) (i = 0, 1, 2, . . .) is a closed geodesic with the length less than M . For
Si, we consider the following domain:

Di := {x ∈ R0 − S | dR0
(x, Si) ≤ dR0

(x, Sj)(∀j 6= i)}.

Di is contained in M-neighborhood of Si, and Di∪Si is convex. The boundary of Di

consists of two kinds of connected components; the boundary of Si and the boundary
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of geodesic polygon with finitely many sides. We denote the polygon with a hole by
Wi (i.e. Wi := ∂Di).

Figure 4. Wi := ∂Di.

Wi is bounded on each side by another Wj. We show that two vertices of Wi

coincides with those of Wj if Wi is bounded by Wj . Assume that there exists a side wi

with vertices vi, v
′
i of Wi such that, for a side wj with vertices vj , v

′
j of Wj , wj ⊂ wi but

0 < dR0
(vi, vj) < dR0

(vi, v
′
j). (See Figure 5.) Then there exists a polygon with a hole

Wk which has a side wk∩wi−wj 6= ∅. For a domain Sk in {Si}
∞
i=0 with ∂Sk∩Wk 6= ∅,

we take a line bi,k := {x ∈ R0 | dR0
(x, Si) = dR0

(x, Sk)}. bi,k is a perpendicular
bisector of the shortest geodesic segment [li,k] connecting ∂Si and ∂Sk. (Note that
[li,k] is orthogonal to ∂Si and ∂Sk.) By the definition of domains {Di}, wk ⊂ bi,k.
Similarly we take another perpendicular bisector bi,j of the shortest geodesic segment
[li,j] connecting ∂Si and ∂Sj . Then bi,k = bi,j since they are geodesics and wk ⊂
wi ⊂ bi,j . Take four points pi,k := ∂Si ∩ [li,k], mi,k := [li,k] ∩ bi,k, pi,j := ∂Si ∩ [li,j ],
mi,j := [li,j ] ∩ bi,j and consider a quadrilateral with vertices {pi,k, mi,k, mi,j, pi,j}.
Then we obtain a right-angled quadrilateral. However there does not exist such a
hyperbolic quadrilateral. Hence dR0

(vi, vj) = 0, i.e. vi = vj. Similarly v′i = v′j .

Figure 5. vi 6= vj .

Now, take an arbitrary vertex v0 of an arbitrary polygon with a hole W0 and
put Wj (j = 0, 1, 2, . . . , n; in counterclockwise direction) the polygon with a hole
which contains v0. Connect ∂Sj and ∂Sj+1 by the shortest geodesic segment [lj,j+1]
for each j = 0, 1, 2, . . . , n(, where Sj is a domain in {Si}

∞
i=0 with ∂Sj ∩Wj 6= ∅ and

Sn+1 := S0). So we obtain a 2n-sided polygon P which consists of [lj,j+1] and subarcs
of ∂Sj (j = 0, 1, 2, . . . , n).
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Also we join ∂S0 and ∂Sj (j = 2, 3, . . . , n − 1) by the shortest geodesic in P
which is orthogonal to ∂S0 and ∂Sj , respectively. (By Lemma 3.4, there exist such
geodesics.) Then we obtain n−1 right-hexagons. (See Figure 6.) Each right-hexagon
has three alternating sides [l0,j ], [lj,j+1], [lj+1,0] with the lengths bounded by 2M since
[lj,j′] ≤ dR0

(v0, ∂Sj) + dR0
(v0, ∂Sj′) < M + M = 2M for j, j′ = 0, 1, 2, . . . n, j 6= j′.

Hence all lengths of sides are bounded by 2M .

Figure 6. A right-hexagons decomposition around v0.

Continue the above operation, then R0 − S is divided into right-hexagons with
sides of the lengths bounded by 2M . �

4. Proof of Theorem 1.4

From Lemma 1.2, it is sufficient to show that for any sequence {pn}
∞
n=o ⊂ T (R0)

with dL(pn, p0) → 0 (n → ∞), dT (pn, p0) converges to 0 as n → ∞. We assume that
p0 = [R0, id]. Put pn = [Rn, fn].

In Section 3, we see that R0 is decomposed by pairs of pants and hexagons such
that lengths of their boundaries are bounded uniformly; R0 =

⋃

∞

i=1 Si∪
⋃

∞

j=1Hj . We
consider a decomposition of Rn for sufficiently large n.

First, for each j = 1, 2, . . ., we replace fn(Hj) by a right-hexagon in Rn as follows.
Hj ⊂ R0 has edges a1, . . . , a6 (in counterclockwise direction). We suppose that
a1, a3, a5 are subarcs of ∂S1, ∂S2, ∂S3 respectively and a2 connects ∂S1 and ∂S2. Put
α12 := ∂S1 · a2 · ∂S2 · a

−1
2 ∈ C(R0). For a closed curve fn(α12) in Rn, we take a

closed geodesic [fn(α12)] in Rn. If we consider a pair of pants bounded by [fn(∂S1)],
[fn(∂S2)] and [fn(α12)], then there exists a geodesic segment connecting [fn(∂S1)]
and [fn(∂S2)] as in Lemma 3.4. We denote it by an2 . The length of an2 is determined
by the lengths of [fn(∂S1)], [fn(∂S2)] and [fn(α12)]. The lengths of them are almost
the same as that of preimages of closed geodesics in R0 respectively, so the lengths
of a2 and an2 are almost the same. Similarly we take geodesic segments an4 and an6 in
Rn for a4 and a6 respectively. Let Hn

j ⊂ Rn be a right-hexagon bounded by an2 , a
n
4 ,

an6 and subarcs of [fn(∂S1)], [fn(∂S2)], [fn(∂S3)]. (See Figure 7.) Then Hn
j is almost

congruous with Hj.
Put R′

n :=
⋃

∞

j=1H
n
j . By Lemma 3.2, we obtain a quasiconformal mapping gn

from R′
0(=

⋃

∞

j=1Hj) to R′
n. We claim that fn is homotopic to gn on R′

0, where the
homotopy map does not necessarily keep points of ∂R0 fixed.
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Figure 7. Replacement of fn(Hj) by a right-hexagon Hn
j in Rn.

It is enough to see that for an arbitrary simple closed geodesic α ⊂ R′
0, fn(α)

and gn(α) are homotopic (cf. [5, Lemma 4]). Let {Hj(k)}k∈K ⊂ R′
0 be the set of

all the right-hexagons such that Hj(k) ∩ α 6= ∅. Since fn is homeomorphic, fn(α) ⊂
⋃

k∈K fn(Hj(k)). Therefore we see that for each k ∈ K, a curve gn(α) ∩ Hn
j(k) is

homotopic to a curve [fn(α)] ∩Hn
j(k), where the homotopy map does not necessarily

fix endpoints. (See Figure 8.) Hence fn(α) is homotopic to gn(α), so we verify the
claim.

Figure 8. fn(α) and gn(α).

Next, we consider a quasiconformal mapping of Si for each i = 1, 2, ... We
decompose Si into pairs of pants satisfying Shiga’s condition; Si =

⋃

∞

k=1 Pk.
Let GP be the set of closed geodesics which are boundaries of some Pk in Si. For

each α ∈ GP , there exists a closed geodesic [fn(α)] in Rn homotopic to fn(α). The
set {[fn(α)]}α∈GP

gives a pants decomposition of fn(Si). (Indeed, fn(Si) is Nielsen-
convex; cf. [1, Theorem 4.5.])

Now, we put α1, α2, α3 three closed geodesics of ∂P1 and assume that α1 ⊂ R′
0.

By lemmas of Bishop, we obtain a quasiconformal mapping on Si − P1. However,
gn on R′

0 is locally affine on α1, so we construct a quasiconformal mapping on P1.
Let x1, . . . , xm ∈ α1 be vertices of right-hexagons {Hj}, and let y1, . . . , y6 ∈ ∂P1

be the vertices of two symmetric right-hexagons constructing P1 (See Figure 9).
Suppose that y1 is on the segment [x1x2], and y6 is on the segment [xrxr+1] (1 ≤ r ≤
m). Let d1 be the length of [x1x2] and let d′1 be the length of the [x1y1]. Then there
is a number t ∈ [0, 1] such that d1 = td′1. Similarly take dr, d

′
r for [xrxr+1], [xry6],

then there is a number s ∈ [0, 1] such that dr = sd′r.
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Figure 9. Points on ∂P1.

On the other hand, let xn
1 , . . . , x

n
m ∈ [fn(α1)] in Rn be vertices of right-hexagons

Hn
j . We take the points gn(y1), . . . , gn(y6) on ∂P n

1 , where P n
1 is a pair of pants

corresponding to fn(P1)
We consider a hyperbolic hexagon with vertices gn(y1), . . . , gn(y6). We claim

that the angle formed by [gn(y2)gn(y3)] and [gn(y3)gn(y4)] is almost π/2. Indeed,

for Si ⊂ R0, let Ŝi be the Nielsen extension of Si. We consider the Fenchel–Nielsen
coordinates of the Teichmüller space T (Ŝi). Then the twist parameter along [fn(α2)]
is almost the same as that along α2 (cf. [13, Lemma 4.1]). Hence we verify the claim.
The remaining angles are almost π/2, similarly.

Let dni be the hyperbolic length of the segment [xn
i x

n
i+1] (1 ≤ i ≤ m), and let

dn′i be the hyperbolic length of the segment [xn
i gn(∗)] (i = 1, r, ∗ = y1, y6). Then, for

t ∈ [0, 1] and s ∈ [0, 1] we took above, dn′1 = tdn1 and dn′r = sdnr hold, because gn of
R′

0 is locally affine on α1. Moreover, since the quasiconformal mapping gn of Si − P1

is affine on α2 and α3, the lengths of sides [y1y2], . . . , [y6y1] and the lengths of sides
[gn(y1)gn(y2)], . . . , [gn(y6)gn(y1)] are almost the same respectively. Hence the right-
hexagon with vertices (y1, · · · , y6) and the hexagon with vertices (gn(y1), · · · , gn(y6))
are almost congruous.

We triangulate these hexagons as in Figure 10.

Figure 10. Triangulation.

From the First Cosine Rule for hyperbolic geometry (cf. [3]), the length of the new
sides are determined by the sides and angles of the hexagon. Quasiconformal map-
pings of the triangles with vertices (y2, y3, y4), (y4, y5, y6) and (y2, y4, y6) are obtained
from Lemma 3.1.

We consider a quasiconformal mapping of the triangle T with vertices (y1, y2, y6).
In T , connect the points x2, . . . , xr by geodesics segments to y2. Similarly, in the
triangle Tn with vertices (gn(y1), gn(y2), gn(y6)), connect the points xn

2 , . . . , x
n
r by
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geodesics segments to gn(y2). Then we obtain a quasiconformal mapping of the
triangle T from Lemma 3.1.

Hence we obtain a quasiconformal mapping gn of the whole of R0 such that gn is
homotopic to fn and K(gn) → 1 (n → ∞). Thus dT (pn, p0) → 0 (n → ∞).

In the case where p0 6= [R0, id], we can show that dT (pn, p0) → 0 (n → ∞)
similarly. Indeed, any Riemann surface which is quasiconformally equivalent to R0

satisfies the condition of Theorem 1.4 for some constant. �

5. Corollary of Theorem 1.4

In this section, we consider Riemann surfaces with bounded geometry.

Proposition 5.1. Let R0 be a Riemann surface of finite genus with M-bounded
geometry. Then R0 satisfies the assumption of Theorem 1.4.

Proof. On R0, we construct S in the condition of Theorem 1.4 as a union of pairs
of pants. Note that we may construct a pair of pants from two disjoint simple closed
geodesics and an simple arc connecting the two geodesics.

At first, we take a constant d = d(M) > 0 as the following:
For any x ∈ R0, there exists a closed curve cx passing through x with 1/M < the

length of cx < M . We take a geodesic αx in the homotopy class of cx. We put

dx := max
αx

{M − ℓR0
(αx)} > 0,

where αx ∈ {αx : a geodesic | In the homotopy class of αx, there exists a closed curve
cx passing through x with 1/M < the length of cx < M.}. Moreover we put

d := sup
x∈R0

dx

Then d satisfies the following property: For any x ∈ R0 and any closed curve c
passing through x with 1/M < the length of c < M , the geodesic α in the homotopy
class of c satisfies dR0

(x, α) < d.
Indeed, if dR0

(x, α) ≥ d holds, then dR0
(x, α) ≥ dx ≥ M − ℓR0

(α) i.e. dR0
(x, α)+

ℓR0
(α) ≥ M . Hence the length of c(≥ dR0

(x, α) + ℓR0
(α)) is larger than M . This

contradicts. Therefore dR0
(x, α) < d.

(Note that, in other words, d is a constant such that if x is a point in R0 and α is
a simple closed geodesic with 1/M < ℓR0

(α) < M and dR0
(x, α) ≥ d, then the length

of any closed curve c passing through x which is homotopic to α is larger than M .)

Figure 11. A closed curve c such that the length = d+ ℓR0
(α).

Now let us start to construct pairs of pants. Let x0 be an arbitrary point in R0.
Then there exists a closed curve c0 passing through x0 with the length less than M .
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We take a geodesic α0 in the homotopy class of c0. Then 0 < 1/M < ℓ(α0) < M and
dR0

(x0, α0) < d.
Put D := max{d,M}. Next, take y0 ∈ R0 with dR0

(y0, α0) = D + 1. Also, take
a geodesic β0 for y0 in the above way. Then β0 6= α0 and dR0

(y0, β0) < d. Hence
dR0

(α0, β0) < D + 1 + d < 2D + 1. Thus there exists a simple arc γ̂0 connecting α0

and β0 such that the length of γ̂0 ≤ 2D + 1.
If we construct a pair of pants P0 by α0, β0 and γ̂0, then the length of each

boundary component is bounded by some constant L = L(M) from above and below.
Next, we take a point x1 ∈ R0 such that dR0

(P0, x1) = 3D + 2. Also, take a
geodesic α1 for x1 in the above way. (Note that dR0

(α1, x1) < D.) Then we can take
a point y1 in R0 − P0 such that dR0

(y1, α1) = D + 1. Indeed, since

dR0
(α1, P0) ≥ dR0

(x1, P0)− dR0
(α1, x1) ≥ 2D + 2,

{y ∈ R0 | dR0
(y, α1) = D + 1} ∩ P0 = ∅.

Now, we take a geodesic β1 for y1 similarly. β1 6= α1 and dR0
(y1, β1) < d < D

hold. Hence dR0
(α1, β1) < 2D + 1. Thus β1 ∩ P0 = ∅ since

dR0
(β1, P0) ≥ dR0

(P0, α1)− dR0
(α1, β1) ≥ 2D + 2− (2D + 1) = 1.

Also, there exists a simple arc γ̂1 connecting α1 and β1 with the length of γ̂1 < 2D+1.
Then we see that γ̂1 ∩ P0 = ∅ since dR0

(α1, P0) ≥ 2D + 2.
We construct a pair of pants P1 by α1, β1 and γ̂1. Then P0 ∩ P1 = ∅. Indeed,

if we take a geodesic γ1 which is homotopic to a closed curve α1 · γ̂1 · β1 · γ̂1
−1 then

γ1 ∩ P0 = ∅ by property of geodesics.
Similarly, we take a point x2 ∈ R0 such that dR0

(x2, P0 ∪ P1) = 3D + 2. Let
α2 be the geodesic in homotopy class of a simple closed curve c2 passing through
x2 with M−1 < the length of c2 < M . dR0

(α2, x2) < d < D. We can take a point
y2 ∈ R0−(P0∪P1) such that dR0

(α2, y2) = D+1 since dR0
(α2, P0∪P1) ≥ 2D+2. Let

β2 be the geodesic in homotopy class of a simple closed curve c′2 passing through y2
with M−1 < the length of c′2 < M . dR0

(β2, y2) < d < D. Hence dR0
(α2, β2) < 2D+1.

Thus β2∩ (P0∪P1) = ∅. Also, there exists a simple arc γ̂2 connecting α2 and β2 with
ℓ(γ̂2) < 2D + 1. γ̂2 ∩ (P0 ∪ P1) = ∅ since dR0

(α2, P0 ∪ P1) ≥ 2D + 2. If we construct
a pair of pants P2 by α2, β2 and γ̂2 then P2 ∩ (P0 ∪ P1) = ∅.

Inductively, we construct a sequence of pairs of pants {Pi}. Then it satisfies the
following.

(i) Pi ∩ Pj = ∅ if i 6= j.
(ii) For any i, the length of each connected component of ∂Pi is bounded by L

from above and below.

Finally we consider the set

Xn := {x ∈ R0 | dR0
(x0, x) < n}

for a sufficient large number n > 0. Since the closure Xn of Xn is relatively compact
in R0, there exists a finite sequence of pairs of pants {Pi}

k
i=0 such that Xn ∩ Pi 6= ∅

(i = 0, 1, . . . , k) and it satisfies (i) and (ii); moreover

dR0
(x,

k
⋃

i=0

Pi) < 3D + 2

for any x ∈ Xn −
⋃k

i=0 Pi.
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Construct {Pi}
∞
i=0 as n → ∞. Since

⋃

∞

n=1Xn = R0, we obtain a subset S =
⋃

∞

i=0 Pi ⊂ R0 in the condition of Theorem 1.4.
(We note that R0−S is of genus 0. Indeed, the lengths of geodesics cutting genus

of R0 are bounded by M since R0 is of finite genus. Hence we can choose them as
the curves of ∂Pi.) �

Hence we obtain Corollary 1.5.
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