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Abstract. We prove the existence of “half-plane differentials” with prescribed local data on
any Riemann surface. These are meromorphic quadratic differentials with higher-order poles which
have an associated singular flat metric isometric to a collection of euclidean half-planes glued by
an interval-exchange map on their boundaries. The local data is associated with the poles and
consists of the integer order, a non-negative real residue, and a positive real leading order term.
This generalizes a result of Strebel for differentials with double-order poles, and associates metric
spines with the Riemann surface.

1. Introduction

A holomorphic quadratic differential on a Riemann surface defines a conformal
metric that is flat with conical singularities, together with pair of horizontal and
vertical measured foliations, and this singular-flat geometry is intimately related to
quasiconformal mappings and the geometry of Teichmüller space Tg in the Teich-
müller metric. In this paper we consider certain infinite area singular flat surfaces
corresponding to (non-integrable) meromorphic quadratic differentials that arise as
geometric limits along Teichmüller geodesic rays.

A half-plane surface is a singular flat surface that is obtained by taking a finite
partition of the boundaries of a collection of euclidean half-planes and gluing by an
interval-exchange map (see §4 for examples.) We shall only exclude the possibility
that the two infinite-length boundary intervals of the same half-plane are identified.
Such a surface can be thought of as a Riemann surface with punctures p1, p2, . . . , pn
corresponding to the ends of the surface, equipped with a quadratic differential (re-
stricting to dz2 on the half-planes) that is holomorphic away from the punctures.
This half-plane differential has a pole of order nj ≥ 4 at pj (for 1 ≤ j ≤ n) and one
can associate with it the data of a non-negative real residue aj (this is always zero
when nj is odd) and, in a given choice of local coordinates, a positive real leading
order term cj, which is the top coefficient in a local series expansion of the differen-
tial. In the singular flat metric, a neighborhood of pj is isometric to a “planar end”
comprising nj − 2 half-planes glued cyclically along their boundaries (see Definition
2.4). The residue aj then corresponds to the metric holonomy around the puncture
and cj gives the “scale” of this planar end relative to the others. We provide precise
definitions in §3.
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In this article we show that one can get any Riemann surface with n punctures by
the above construction, and furthermore can arbitrarily prescribe the data of order,
residue and leading order terms:

D = {(nj, aj, cj) | nj ∈ N, nj ≥ 4, cj ∈ R+, aj ∈ R≥0, aj = 0 for nj odd}

associated with the set of punctures:

Theorem 1.1. Let Σ be a Riemann surface with a set P of n marked points
and with a choice of local coordinates around each. Then for any data D as above
there is a corresponding half-plane surface ΣD and a conformal homeomorphism

g : Σ \ P → ΣD

that is homotopic to the identity map. (The only exception is for the Riemann sphere
with one marked point with a pole of order 4, in which case the residue must equal
zero.)

Note that it is not hard to show the existence of some meromorphic quadratic
differential which has local data given by D at the poles using the Riemann–Roch
theorem, but half-plane differentials are a special subclass that satisfy the global
requirement of having a “half-plane structure” as described.

This result can be thought of as a generalization of the following theorem of
Strebel ([Str84]):

Theorem. (Strebel) Let Σ be a Riemann surface of genus g, and P = {p1, p2, . . . ,
pn} be marked points on Σ such that 2g − 2 + n > 0, and (a1, a2, . . . , an) a tuple of
positive reals. Then there exists a meromorphic quadratic differential q on Σ with
poles at P of order 2 and residues a1, . . . , an, such that all horizontal leaves (except
the critical trajectories) are closed and foliate punctured disks around P .

The corresponding singular flat metric for such a “Strebel differential” with poles
of order two comprises a collection of half-infinite cylinders glued by an interval-
exchange on their boundaries, and has a metric spine (sometimes called the “ribbon
graph” or “fat graph”). Strebel also showed that the quadratic differential q above—
and hence this metric spine—is unique, which yields a combinatorial description
of Teichmüller space like that in [Pen87] and has had useful applications (see, for
example, [HZ86], [Kon92]). However, a corresponding uniqueness statement for The-
orem 1.1 is not known, and conjecturally holds for poles of order 4 (for a discussion,
see §13.2).

The proof of Theorem 1.1 uses the well-known result of Jenkins and Strebel
that associates a holomorphic quadratic differential to a collection of curves on a
compact Riemann surface. The idea is to consider a compact exhaustion of Σ \ P
and produce a corresponding sequence of half-plane surfaces that shall have both Σ\P
and ΣD as its conformal limit. The main technical work is to obtain enough geometric
control for this sequence, and extract these limits by building appropriate sequences
of quasiconformal maps. We give a more detailed outline in §5, and carry out the
proof in §6-12. In §13 we conclude with some applications and further questions.
In particular, the connection of half-plane surfaces with the asymptotic behavior of
grafting and Teichmüller rays appears in a subsequent paper ([Gup]).
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2. Background

In this section we review some background on meromorphic quadratic differentials
and the geometry they induce on a Riemann surface.

Most of this is standard (we refer to [Str84]), but we point the reader to our
notion of a “planar end” (Definition 2.4), which provides a metric model for an end
of a half-plane surface, or more generally for the quadratic differential metric around
higher-order poles.

2.1. Quadratic differential space. A closed genus-g Riemann surface Σg

admits no non-constant holomorphic functions, but carries a finite-dimensional vector
space of holomorphic one-forms, or more general holomorphic differentials, which are
holomorphic sections of powers of the canonical line-bundle KΣ.

A quadratic differential q on Σg is a section of KΣ ⊗ KΣ, a differential of type
(2, 0) locally of the form q(z)dz2. It is said to be holomorphic (or meromorphic)
when q(z) is holomorphic (or meromorphic).

A zero or a pole of a holomorphic quadratic differential is a point p where in
a local chart sending p to 0 we have φ(z) = znψ(z) or φ(z) = 1

zn
ψ(z) respectively,

where ψ(z) 6= 0 and the integer n ≥ 1 is the order of the zero or pole. The following
is a well-known fact:

Lemma 2.1. If there are M zeroes of orders n1, n2, . . . , nM , and N poles of

orders k1, k2, . . . , kN , then
M∑
i=1

ni −
N∑
i=1

ki = 4g − 4.

Let Qg,k1,k2,...,kN be the space of meromorphic quadratic differentials on Σg with
poles of order less than or equal to k1, k2, . . . , kN at a collection of N marked points,
and Q̂g,k1,k2,...,kN be the subset of such differentials with poles of orders exactly k1, k2,
. . . , kN . The former is a finite dimensional vector space, whose dimension can be
computed using the Riemann–Roch theorem.

In fact, the vector space Q(X) of holomorphic quadratic differentials on a Rie-
mann surface X has complex dimension exactly 3g − 3 (see for example [FK92]).

2.2. Quadratic differential metrics. A holomorphic quadratic differential q ∈
Q(X) defines a conformal metric (also called the q-metric) given in local coordinates
by |q(z)||dz|2 which has Gaussian curvature zero wherever q(z) 6= 0.

At the points where q(z) = 0 (finitely many by Lemma 2.1) there is a conical
singularity of angle (n+ 2)π where n is the order of the zero, and locally the singular
flat metric looks like a collection of n rectangles glued around the singularity (see §7
of [Str84]).

One way to see this is to change to coordinates where q = dζ2 by the conformal
map

(1) z 7→
zˆ

p

√
q(z) dz
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which gives a branched covering of the ζ-plane when p is a zero of q.

Figure 1. A simple zero p is a 3π cone-point.

Lengths, area. The horizontal length in the q-metric of an arc γ is defined to
be

|γ|h = Re

ˆ

γ

√
q(z) d|z|

and the vertical length is the corresponding imaginary part. The total length in the
q-metric is (|γ|2h + |γ|2v)

1/2.
The L1-norm of a quadratic differential gives the area in the q-metric:

(2) Areaq(X) =

ˆ

X

|φ(z)| dz dz̄

2.3. Measured foliations. A holomorphic quadratic differential q ∈ Q(X)
determines a horizontal foliation on X which we denote by Fh(q), obtained by in-
tegrating the line field of vectors ±v where the quadratic differential is real and
positive, that is q(v, v) ≥ 0. Similarly, there is a vertical foliation Fv(q) consisting of
integral curves of directions where q is real and negative.

These foliations can be thought of as the pullback by the map (1) of the horizontal
and vertical lines in the ζ-plane. These foliations are also measured : the measure of
an arc transverse to Fh is given by its vertical length, and the transverse measure
for Fv is given by horizontal lengths. Such a measure is invariant by isotopy of the
arc if it remains transverse with endpoints on leaves.

LetMF be the space of singular foliations on a surface equipped with a transverse
measure, upto isotopy and Whitehead equivalence.

Theorem. (Hubbard–Masur [HM79]) Fix a Riemann surface X. Then any F ∈
MF is the horizontal foliation of a unique holomorphic quadratic differential on X.

Theorem 1.1 of this paper can be thought of as a step towards a generalization to
a non-compact version of the above result. In this paper we shall use a special case
independently proved in [Jen57] and [Str66] (See [Wol95] for a proof using harmonic
maps to metric graphs.)

Figure 2. In Theorem 2.2 the surface in the q-metric is composed of metric cylinders with core
curves the given homotopy classes of curves.
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Theorem 2.2. (Jenkins–Strebel) Let γ1, γ2, . . . , γn be disjoint homotopy classes
of curves on a Riemann surface Σ. Then there exists a holomorphic quadratic dif-
ferential q whose horizontal foliation Fh(q) consists of closed leaves foliating n cylin-
ders with core curves in those homotopy classes. Moreover, one can prescribe the
heights, or equivalently the circumferences, of the nmetric cylinders to be any n-tuple
(c1, c2, . . . , cn) of positive reals.

Critical segments. A critical segment is a horizontal arc between two critical
points (zeroes or poles) of the quadratic differential, and a critical arc between two
zeroes is called a saddle-connection. Their number is always finite since by the
theorem of Gauss–Bonnet (see also Theorem 14.2.1 in [Str84]) there cannot be more
than one saddle-connection between a pair of zeroes.

2.4. Metric structure at poles. Most of the preceding discussion also holds
when the quadratic differential q is meromorphic, with finitely many poles: namely,
one has an associated singular flat q-metric, together with horizontal and vertical
foliations.

A meromorphic quadratic differential with a finite q-area can have poles of order
at most 1 (see [Str84]). At such a pole, there is a conical singularity of angle π, and
the singular flat metric has a “fold” (see figure, also §7 of [Str84]).

A pole of higher order n > 1 is at an infinite distance in the q-metric. Any such
pole p has an associated analytic residue which is defined to be

(3) Resq(p) =

ˆ

γ

√
q

where γ is any simple closed curve homotopic into p (this is independent of choice of
γ since q is holomorphic away from p).

Figure 3. Local picture with horizontal leaves at a pole of order n.

For the rest of this article, we shall consider only higher order poles which have
a real analytic residue (in [Str84] this property is referred to as q having a vanishing
logarithmic term). This rules out any “spiralling” behaviour of the horizontal foliation
at the poles. We also have an explicit description of the singular flat metric around
the pole p (Theorems 2.3 and 2.6) which can be culled from [Str84] (see §7 of the
book for a discussion).

Theorem 2.3. Let p on Σ be a pole of order 2 with a positive real analytic
residue C. Then there is a neighborhood U of p such that in the q-metric U \ p is
isometric to a half-infinite euclidean cylinder with circumference 2πC.

Proof. A neighbourhood U of p has a conformal chart to D taking p to 0 the
quadratic differential takes the form

−C
2

z2
dz2
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The change of coordinates (1) is given by a logarithm map ζ = iC ln z that pulls
back the euclidean ζ−plane to a half-infinite cylinder. We leave these verifications
to the reader. �

2.5. Planar ends. We now introduce the notion of a planar end and its metric
residue. In the following definition we identify the boundary of a euclidean half-plane
with R.

Definition 2.4. (Planar-end) Let {Hi} for 1 ≤ i ≤ n be a cyclically ordered
collection of half-planes with rectangular “notches” obtained by deleting, from each,
a rectangle of horizontal and vertical sides adjoining the boundary, with the boundary
segment having end-points xi and yi, where xi < yi. A planar end is obtained by
gluing the interval [yi,∞) on ∂Hi with (−∞, xi+1] onHi+1 by an orientation-reversing
isometry. Such a surface is homeomorphic to a punctured disk.

For an example, see Figure 4.

Definition 2.5. (Metric residue) Let the half-plane differential q at a pole pj
have a planar end as above (where the number of half-planes n equals nj − 2). Then

the residue aj of q at pj is defined to be the alternating sum
n∑
i=1

(−1)i+1(yi−xi). Note

that there is an ambiguity of sign because of the cyclic ordering in the alternating
sum, and we resolve this by choosing a starting index that ensures a positive sum.

Figure 4. A planar-end obtained from 3 “notched” half-planes (see Definition 2.4).

Theorem 2.6. Let p on Σ be a pole of order n > 2 with a real analytic residue
C. Then there is a neighborhood U of p such that in the q-metric U \ p is isometric
to a planar-end surface with (n− 2) half-planes and metric residue equal to C.

Proof. We provide only the proof for the statement regarding the metric residue,
as the proof of the planar-end structure appears in [Str84] (see §10.4 of the book).

Let P be a polygon made from the boundaries of the rectangular “notches” of each
half-plane of the planar end (see Definition 2.4) oriented counter-clockwise. Then P
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is a polygon enclosing p contained in U , and consists of alternating horizontal and
vertical segments, with the horizontal edges having lengths bi − ai for 1 ≤ i ≤ n.

We first note that

(4) ±
ˆ

P

√
q =

n∑
i=1

(−1)i+1(bi − ai).

This follows from the fact that by a change of coordinates (see (1)) the integral over
three successive edges (horizontal-vertical-horizontal) equals integrating the form dζ
on the complex (ζ-)plane over a horizontal edge that goes from the right to left on the
upper half-plane followed by one over a vertical edge followed by one over a horizontal
edge that goes from left to right in the lower half-plane. Hence the integral over the
horizontal sides picks up the horizontal lengths but the sign switches over the two
successive horizontal edges. Meanwhile the integral over the vertical sides contribute
to the imaginary part, but they cancel out since two successive vertical segments on
the upper (ζ)-half-plane are of equal length but of opposite orientation.

The left hand side of (4) is equal to the real analytic residue C (upto sign) by
definition (3), and the right hand side is equal to the metric residue of the planar
end as defined in Definition 2.4, and the proof is complete. �

Analytic notions Metric notions
L1-norm Area
At least one non-simple pole Infinite area
Zero of order n Cone point of angle (n+ 2)π
Simple (order 1) pole Cone point of angle π
Order 2 pole Half-infinite cylinder
Order n > 2 pole Planar end
Analytic residue Metric residue

Table 1. A glossary of the correspondence between analytic and metric properties of a mero-
morphic quadratic differential.

3. Preliminaries

In this section we introduce some of the terminology and observations used in
this paper.

3.1. Half-plane differentials. The following definition was already mentioned
in §1:

Definition 3.1. (Half-plane surface) Let {Hi}1≤i≤N be a collection of N ≥ 2
euclidean half planes and let I be a finite partition into sub-intervals of the bound-
aries of these half-planes. A half-plane surface Σ is a complete singular flat surface
obtained by gluings by (oriented) isometries amongst intervals from I.

Such a half-plane surface has a number of planar ends as in Definition 2.4, and
is equipped with a meromorphic quadratic differential q (the half-plane differential)
that restricts to dz2 in the usual coordinates on each half-plane.

3.2. Residue. The residue aj associated with a puncture (or end) of a half-
plane surface has both an metric definition (Definition 2.5) and the following analytic
definition (see (3)):
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Definition 3.2. (Analytic residue) The residue aj of the half-plane differential
q at a pole pj is defined to be the absolute value of the integral

aj =

ˆ

γj

√
q

where γj is a simple closed curve enclosing pj and contained in a chart where one can
define ±√q. This gives a positive real number (see Theorem 2.6) and in particular,
equals the metric residue of the corresponding planar end.

3.3. Planar ends and truncations. A planar end (Definition 2.4) can be
thought of as a neighborhood of ∞ on C in the metric induced by the restriction of
a “standard" holomorphic quadratic differential φ:

(5) φ = φ(z) dz2 =
(
zn−2 + iazn/2−2

)
dz2

where a is the (positive, real) residue at the pole at 0 and n ≥ 4 is even. See
Example 2 in §4.1 for details. When n is odd, the residue is necessarily zero, and the
metric is induced by the differential φ = φ(z) dz2 = zn−2 dz2.

By inversion (w = 1/z), this can be thought of as the metric induced by the
restriction of a meromorphic quadratic differential (which we also denote by φ) to a
neighborhood of 0 ∈ C:

(6)
(

1

wn+2
+

ia

wn/2+2

)
dw2

when n is even and
(

1
wn+2

)
dw2 when n is odd.

Definition 3.3. (PH) For a planar end with residue a, the truncation at height
H denoted by PH , is when the missing “notches” are rectangles of horizontal width
H and vertical heights H/2, except one rectangle of horizontal width H + a. The
boundary of the planar PH is then a polygon of alternating horizontal and vertical
sides, each of length H except one horizontal side of length H + a. (This is then
compatible with the metric residue being a—see Definition 2.5.)

Remark. Any planar end has a truncation at height H, for sufficiently large H.

Figure 5. A truncation of a planar end can be conformally identified with a neighborhood UH

of 0 ∈ C (shown shaded). Lemma 3.4 gives estimates on its dimensions.

By the previous discussion we can identify PH ∪∞ with a neighborhood UH of
0 ∈ C , via a map taking ∞ to 0, which is an isometry with respect to the singular
flat metric on the planar end and the φ-metric on UH , and is hence conformal. The
following estimates about this simply connected domain in C will be useful later:
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Lemma 3.4. There exist universal constants D1, D2 > 0 such that for all suffi-
ciently large H, we have

(7)
D1

H2/n
≤ dist(0, ∂UH) ≤ D2

H2/n
,

where n is the number of half-planes for the planar end. (In this paper, dist(q,K) =
inf
p∈K
|p− q| where q ∈ C and K ⊂ C is a compact set.)

Proof. Observe that given a planar end, one can circumscribe a circle of circum-
ference C2H and inscribe one of circumference C1H around ∂PH , where 0 < C1 <
1 < C2 are constants that depend only on n (for sufficiently large H, the effect of the
fixed a is negligible).

Now the circumference of the boundary circle ∂Br in the metric induced by q (see
(6)) is

C(r) =

ˆ

∂Br

|√q| =
ˆ

|w|=r

∣∣∣ 1

wn/2+1
+
ia

2w

∣∣∣ dw ≈ ˆ
|w|=r

∣∣∣ 1

wn/2+1

∣∣∣ dw = O

(
1

rn/2

)
for sufficiently small r.

The previous observation together with this calculation then implies that UH
is contained within two boundary circles which yield (7). (Here D1, D2 depend on
C1, C2.) �

Corollary 3.5. The conformal map φH : UH → D that takes 0 to 0, satisfies

(8)
1

4D2

≤ |φ
′
H(0)|
H2/n

≤ 1

D1

for all H > 0.

Proof. Note that such a conformal map is determined uniquely upto rotation
(fixing 0), but this does not change the magnitude of the derivative at 0. For any
conformal map f : D → C the following holds for any z ∈ D (see Corollary 1.4 of
[Pom92]):

1

4

(
1− |z|2

)
|f ′(z)| ≤ dist(f(z), ∂f(D)) ≤

(
1− |z|2

)
|f ′(z)|

We apply this to the conformal map f = φ−1
H : D → UH ⊂ C and z = 0. We get by

rearranging and using that f(0) = 0 that

(9) dist(0, ∂f(D)) ≤ |f ′(0)| ≤ 4dist(0, ∂f(D))

By the previous lemma, and the fact that φ′H(0) = 1/f ′(0), (8) now follows. �

We also note the following monotonicity:

Lemma 3.6. Let φH : UH → D be the conformal map preserving 0. Then the
derivative |φ′H(0)| is strictly increasing with H.
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Proof. For Ĥ > H we have the strict inclusions PH ⊂ PĤ and UĤ ⊂ UH . Hence
φH ◦ φ−1

Ĥ
: D→ D is well-defined, and the lemma follows from an application of the

Schwarz lemma. �

3.4. Leading order term.

Definition 3.7. In a choice of local coordinates z around the pole p, any mero-
morphic quadratic differential q has a local expression:

q =
(an
zn

+
an−1

zn−1
+ · · ·+ a1

z
+ a0 + · · ·

)
dz2

and we define the leading order term at the pole to be the positive real number
cj = |an|.

Remarks. 1. A pole at p of a half-plane differential q has a neighborhood U
that is isometric to a planar end as in Definition 2.4. The leading order term of a
half-plane differential at a pole determines, roughly speaking, the relative scale of
the conformal disk U is on the Riemann surface.

2. We shall sometimes refer to the leading order term of q at p with respect to U ,
where U is simply-connected domain containing p. This means that the coordinate
chart that we consider is the conformal (Riemann) map φ : U → D that takes p to
0. Note that by the above definition, the leading order term is independent of the
choice of such a φ (rotation does not change the magnitude).

Lemma 3.8. (Pullbacks and leading order terms) Let f : D→ C be a univalent
conformal map such that f(0) = 0 and let q be a meromorphic quadratic differential
on C having the local expression

q(z)dz2 =
(an
zn

+
an−1

zn−1
+ · · ·+ a1

z
+ a0 + · · ·

)
dz2

in the usual z-coordinates. Then the pullback quadratic differential f ∗q on D has
leading order term equal to |f ′(0)|2−n an at the pole at 0.

Proof. By the usual transformation law for change of coordinates, the local
expression for the pullback differential is q ◦ f(z)f ′(z)2. The lemma follows by a
calculation involving a series expansion, using that

f(z) = f ′(0)z + b2z
2 +O(z3). �

4. Examples

4.1. Explicit hpd’s in Ĉ. A meromorphic quadratic differential on Ĉ = C ∪
{∞} can be expressed as q(z) dz2 in the affine chart C, where q(z) is a meromorphic
function. The following are examples of such functions which yield a half-plane
differential (hpd).

Example 0. The quadratic differential dz2 has a pole of order 4 at ∞, and it
induces the usual euclidean metric on the plane.

Example 1. The quadratic differential zn dz2 for n ≥ 1 has a pole of order n+ 4
at infinity, with analytic residue (and metric residue) equal to zero. The singular flat
metric has n+ 2 half-planes glued around the origin.

Example 2. The quadratic differential φ (see (5))(
zn−2 + iazn/2−2

)
dz2
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on C for an even integer n ≥ 4 and some real number a > 0 has n/2 + 1 zeroes, a
pole of order n + 2 at infinity, and a connected critical graph with a metric residue
πa (see figure, and [HM79] and [AW06] for details).

Figure 6. Partial picture of the critical graph when n = 8 in Example 2. The finite-length
saddle connections have length πa/4.

In local w-coordinates at infinity obtained by inversion, the quadratic differential
has the standard form (6) as in §3. The analytic residue can thus be computed in
these coordinates as follows:

Resq(0) =

ˆ

γ

√
q =

ˆ

γ

(
1

wn/2+1
+
ia

2w

)
dw = πa

which is equal to the metric residue.

4.2. Other hpd’s in Ĉ. Since there is only a unique Riemann surface confor-
mally equivalent to C, it is easy to construct half-plane differentials on the Riemann
sphere:

Figure 7. Attaching half-planes along this metric tree produces an hpd with a pole of order 8

and residue |2a1 − 2a3|.

Single-poled. Take any metric tree T with n edges of infinite length. Then
there are n resulting boundary lines (think of the boundary of an ε-thickening of
T and let ε → 0) and one can attach n euclidean half-planes to these boundary
lines by isometries along their boundaries. The resulting Riemann surface is simply
connected, and parabolic, and hence C, and is equipped with an hpd with order n+2
pole at infinity. The metric spine is T , and the metric residue at the pole can be read
off from the lengths of edges in T (see Figure 7).

Multiple-poled. Consider C obtained by gluing half-planes to a metric tree T as
above. The following local modification introduces another pole: Take a subinterval
of one of the edges of T and slit it open, introduce n′ vertices on the resulting
boundary circle, and attach n′ semi-infinite edges from those vertices. Along each of
the n′ resulting new boundary lines, we attach half-planes as before. Topologically,
one has just attached a punctured disk to C after the slit, so the resulting surface
(after adding the puncture) is still Ĉ, but this now has a half-plane differential with
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a new pole of order n′+ 2. One can also vary the residues at the poles by controlling
edge lengths (see Figure 8).

Figure 8. An hpd on Ĉ: The zeroes are the dark vertices, and the poles of order 4 are at the
lighter vertices and infinity. Varying the lengths of various edges changes the residues and leading
order terms.

4.3. Interval-exchange surfaces. Introduce a finite-length horizontal slit on C
and glue the resulting two sides of the interval by an interval exchange (see Figure 9).
The resulting surface (punctured at infinity) can be of any genus, by prescribing the
combinatorics of the gluing appropriately. By adding the two semi-infinite horizontal
intervals on either side of the slit, one can easily see that this is a half-plane surface
with two half-planes (above and below the horizontal line). The half-plane differential
has a single order-4 pole at infinity.

Figure 9. The half-plane surface obtained by the interval exchange shown on the left gives a
punctured torus. This is not the generic case, as the resulting hpd has a zero of order two.

One consequence of Theorem 1.1 is that one gets all once-punctured Riemann
surfaces this way. The following is a simple dimension count that indicates that this
is possible:

We place a vertex at infinity to get a cell decomposition of a closed surface of
genus g. We have

(10) v − e+ f = 2− 2g,

where v, e and f are the number of vertices, edges and vertices of the resulting
decomposition.

Note that there are two faces (the two half-planes), so f = 2. Moreover, in the
generic case, all vertices are trivalent except one (the vertex at infinity, which has
valence 2). Hence

2e = 3(v − 1) + 2.

Using these facts in (10) we get
e = 6g − 1.
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To count the resulting number of parameters, note that there are two edges
corresponding to the two semi-infinite edges, and the conformal structure of the half-
plane surface does not change if one scales all finite lengths by a positive real. Hence
the total dimension of the set of parameters is (6g − 4), which is the dimension of
the moduli spaceMg,1.

4.4. Single-poled hpd’s on surfaces. Take a single-poled hpd on Ĉ and
introduce a slit on one of the edges of the metric spine, and glue the resulting two
sides by an interval exchange. By suitable choice of combinatorics of gluing, this
gives higher genus half-plane surfaces. (See Figure 9.)

Figure 10. Slitting the metric spine of an hpd on Ĉ along an edge and then gluing the resulting
sides by an interval exchange produces a single-poled hpd on higher genus surfaces.

4.5. A low complexity example. The following lemma deals with the excep-
tional case in Theorem 1.1.

Lemma 4.1. Any meromorphic quadratic differential on Ĉ with a single pole p
of order 4 has residue 0 at p.

Proof. Let q be such a meromorphic quadratic differential, so it is

q = (
c4

z4
+
c3

z3
+ · · · ) dz2

in the usual coordinates in an affine chart. However, in Ĉ we also have the quadratic
differential

ψ =
c4

z4
dz2

The quadratic differential q − ψ then has a single pole of order less than or equal to
3. There is no such non-zero quadratic differential on Ĉ, and hence q = ψ, and has
residue 0. �

5. Outline of the proof

We illustrate the proof of Theorem 1.1 in the case of a single puncture. This
easily generalizes to the case of multiple poles—in §12 we shall provide a summary.

Throughout, we shall fix a Riemann surface Σ of genus g, with a marked point
p with a disk neighborhood U , and an integer n ≥ 4 and a, c ∈ R+. Our goal is to
show there exists a conformal homeomorphism

g : Σ \ p→ Σn,a

where Σn,a is a half-plane surface such that the half-plane differential has one pole of
order n and residue a. Furthermore, via the uniformizing chart

φ : U → D
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taking p to 0 the pullback quadratic differential on D has a pole at 0 with leading
order term c.

Briefly, the argument consists of producing a sequence of half-plane surfaces
(Steps 1 and 2) that converge to a surface conformally equivalent to Σ \ p (Step 3)
and metrically a half-plane surface (Steps 4 and 5). The bulk of the proof lies in
proving the latter convergence, after first showing that one has sufficient geometric
control on the surfaces along the sequence.

Step 1. (Quadrupling) We define a suitable compact exhaustion {Σi} of Σ \ p,
and by a two-step conformal doubling procedure along boundary arcs we define a
corresponding sequence of compact Riemann surfaces Σ̂i. An application of the
Jenkins-Strebel theorem then produces certain holomorphic quadratic differentials
on these surfaces which on passing back to Σi again by the involutions gives singular
flat structures with “polygonal” boundary.

Step 2. (Prescribing boundary lengths) We complete each of these singular
flat surfaces with polygonal boundary to a half-plane surface Σ′i by gluing in an
appropriate planar end. We first show that by choosing the arcs in the first doubling
step appropriately, one can ensure that the sequence of planar ends one needs are
truncations at height Hi →∞ of a fixed planar end P . Here Hi is a sequence of real
numbers diverging at a prescribed rate. This is the geometric control crucial for the
convergence in Step 4.

Step 3. (Conformal limit) Applying a quasiconformal extension result we show
that these half-plane surfaces Σ′i have Σ \ p as a conformal limit.

Step 4. (The quadratic differentials converge) We now show that the half-plane
differentials corresponding to Σ′i satisfy a convergence criterion (see Appendix A)
and hence after passing to a subsequence they converge to a meromorphic quadratic
differential with the right order and residue.

Step 5. (A limiting half-plane surface) We show that the limiting quadratic
differential in Step 4 is in fact a half-plane differential, that is, the sequence of
half-plane surfaces limits to a half-plane surface Σn,a. By Step 3, this surface is
conformally Σ \ p, as required.

Step 6. (The leading order coefficient) With a final analytical lemma we show
that an additional control on the sequenceHi →∞ in Step 2 ensures that the limiting
half-plane differential has leading order term c on U , as required.

6. Step 1: A quadrupling procedure

The compact exhaustion. Consider the neighborhood U of p ∈ Σ with the
conformal chart φ : U → D such that φ(p) = 0. Let B(r) ⊂ D denote the open disk
of radius r centered at 0, and let U(r) ⊂ U denote the inverse image φ−1(B(r)).

Define Σi to be Riemann surface Σ \ U(2−i). For convenience we shall denote
U(2−i) by Ui. Note that this a compact Riemann surface with boundary Ci = ∂Σi =

∂U(2−i).
The subsurfaces {Σi}∞i=1 form a compact exhaustion. In particular, we note the

following:

(1) Σi ⊂ Σi+1 for each i ≥ 1,
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(2)
∞⋃
i=1

Σi = Σ \ p,

(3) Ui = Σ \ Σi is a topological disk containing p, and
(4) Σi \ Σ1 is a topological annulus of modulus A · i for some constant A > 0.

Figure 11. Ci is the inverse image of a circle of radius 2−i under the conformal chart φ : U → D.

Conformal doubling. For each subsurface in the compact exhaustion con-
structed in the previous section, we shall now define a two-step doubling across a
collection of n arcs to get a sequence of compact surfaces Σ̂i.

For each i ≥ 1 consider the homeomorphism φi : Ui → B(2−i) that is the restric-
tion of the conformal chart φ. Choose a collection of n arcs on the boundary ∂B(2−i)
and pull it back via h−1

i to a collection of arcs a1, a2, . . . an on Ci = ∂Σi. Note that
the complement of these arcs on Ci is another collection of n arcs which we denote
by b1, b2, . . . , bn. In Step 2 (following section) we shall specify more about the choice
of these arcs.

Consider now two copies of the surface Σi with the collections of a and b arcs on
its boundary. Passing to the unit disc D via the conformal chart h, glue the b arcs
together via the anti-conformal map z 7→ 2−2i/z̄ (this preserves the circle of radius
2−i). We get a doubled surface Σd

i with a conformal structure, which has n slits
corresponding to the a arcs on the boundary of each half (which remain unglued in
our doubling).

Figure 12. We first double Σi (shown on the left) along the b-arcs on the boundary to get Σd
i

(shown on the right).

Next, we take two copies of this resulting surface Σi
d and glue them along these

slits to get a closed Riemann surface Σ̂i. This time the conformal gluing is via a
suitable restriction of the hyperelliptic involution of a genus n surface branced over
n equatorial slits on Ĉ (the restriction is to a collar neighhborhood on one side of
the equator).

Note that the glued pairs of a-slits form a collection of n nontrivial homotopy
classes of curves [γ1], [γ2], . . . , [γn] on the surface Σ̂i.
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We also have a pair of anticonformal involutions j1
i and j2

i , where j1
i : Σd

i → Σd
i is

the deck translation of the branched double covering π1
i : Σd

i → Σi, and j2
i : Σ̂i → Σ̂i

that similarly commutes with the branched double covering π2
i : Σ̂i → Σi

d.

Figure 13. In the second step one glues two copies of Σi
d (see Figure 12) to get the closed,

“quadrupled” surface Σ̂i. (Not all the handles are shown in the figure.)

Rectangular surfaces. By the theorem of Jenkins–Strebel, on each surface Σ̂i

we have a holomorphic quadratic differential q̂i which induces a singular-flat metric
comprising n euclidean cylinders of circumference (2Hi, 2Hi, . . . , 2Hi + 2a) with core
curves [γ1], [γ2], . . . , [γn], where

(11) Hi =
(
H0 · 2i

)n/2
for a choice of a H0 > 0 that shall be eventually made in Proposition 11.2.

(The reason for choosing Hi to be of the above form shall be clarified by Lemma
7.4).

We now show that this passes down to a singular flat metric on Σi with a “rect-
angular” structure when we quotient back by the anticonformal involutions j1

i and
j2
i .

Lemma 6.1. Let X be a Riemann surface with a holomorphic quadratic differ-
ential q, and let j : X → X be an anti-conformal involution that is pointwise identity
on a connected analytic arc γ. Then γ is either completely horizontal or completely
vertical in the quadratic differential metric.

Proof. Let p ∈ γ, and let v ∈ TpX be the tangent vector to γ at p. Since γ is
fixed pointwise by j, the induced map j∗ : TpX → TpX satisfies j∗(v) = v.

Since j is anticonformal, we have that the pullback quadratic differential j∗q
satisfies:

(12) j∗q(v, v) = q(v, v),

where ᾱ denotes the complex-conjugate of a complex number α.
On the other hand, by definition of the pullback we have:

(13) j∗q(v, v) = q(j∗v, j∗v) = q(v, v),

where we used the fact that j∗ fixes v.
By (12) and (13) we have that q(v, v) = q(v, v) and hence q(v, v) ∈ R.
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Consider the local coordinate around any point p ∈ γ in which the quadratic
differential q is dz2. By the previous observation and the fact that γ is analytic, γ
is locally either a horizontal or vertical segment around the image of p. Since γ is
connected, this is true of the entire arc. �

We apply this lemma to the involutions j1
i and j2

i . First, the anticonformal
involution j2

i : Σ̂i → Σ̂i fixes the n a-slits and hence they are either completely
horizontal or vertical. Since they are homotopic to the core curves of the cylinders
in the q̂i-metric, they must in fact be completely horizontal. Next, the anticonformal
involution j1

i : Σd
i → Σd

i fixes the b-arcs on Σd
i . Since these arcs embed in Σ̂i as

transverse arcs across the cylinders in the q̂i-metric, they must be completely vertical.
Hence the holomorphic quadratic differential q̂i passes down to a holomorphic

quadratic differential qi on the bordered surface Σi. The n a-arcs on ∂Σi become
horizontal segments, and the remaining n b-arcs on ∂Σi are vertical segments. These
form a polygonal boundary. The n euclidean cylinders on Σ̂i descend to a cyclically-
ordered collection of n euclidean rectangles on Σi glued along the critical graph Gi.
In the qi-metric on Σi, the horizontal width of these rectangles are (Hi, Hi . . . , Hi+a)
in a cyclic order (see Figure 14).

Figure 14. The rectangular surface at the end of Step 1.

7. Step 2: Prescribing lengths

In Step 1, the Jenkins–Strebel theorem allows us to prescribe the circumferences
of the resulting metric cylinders on the “quadrupled” surface Σ̂i, but not their lengths.
On quotienting back by the two involutions, this results in control on the lengths of
the “horizontal” sides of the polygonal boundary of the resulting “rectangular” surface
(see figure above). We show here, using a continuity method, that choosing the arcs
carefully in the conformal doubling step ensures that the extremal lengths of the
curves obtained from the doubled arcs on Σ̂i are appropriate values (Lemma 7.2)
such that the vertical edge-lengths are also prescribed (Lemma 7.3).

We shall use the following:

Lemma 7.1. (A topological lemma) Let φ : Rn
>0 → Rn

>0 be a proper, continuous
map mapping

(x1, x2, . . . , xn) 7→ (y1, y2, . . . yn)

Suppose there exists functions η1, η2 such that:
(1) xi > A =⇒ yi > η1(A), and
(2) xi < ε =⇒ yi < η2(ε),

for each 1 ≤ i ≤ n, where η1(A)→∞ as A→∞, and η2(ε)→ 0 as ε→ 0.
Then φ is surjective. (Note: here R>0 = R+ denotes the positive real numbers.)
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Sketch of a proof. The proof is a standard topological degree argument. Note
that (1) and (2) are equivalent to the requirement that φ, in addition to being proper,
has a coordinate-wise control: for a sequence of points (xj1, x

j
2, . . . x

j
n) and φ-images

(yj1, y
j
2, . . . y

j
n) (where j ∈ N) we have that fixing 1 ≤ i ≤ n, xji → ∞ =⇒ yji → ∞

and xji → 0 =⇒ yji → 0 uniformly (independent of the rest of the coordinates).
This implies that φ has degree 1 at infinity, and hence φ is surjective. �

Arcs and extremal lengths. Consider a Riemann surface Σ with one boundary
component which we identify with S1, and with n sub-intervals I1, I2, . . . , In of equal
length. Each Ii is further divided into two sub-arcs {ai, bi} in clockwise order (see
figure). As in the construction in Step 1, consider the two step doubling that leads
to a a closed Riemann surface: first double along the b arcs on ∂Σ to get a Riemann
surface Σd with slits corresponding to the a-arcs, and next, glue two copies of Σd

along these slits to get a closed surface Σ̂.
We shall work with the doubled surface Σd, and homotopy classes of curves γi

that enclose each of the slits ai, for 1 ≤ i ≤ n. Let their extremal lengths be
λ1, λ2, . . . , λn - note that these values are exactly double of the extremal lengths of
the corresponding closed curves one gets on Σ̂. We shall first show that by prescribing
the 2-arc decomposition of each interval Ii appropriately, we can obtain any n-tuple
of extremal lengths.

Consider the subinterval Ii = ai ∪ bi. We denote the (angular) length of a subarc
τ on ∂Σ ≡ S1 by l(τ). Note that l(Ii) = 2π

n
for each i. For convenience, we shall

fix a conformal metric ρ on Σ that gives a length 2π to the boundary circle ∂Σ, and
the above lengths of arcs shall be those induced by this metric. Denote the ratio of
lengths ri = l(ai)

l(bi)
. Also, notice that each ai arc has two adjacent arcs bi−1 and bi on

either side (where i− 1 is taken to be n if i = 1).

Figure 15. The a- and b-arcs on the boundary component of ∂Σ. The closed curve γi goes
around the ai slit on the surface doubled across the b-arcs, and has extremal length λi.

Lemma 7.2. The map φ : Rn
≥0 → Rn

≥0 that assigns to a tuple (r1, r2, . . . rn)
of ratios of interval lengths, the corresponding extremal lengths (λ1, λ2, . . . , λn) is
surjective.

Proof. The map φ is continuous since the moduli of the doubled surfaces depend
continuously on the lengths of the slits (even if some slits degenerate to punctures).
The lemma shall follow once we show that the following properties hold.

Notation. In what follows we shall consider an arbitrary (ri)1≤i≤n in Rn
≥0 and

its φ-image (λi)1≤i≤n. In (2) and (3) below, we consider a sequence {(ri)j} of such
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n-tuples and their φ-images {(λi)j}, where the index j runs from 1 ≤ j < ∞ and
shall be appended to any of the geometric quantities varying with j.

(1) λi = 0 ⇐⇒ ri = 0.
(2) rji → ∞ =⇒ λji → ∞. The divergence is uniform, that is ri > c =⇒ λi >

η1(c).
(3) ri < c =⇒ λi < η2(c).

(Here η1, η2 : R≥0 → R≥0 are increasing functions.)
Note that (1) and (2) imply that the map φ is proper, and from the uniform

estimates in (2) and (3), the surjectivity of φ follows from Lemma 7.1.

Property (1): The backward implication holds since ri = 0 ⇐⇒ l(ai) = 0 and
hence the corresponding a-slit has degenerated to a puncture on Σd, and the extremal
length λi of a loop enclosing a puncture is 0. For the other implication, observe if
l(ai) 6= 0 then for our choice of conformal metric ρ we shall have lρ(ai) > η > 0,
and a lower bound of 2η of the length of the curve around the ai-slit. The analytic
definition of extremal length:

λi = sup
ρ

lρ(ai)
2

A(ρ)

then shows that there is a positive lower bound on the extremal length λi.

Property (2): Note that by definition, rji →∞ =⇒ l(bji )→ 0. By the geometric
definition of extremal length,

(14) λji = inf
1

mod(A)
,

where A ⊂ Σd is an embedded annulus with core-curve enclosing the aji -slit.
It is well-known that there is a bound B on the largest modulus annulus Â that

can be embedded in C such that the bounded complementary component contains
the interval [0, l(aji )] and the other component contains the point l(aji ) + l(bji ) ∈ R.
Moreover, B → 0 as l(bi) → 0. In our case, the aji -slit on Σd is such an interval in
an appropriate conformal chart, and the endpoint of the adjacent b-slit is the other
real point. However since the annulus A is now constrained to be embedded in the
surface Σd, the modulus of A is less than that of Â (in the planar case). One can
also see this by considering the annular cover associated with the closed curve where
all the slits lie. From the above discussion, this proves that λji →∞ by (14).

Property (2) continued: The uniform divergence follows by quantifying the esti-
mates in the argument above: the bound B of the largest modulus of an annulus in
C separating the interval [0, a] from a+ b ∈ R is in fact a strictly increasing function
of b/a. That is, B = η(b/a) where η : R≥0 → R≥0 is a continuous function such that
η(0) = 0. The above argument then shows that

ri > c =⇒ l(bi)

l(ai)
< 1/c =⇒ B < η(1/c) =⇒ λi > η(1/c)−1,

where we have used (14) for the last inequality. Hence the uniform estimate holds
with the function η1(x) := η(1/x)−1.

Property (3): This follows from closely examining the argument of the backward
implication in Property (1): if ri < c, then by definition l(ai) < 2πc

n(1+c)
and hence for
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sufficiently small c one can embed an annulus of inner radius 2πc
n(1+c)

and outer radius
R (that depends only on ρ and Σ) on the doubled surface Σd. The modulus of this
annulus is M(c) which tends to∞ as c→ 0. By the geometric definition of extremal
length (14), λi is less than 1/M(c). �

Remark. A similar setup involving slits along subintervals of the real line in Ĉ
was considered in [Pen88].

Cylinder lengths. As in §6, an application of the Jenkins-Strebel theorem to the
homotopy classes of curves (corresponding to the doubled a-slits) on the “quadupled”
surface Σ̂ produces a quadratic differential metric with a decomposition into n metric
cylinders C1, C2, . . . , Cn with these as the core curves. By choosing the a-arcs on ∂Σ
appropriately, by Lemma 7.2 these curves can have assume any n-tuple of extremal
lengths. We now show that by prescribing these extremal lengths correctly, one
can assume any n-tuple of cylinder lengths {li}1≤i≤n. Note that the Jenkins-Strebel
theorem already allows one to prescribe arbitrary circumferences.

Lemma 7.3. Suppose one fixes each cylinder circumference to be H. Then the
map ψ : Rn

>0 → Rn
>0 that assigns to a tuple (λ1, λ2, . . . , λn) of extremal lengths of the

core curves, the reciprocals of the cylinder lengths (1/l1, 1/l2, . . . , 1/ln), is surjective.

Proof. The surjectivity of ψ shall follow from Lemma 7.1 once we establish the
following properties:

(1) λi > C =⇒ 1/li > η1(C),
(2) for sufficiently small c, λi < c =⇒ 1/li < η2(c)

for some increasing functions η1, η2 : R≥0 → R≥0.

Property (1): By (14) we have:

λi ≥ C =⇒ mod(A) ≤ 1/C

where A is any embedded annulus in Σd with core curve γi. This implies that
li ≤ H/C since otherwise one can embed a flat cylinder of modulus greater than 1/C
with core curve γi. Hence η1(x) = x/H works.

Property (2): We shall prove the converse statement: If li < B, then λi > C > 0
for some C that depends on B. For this, we shall construct a curve βi that intersects
γi at most twice, such that the extremal length

(15) Ext(βi) < D

for some D (depending on B). The lower bound C for λi = Ext(γi) now follows from
the well-known inequality (see [Min93]):

Ext(γi) Ext(βi) ≥ i(γi, βi)
2

To show the bound (15) we shall use the geometric definition of extremal length
(14): namely, we shall construct an annulus of definite modulus with core curve βi.

The construction of βi is geometric, and falls in two cases. Consider the cylinder
Ci corresponding to γi on the quadrupled surface Σd, of circumference H, and length
li < B (by our current assumption). Recall Ci has a bilateral symmetry that comes
from the doubling. Each of its two boundary components is adjacent to the other
cylinders C2, . . . Cn, and at least one of them, say Ck, shares a boundary segment
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with Ci of definite length, that is:

l(∂Ck ∩ ∂Ci) >
H

n

Let the length of the cylinder Ck be lk. The two cases are:
(I) lk ≤ B: In this case we construct the curve βi intersecting γi once, as shown

in Figure 16.

Figure 16. In Case I βi consists of an arc across Ci and an arc across Ck. This figure
shows half of the surface. By the two-fold symmetry from the “doubling”, these arcs join
up to form a closed curve.

(II) lk > B: In this case we construct βi intersecting γi twice, as shown in Fig-
ure 17.

Figure 17. In Case II βi comprises two arcs across Ci, separated by a definite distance,
that extend a bit into Ck, together with a loops around Ck connecting the two pairs of
endpoints.

In both cases, the curves are of bounded length and admit an embedded “collar”
neighborhood of definite width (these dimensions depend only on B and H) and
hence satisfy (15) for some D, by the geometric definition of extremal length. The
function η2 is implicit from the construction. �

Remark. The above argument also works if the cylinder circumferences are
fixed n-tuple (c1, c2, . . . , cn), by replacing H by the maximum or minimum value of
the ci-s, in the proof, as appropriate.
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Half-plane surfaces Σ′
i. By Lemmas 7.3 and 7.2 one can now choose the a-

and b-arcs on ∂Σi such that the cylinder lengths of the Jenkins–Strebel differential
on the quadrupled surface Σ̂i are all 2Hi. (Recall Hi = (H0 · 2i)

n/2 as in (11). See
also the remark following Lemma 7.3.)

Hence on each singular flat surface (Σi, qi), one now has n euclidean rectangles
R1, . . . , Rn glued along the metric spine Gi in that cyclic order, such that the resulting
polygonal boundary has all the side-lengths Hi, except one horizontal side of length
Hi + a (see Figure 18—here a is the desired residue at the pole).

We construct a half-plane surface Σ′i by gluing in a planar end PHi (see also
Definition 3.3) which has a polygonal boundary isometric to ∂Σi. From our choice
of lengths of the polygonal boundary, the metric residue of Σ′i is equal to a. For each
i these planar ends are truncations at height Hi → ∞ of a fixed planar end P of
residue a.

Choice of Hi. Recall from §3.2 that there is a conformal map from PHi ⊂ Σ′i
to a neighborhood UHi of 0 ∈ C that is an isometry in the φ-metric as in (6).

We now observe that by Lemma 3.4 the choice of Hi in (11) yields the following:

Lemma 7.4. D′12−i ≤ dist(0, ∂UHi) ≤ D′22−i, where D′1, D′2 > 0 are constants
independent of i (they depend only on the choice of H0).

Remark. This choice implies the modulus of the annulus U \Ui in the compact
exhaustion is comparable (upto a bounded multiplicative factor) to that of the an-
nulus PH0 \ PHi on the half-plane surface Σ′i. This is the geometric control crucial
for extracting a convergent subsequence in Step 4.

Figure 18. Step 2 ensures that one gets a “rectangular" surface Σi with horizontal and vertical
edges as shown, that can be extended to a half-plane surface Σ′i by gluing in a planar end.

8. Step 3: A conformal limit

Here we show that the sequence {Σ′i}i≥1 of half-plane surfaces constructed in the
previous section has Σ \ p as a conformal limit:

Lemma 8.1. (Conformal limit) For all sufficiently large i there exist (1 + εi)-
quasiconformal homeomorphisms

(16) fi : Σ′i → Σ \ p,

where εi → 0 as i→∞.
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The intuition behind the proof is that since Σ′i is obtained by excising-and-
regluing disks from Σ that get smaller as i → ∞, for large enough i the conformal
structure is not too different, and one can construct an almost-conformal map as
above.

Quasiconformal extensions. The following lemma is a slight strengthening of
the quasiconformal extension lemma proved in [Gup12].

Throughout, D shall denote a unit disk of radius 1 and B(r) shall denote an
open ball of radius r, centered at 0 ∈ C.

Lemma 8.2. For any ε > 0 sufficiently small, and 0 ≤ r ≤ ε, a map
f : D \B(r)→ D

that
(1) preserves the boundary and is a homeomorphism onto its image,
(2) is (1 + ε)-quasiconformal on D \B(r),

extends to a (1 + Cε)-quasisymmetric map on the boundary, where C > 0 is a
universal constant.

Sketch of the proof. In [Gup12] (see Appendix A of that paper) we proved this
when the map f was a quasiconformal homeomorphism of the entire disk, though
it had the control on distortion only on the annulus A = D \ B(r) as in (2) above.
However, all that was required was the following estimate on the image of the ball
B(r):

diam(f(B(r))) < C1ε

for some universal constant C1 > 0.
Here, this can be replaced by the following fact:

(17) d = diam(D \ f(A)) < C1ε

which follows from the modulus-estimates

(18)
1

1 + ε
≤ mod(f(A))

mod(A)

(19) mod(A) =
1

2π
ln

1

r
≤ 1

2π
ln

1

ε

(20) mod(f(A)) <
1

2π
ln

16

d
,

where (18) follows from the hypothesis (2) above, (19) follows from the fact that A
is a circular annulus and r ≤ ε, and (20) is well-known (see III.A of [Ahl06]).

Figure 19. The map f in Lemma 8.2 is almost-conformal off a small sub-disk.
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The rest of the proof is exactly the same as in [Gup12]:
Let Γ be family of curves between two arcs on the boundary of D, that avoids

the set D\f(A) which by (17) is of diameter O(ε). Then by a length-area inequality,
we have the following estimate on the extremal lengths:

(21) 1 ≤
λf(A)(Γ)

λD(Γ)
≤ 1 + C2ε,

where C2 > 0 depends only on C1.
Since this holds for any pair of arcs on the boundary ∂D, it translates to a

condition on the cross-ratios of four boundary points, and is enough to prove the
extension of f to the boundary is (1 + Cε)-quasisymmetric, as claimed (see [AB56],
and [Gup12] for details). �

Corollary 8.3. Let r > 0 be sufficiently small. Suppose g : D \ B(r) → D is a
conformal embedding that extends to a homeomorphism of ∂D to ∂D. Then there
exists a (1 + ε)-quasiconformal map f : D → D such that the extension of f to ∂D
agrees with that of g, and

(22) ε < 2C ′r

for some universal constant C ′ > 0.

Proof. Since g is conformal, it is also (1 + r)-quasiconformal. By the previous
lemma, g extends to a (1 + Cr)-quasisymmetric map of the boundary, which by the
Ahlfors–Beurling extension (see [AB56]) extends to an (1+C ′r)-quasiconformal map
of the entire disk, which is our required map f . �

Corollary 8.4. Let ε > 0 be sufficiently small, and U0, U and U ′ be conformal
disks such that U0 ⊂ U and the annulus A = U \U0 has modulus larger than 1

2π
ln 1

ε
.

Then for any conformal embedding g : A → U ′ that takes ∂U to ∂U ′ there is a
(1 + C ′ε)-quasiconformal map f : U → U ′ such that f and g are identical on ∂U .

Proof. By uniformizing, one can assume that U = U ′ = D and U0 ⊂ B(r) where
r ≤ ε by the condition on modulus. Hence this reduces to the previous corollary. �

Proof of Lemma 8.1. Consider the rectangular subsurface Σi ⊂ Σ′i and the
conformal embedding

gi : Σi → Σ \ p

which exists as the subsurface Σi is also part of a compact exhaustion of Σ \ p (see
§6).

By construction of Σ′i, the complement Σ′i \Σi is a planar end that is conformally
a punctured disk, and by property (3) of the compact exhaustion (see the first section
of §6), so is the complement of gi(Σi) in Σ \ p.

The conformal embedding gi restricts to a conformal map on the annulus Σi \Σ1.
By property (4) of the compact exhaustion (see §6) this annulus has a modulus
M = A · i, and hence M →∞ as i→∞.

By an application of the quasiconformal extension in Corollary 8.4, one can get,
for sufficiently large i, a (1 + εi)-quasiconformal map g′i from the punctured disk
Σ′i \ Σ1 to U \ p , that has the same boundary values as gi on ∂Σ1. Here εi → 0
as i → ∞. In fact, by (22) and the fact that M = A · i, we can derive the better
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estimate

(23) εi < B2−i

where B > 1 is a universal constant. This will be useful in the next section.
Together with the conformal map gi on Σ1, this defines the (1+εi)-quasiconformal

homeomorphism fi : Σ′i → Σ \ p for all sufficiently large i, as required in (16). �

9. Step 4: A limiting quadratic differential

In this section and the next we show that after passing to a subsequence the
sequence of half-plane surfaces Σ′i converges to a half-plane surface Σn,a - by Step
3 this would be conformally equivalent to Σ \ p, as required. In this section we
complete a preliminary step, namely we show that after passing to a subsequence
the corresponding half-plane differentials converge in Q̂m, the subset of the bundle
of meromorphic quadratic differentials that have a single pole of order exactly n (see
Appendix A for a discussion).

Recall (from §6) the half-plane surfaces Σ′i are constructed by excising a disk and
gluing in a planar end (a planar domain with a fixed quadratic differential). The
idea is that though the glued-in disk gets smaller on the conformal surface, one can
still extract some global control on the corresponding half-plane differentials (it is
useful to remember that two holomorphic quadratic differentials on a closed surface
are identical if they agree on any open set.) In particular, since the planar ends glued
in are truncated at heights increasing at a prescribed rate that matches the rate of
shrinking of the excised disks (see the final part of §7), the restriction of the resulting
half-plane differential on a fixed conformal disk U converge. We make this precise in
the rest of this section.

Let q′i be the half-plane differential corresponding to the half-plane structure on
Σ′i and let Ui = f−1

i (U) where fi is the (1 + εi)-quasiconformal map in Lemma 8.1.
Let φi : Ui → D be the conformal chart mapping pi = f−1

i (p) to 0.
By the gluing-in construction (see §6 and the final part of §7), there is an open

set Vi ⊂ Ui ⊂ Σ′i containing pi which, in the metric induced by q′i, is isometric to a
planar end PHi . Moreover, if φ : (U, p) → (D, 0) is the conformal coordinate map,
then Vi = f−1

i (V ) where V = φ−1(B(2−i)).
Let us recall that the planar end of Σ′i is isometric (and hence conformally equiva-

lent) to a neighborhood of 0 ∈ C equipped with the following meromorphic quadratic
differential (see §3.3):

(24)
(

1

zn+2
+

ia

zn/2+2

)
dz2

Hence the quadratic differential q′i on Ui (a subset of the planar end) is the pullback
by some conformal map, of the above fixed meromorphic quadratic differential on
C. The fact that Vi ⊂ Ui is isometric to the truncation at height Hi of a planar
end moreover implies that this conformal map takes Vi to the neighborhood UHi of
0 ∈ C.

We shall use the following criterion of convergence of meromorphic quadratic
differentials (see the Appendix for a discussion of the proof, and Criterion 4′ there):

Lemma 9.1. Let (Σi, Ui, pi) be a sequence of marked, pointed Riemann surfaces
converging to (Σ, U, p) in the sense that there exists a (1 + εi)-quasiconformal map
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fi : Σi → Σ that takes (Ui, pi) to (U, p), such that εi → 0 as i→∞. Assume that Σi

is equipped with a quadratic differential qi whose restriction to Ui is the pullback by
a univalent conformal map gi of a fixed meromorphic quadratic differential on C. If
gi form a normal family, then after passing to a subsequence, qi → q ∈ Q̂m(Σ).

This normality condition is satisfied if for each i, gi maps the subdomain Vi ⊂ Ui
to UHi ⊂ C, where via the conformal identification φi : (Ui, pi)→ (D, 0), we have:

(25) d2−i < dist(0, ∂UHi) < D2−i

and
(26) d2−i < dist(0, ∂φi(Vi)) < D2−i

for constants d,D > 0.

Note that (25) holds by Lemma 7.4. Hence to show that in our case the maps
fi : Σ′i → Σ \ p satisfy above the conditions of the above lemma (in the notation
already introduced) we only need to prove the bounds (26). Recall here that Vi is
the image of a round disk via a quasiconformal map (f−1

i ◦ φ−1) of small dilatation.
We start with the following more general analytical lemma:

Lemma 9.2. Let ε > 0 be sufficiently small, and r satisfy

(27) r ≥ ε

C
for some constant C > 1. Let f : D→ D be a (1 + ε)-quasiconformal map such that
f(0) = 0. Let V = f(Br) be the image of the subdisk of radius r centered at 0. Then
we have

(28)
r

D
≤ dist(0, ∂V ) ≤ 32r

for some universal constant D > 0.

Proof. A K-quasiconformal self-map of the disk is Hölder-continuous, with coef-
ficient 16 and exponent 1/K (see [Ahl06]). So for any z ∈ ∂Br we have:

(29) |f(z)| ≤ 16r1/1+ε < 16r1−ε = 16r−ε · r ≤ 16(C)εε−ε · r < 32r

for sufficiently small ε (since Cε → 1 as ε→ 0 and ε−ε < e−e < 1.45).
This gives the inequality on the right, in (28).
For the left inequality of (28) let z ∈ ∂Br, that is, |z| = r. Then the Hölder

continuity of f−1 : D→ D yields:

r = |z| ≤ 16 |f(z)− f(0)|1/(1+ε) = 16 |f(z)|1/(1+ε)

and hence we have:
|f(z)| ≥

( r
16

)(1+ε)

≥ r · εε

Cε161+ε

where we have used (27) for the last inequality.
It is easy to verify that for sufficiently small ε, we have:

εε

Cε161+ε
≥ 1/2

2 · 163/2

and hence we can take D = 256 in (28). �

Remarks. 1. The condition (27) is necessary, as in general quasiconformal maps
are Hölder continuous with exponent less than 1 and no better, and (28) then fails
for small r.
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2. The left inequality can be thought of a quasiconformal version of the Koebe
one-quarter theorem, and it would be interesting to give a better estimate of the
constant D.

Proposition 9.3. (Step 4) There is a subsequence of {q′i}i≥1 that converges to
a meromorphic quadratic differential q on Σ with a pole of order n and residue a at
p.

Proof. We recapitulate some of the previous discussion in this section:
In the construction of the half-plane surface Σ′i, one excises a subdisk Vi ⊂ U

and glues it back by a different quasisymmetric map w of a circle (the boundary
extension of the conformal map uniformizing Σ \ U to the rectangular surface Σi)
to form a new conformal surface. The conformal structure on the resulting disk
Ui = (U \ Vi) ∪w Vi now admits a uniformizing map φi : (Ui, pi)→ (D, 0), and in the
quadratic differential metric the disk φi(Ui) is isometric to a subset of a planar end
of residue a. It follows that the quadratic differential on φi(Ui) is a pullback of the
fixed differential (24) on C (with a pole at 0) via a univalent conformal map. By
construction, UHi corresponds to the subdomain φi(Vi) via this map.

We shall verify the convergence criterion of Lemma 9.1. Recall that φ : (U, p)→
(D, 0) was the uniformizing map for the (fixed) pointed disk (U, p) on Σ, and fi : (Σi,
Ui) → (Σ, U) was a (1 + εi)-quasiconformal map (Lemma 8.1). Hence the map
f = φi ◦ f−1

i ◦ φ−1 : D → D is a (1 + εi)-quasiconformal map, and since the disk
excised at the beginning of the construction was φ−1(B(2−i)), the image of the disk
B(2−i) under f is φi(Vi).

From (23) in the proof of Lemma 8.1, we have that:

(30) εi < B2−i

for some constant B > 1, and hence the condition (27) of Lemma 9.2 is satisfied
(here r = ri = 2−i and ε = εi). Applying Lemma 9.2 to the map f , we then get the
distance bounds (26). The bounds (25) also hold by Lemma 7.4, as noted previously.

Applying Lemma 9.1 to the sequence of half-plane surfaces Σi with their cor-
responding half-plane differentials q′i, we have that there is a limiting meromorphic
quadratic differential q ∈ Q̂m(Σ). �

10. Step 5: A limiting half-plane surface

The set QD′ of half-plane differentials associated with the local data
D′ = {(nj, aj) | nj ∈ N, nj ≥ 4, aj ∈ R≥0, where aj = 0 for nj odd}

of order of poles and residues at the marked points, is a subset of Q̂m. In this section
we shall prove that this subset is closed. To simplify the discussion, we shall continue
to consider the case of a single pole of order n and residue a. The proof of the general
case follows by an easy extension of the arguments.

Theorem 10.1. Let Σi be a sequence of half-plane surfaces in QD′ such that the
corresponding half-plane differentials qi → q ∈ Q̂m. Then q is a half-plane differential
in QD′ .

This together with Proposition 9.3 shall complete the proof of the following:

Proposition 10.2. The convergent subsequence of {q′i}i≥1 converges to a half-
plane differential q on Σ with a pole of order n and residue a at p.
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Proof of Theorem 10.1. Consider a family of half-plane differentials qi ∈ QD′
that converge in Q̂m. The goal is to show that after passing to a subsequence the
corresponding sequence of half-plane surfaces converges geometrically to a half-plane
surface. This shall be done in this section by considering the metric spines (see
Definition 10.4) of the sequence and constructing the limiting half-plane surface from
the limiting metric spine (Definition 10.15). The geometric convergence is not quite a
metric or biLipschitz one, as edges of the spines might collapse. A crucial observation
is that by the assumption of convergence in Q̂m, in the sequence of metric spines,
their embeddings in the surface do not get worse (Lemma 10.12), cycles do not
collapse (Lemma 10.14), and hence the limiting metric spine yields the same marked
topological surface. The proof is completed by showing this limiting half-plane surface
is indeed a conformal limit of the sequence (Lemma 10.16) by building quasiconformal
maps whose dilatation tends to 1. �

Spines.

Definition 10.3. A topological spine on a surface S with a set of punctures P
is an embedded graph that S \ P deform-retracts onto. Moreover, we assume each
vertex other than the punctures has valence at least three, so there are no unnecessary
vertices.

Definition 10.4. Associated to the half-plane differential q on Σ is its metric
spine G(q), which is the metric graph on the half-plane surface obtained from the
boundaries of the half-planes after identifications. This is a topological spine as in
the previous definition—the retraction can be defined by collapsing along the vertical
rays on each half-plane.

The metric spines Gi = G(qi) are topologically equivalent since they are all spines
of Σ \ P . After passing to a subsequence, one can assume that they are isomorphic.
Let Gtop denote this fixed finite graph, such that each Gi is just an assignment of
lengths to its set of edges E . By passing to further subsequence we can assume
that the edge-lengths li(e) for e ∈ E converge to a collection of non-negative reals
{l(e)}e∈E .

Definition 10.5. The collapsing locus C of the sequence is the set of edges of
Gtop whose edge-lengths tend to zero, and the diverging locus D of the sequence is
the set of edges whose lengths tend to infinity.

The goal of the next sections is to show that in fact, after passing to a subse-
quence, the embeddings of these spines can also be assumed to be the same upto
isotopy, that is, the metric spines are identical as marked graphs on the surface.
From this it will follow that the collapsing locus C has no cycles and D is empty
(Lemma 10.14).

Bounded twisting and no collapsing cycles.

Definition 10.6. (Twist) Let S be a surface and A ⊂ S an annulus with core
a non-trivial simple closed curve γ. For an embedded arc τ between the boundary
components of A, the twist of τ around γ relative to A is an integer denoting the
number of times τ goes around γ in A, upto isotopy fixing the endpoints τ ∩ ∂A.
(We ignore signs by taking an absolute value.)
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Remark. The above twist can be thought of as the distance in the curve complex
of the annulus A (see also §3 in [Min96]).

The following notion is to ensure that all non-trivial twists about the core curve
are captured in the annulus in the above definition:

Definition 10.7. (Maximal annulus) Given a non-trivial simple closed curve
c on a surface, its associated maximal annulus A(c) is an embedded open annulus
with core curve c such that the complement of its closure is either empty, or has
components which are either disks or once-punctured disks.

Remark. An example is the maximal embedded annulus realizing the extremal
length for γ—the complement of its interior is a graph on the surface. In our case,
we shall embed the annulus away from disks around the punctures, which gives the
once-punctured disks in its complement.

Lemma 10.8. Let Dc : S → S denote the Dehn twist around a simple closed
curve c, and M be a positive integer. Then for any maximal annulus A(c) and
any simple closed curve γ that intersects c, the twist of some component arc of
Dn
c (γ) ∩ A(c) about c is greater than M for all n sufficiently large.

Proof. It suffices to show that the “twists” of the arcs Dn
c (γ) ∩ A(c) about c are

supported in the interior of A(c), that is, cannot be isotoped away from the annulus.
This holds because A(c) is maximal, that is, the complement of its interior comprises
closed disks connected by arcs. The image curve Dn

c (γ) being embedded cannot run
along these arcs more than once, and any twisting in the interior of the disks can be
isotoped to be trivial. �

The following finiteness result is well-known. In the statement “sufficiently large”
can be taken to be a finite set of curves consisting of a complete marking (a maxi-
mal set of pants curves together with curves intersecting each), or alternatively, the
Humphries generators for the mapping class group of S.

Lemma 10.9. Let C be a sufficiently large collection of simple closed curves on
a surface S. For each N > 0, the set
S = {γ is a simple closed curve | each component of γ ∩ A(c) has twist less

than Naround c, for each c ∈ C}
is a finite set.

Proof. There are finitely many curves γ1, γ2, . . . , γk on S upto the action of the
mapping class group MCG(S), which is virtually generated by Dehn twists around
C. By Lemma 10.8 powers of a Dehn twist around c ∈ C increases the twist of some
component of γj∩A(c) around c, and hence by the condition that twists are bounded
there are only finitely many mapping classes g1, . . . , gN such that gi · γj ∈ S (where
1 ≤ i ≤ N , and 1 ≤ j ≤ k). Hence S is finite. �

As a consequence we have the finiteness of spines with a similar “bounded twist-
ing” condition:
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Lemma 10.10. Let C be a sufficiently large collection of simple closed curves
on a surface S. For each N > 0, the set

M = {m is a topological spine for S \ P | each component of e ∩ A(c) has
twist less than N around c, for each edge e ∈ m and c ∈ C}

is a finite set.

Proof. It suffices to show that each cycle in a spine inM corresponds to finitely
many possible homotopy classes of curves on the surface. Since there are uniformly
bounded number of edges in the spine (depending only on the topology of the surface),
and each edge of the cycle has bounded twisting around each c ∈ C, so does the
embedded cycle on the surface, and the finiteness follows from the previous lemma.

�

Consider now the sequence of half-plane surfaces Σi and the metric spines Gi.
Lemma 10.11. There exists a choice of disk neighborhoods Ui ⊂ Σi around

the pole of qi, for each i ≥ 1, such that for the sequence of singular flat surfaces
Si = Σi \ Ui we have:

(1) The sequence of areas Area(Si) =
´
Si

|qi| is uniformly bounded from above.

(2) For any simple closed curve γ on S, the length in the qi-metric of any curve
in Si homotopic to γ is uniformly bounded from below.

Proof. Since the meromorphic quadratic differentials qi are converging in Q̂m,
the underlying conformal structures converge. Choose a disk U around the pole in Σ,
and for a choice of ε > 0, fix a sequence of (1 + ε)-quasiconformal maps fi : Σi → Σ
preserving the puncture. Set Ui = f−1

i (U). By the convergence of qi, the area or
L1-norm of qi on Si converges to Area(Σ \ U), and hence we have statement (1)
above.

Also, by the convergence, the singular flat qi-metrics lie in a compact set, and
hence so do the lengths of the geodesic representatives of a fixed simple closed curve
γ on Σi. (By properties of non-negative curvature, such a geodesic representative is
unique except the case when they sweep out a flat annulus, in which case the lengths
are all the same.) This implies that the length of any curve in Si homotopic to γ is
uniformly bounded from below, which is statement (2). �

Lemma 10.12. For any simple closed curve γ, consider a maximal embedded
annulus Ai(γ) on Si. Then for any edge e of the spine Gi, each component of e∩Ai(γ)
has uniformly bounded length as i→∞. Moroever, Ai(γ) is a maximal annulus on
Σi and e ∩ Ai(γ) has uniformly bounded twist about γ.

Proof. The horizontal edge e from the spine twists across the annular region
Ai(γ). Assume a large number of twists. For each point in e ∩ Ai(γ) sufficiently in
the middle, there is a vertical segment into an adjacent half-plane, which because of
the twisting, has length at least the circumference of Ai(γ) before it can escape the
annulus (see Figure 20).

This circumference is bounded below by (2) of Lemma 10.11, and hence this
sweeps out a definite metric collar in Ai(γ) around the spine, which contributes area
proportional to the length of e ∩ Ai(γ). On the other hand, by (1) of Lemma 10.11
the areas of Ai(γ) (which are less than Area(Si)) remain remain uniformly bounded,
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and hence so do the lengths of e ∩ Ai(γ). Again by the uniform lower bound on the
circumferences of Ai(γ), this implies that the twisting of e around γ cannot tend to
infinity (each twist will add to a length of at least half the circumference). Since the
complement of a Si is a punctured disk Ui, the annulus Ai(γ) that is maximal on Si,
is also maximal on Σi. �

Figure 20. A collar about the metric spine eating into an adjacent half-plane (shown on the
left) embeds in Ai(γ) contributing to area.

The following is now immediate from Lemma 10.10:

Corollary 10.13. After passing to a further subsequence, we can assume that
the metric graphs Gi are isomorphic as marked spines on the surface. In particu-
lar, a cycle in the graph corresponds to the same homotopy class of a closed curve
throughout the sequence.

Lemma 10.14. (No collapsing cycles) C is a forest, that is, it contains no cycle,
and D is empty.

Proof. The meromorphic quadratic differentials qi lie in a compact set K of
Q̂m since they form a convergent sequence. By Corollary 10.13, after passing to a
subsequence a cycle in the metric graph Gi corresponds to a (fixed) non-trivial curve
in Σ whose lengths in the singular flat qi-metric must have a uniform lower bound by
the compactness of K. By the uniform (upper) length bound of Lemma 10.12 there
cannot be an edge whose lengths tend to infinity. �

Recall from the discussion preceding Definition 10.5 that the finite edge-lengths
of the metric spines converge after passing to a subsequence. Let G be metric graph
obtained by assigning this length l(e) to every edge e ∈ Gtop, where it is understood
that any component tree of the collapsing locus C is identified with a single vertex.
The previous lemma ensures that G has the same topological type, that is, remains
homotopy equivalent to Gtop.

Figure 21. The edges in C (shown in bold on the left) collapse along the sequence of graphs Gi.
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Definition 10.15. (Limiting half-plane surface) The half-plane surface ΣG is
defined to be the one obtained by gluing in n half-planes along the metric graph G
in the combinatorial order identical to the gluing of the half-planes along the metric
spine of each (Σ, qi). (Here we assume we have passed to a subsequence where the
metric spines are identical as marked graphs.)

Proving ΣG is the conformal limit.

Lemma 10.16. For all sufficiently large i there exist (1 + εi)-quasiconformal
maps

hi : Σ′i → ΣG

where εi → 0 as i→∞.

We start by observing that a map that collapses a short segment of the boundary
of a half-plane H can be extended to a map of the half-plane that is almost-isometric
away from a suitable neighborhood:

Lemma 10.17. For any ε > 0 there exists a δ > 0 such that a map h : ∂H→ ∂H
that collapses an interval I of length ε and isometric on its complement, extends to
a homeomorphism h : H → H that is an isometry away from an δ-neighborhood of
I. Moroever, one can choose δ such that δ → 0 as ε→ 0.

Proof. One can in fact choose δ = ε, and the extension to be height-preserving,
as follows. Let H = {(x, y)| y > 0} and I = [−ε/2, ε/2] × {0}. Choose a “bump”
function φ(x, y) supported on the rectangle R = [−ε, ε] × [0, ε] that is positive in
its interior and interpolates between 0 on I and 1 on the complement of R. This
function φ(x, y) is the “dilatation factor” of a horizontal stretch map

h(x, y) = (φ(x, y)x, y)

that is the required extension. �

Proof of Lemma 10.16. For any ε > 0, we shall construct a (1+ε)-quasiconformal
map from Σ′i to ΣG for all sufficiently large i. The construction is in two steps: in
the first step we map to an intermediate half-plane surface ΣG′i .

Step I. Let E be the set of edges in Gtop. The cardinality |E| is finite, a number
depending only on the genus of Σ. Recall also (see Definition 10.5) that C ⊂ E is the
sub-graph consisting of edges whose lengths along the sequence Gi tend to zero.

The lengths of edges of E \ C in Gi however converge to positive lengths of the
corresponding edges in G. Hence for all e ∈ E \ C we have:

(31) ri =
li(e)

l(e)
→ 1

as i→∞.
Consider the metric graph G ′i obtained by assigning the following lengths to the

edges of Gtop: l(e) to all edges in E \ C and li(e) to all edges in C. We can construct
a K1

i -biLipschitz map

(32) h1
i : Gi → G ′i

that preserves vertices, is a linear stretch map on all the finite-length edges in E \ C,
and is an isometry on every other edge. By (31), the stretch-factors, and therefore
the biLipschitz constants K1

i → 1 as i→∞.
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Note that any K-biLipschitz map

b : R→ R

can be extended to a K-biLipschitz map b̄ : H → H of the upper half-plane (here
R = ∂H by mapping

(x, y) 7→ (b(x), y).

Applying this to the map (32) above, we get for all sufficiently large i, a (1 + ε)-
biLipschitz extension

(33) h1
i : Σi → ΣG′i

where ΣG′i is the half-plane surface obtained by gluing half-planes along G ′i.
Step II. Note that the graph G is obtained by collapsing all the edges of C in G ′i.
Let E be the set of finite-length edges of E \ C and consider the minimum length

c = min
e∈E

l(e)

if E 6= ∅ is non-empty, and set c = 2 if E = ∅.

Figure 22. In Step II the map between half-plane surfaces that is an isometry away from a
neighborhood of C is finally adjusted to an almost-conformal map.

If Ci denotes the metric subgraph corresponding to C in Gi, recall we have

(34) diam(Ci)→ 0

as i→∞.
Since Ci is a forest by Lemma 10.14, for sufficiently large i we have:
(1) For each half plane H of the half-plane surface ΣG′i the intersection ∂H ∩ Ci

is a union of segments each of length less than ε and separated by a distance
at least c.

(2) The c/2-neighborhood Nc/2 of Ci is topologically a union of disks, one for each
component tree.

Moreover, for sufficiently large i, ε is small enough such that the corresponding
δ < c/2 where δ is as in Lemma 10.17. By an application of that Lemma on each
half-plane, one can build a homeomorphism

(35) h′i : ΣG′i → ΣG

that is an isometry (and hence conformal) away from a δ-neighborhood Nδ of Ci.
By observation (2) above each component of Nc/2\Nδ is topologically an annulus,

and has modulus that tends to infinity as δ → 0. Hence for sufficiently large i, one
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can apply the quasiconformal extension of Corollary 8.4 to adjust the map h′i in the
component disks of Nδ to obtain a (1 + C ′ε)-quasiconformal map homeomorphism

(36) h2
i : ΣG′i → ΣG

Recall the map (33) from Step I. The composition

(37) hi = h2
i ◦ h1

i : Σi → ΣG

is then (1+C ′′ε)-quasiconformal, for some universal constant C ′′ > 0, as required. �

11. Step 6: Prescribing the leading order term

From Lemmas 8.1 and 10.16 we now have:

Proposition 11.1. The quasiconformal maps gi ◦ f−1
i : Σ \ p → ΣG have qua-

siconformal dilatation that tends to 1 as i → ∞, and hence limits to a conformal
homeomorphism

g : Σ \ p→ ΣG
in the sense of uniform convergence on compact sets, after passing to a subsequence.
Here, ΣG = Σn,a, that is, it is a half-plane surface with a pole of order n and residue
a. Moroever, g is homotopic to the identity map.

Proof. The quasiconformal maps extend to a map between the closed surfaces,
mapping p to∞. The uniform convergence is a standard application of the compact-
ness of a family of quasiconformal maps with fixed domain and target, and bounded
dilatation. Since the quasiconformal dilatations of fi and gi tend to 1 as i→∞, that
the limiting homeomorphism is 1-quasiconformal, and hence conformal.

By construction (see Proposition 9.3), the limiting half-plane differential has a
pole of order n and residue a. Inspecting the construction of the quasiconformal
homeomorphisms fi and gi, we observe that both are homotopic to the identity (fi is
a quasiconformal map on a disk together with the identity map on its complement,
and gi restricts to a homotopy equivalence of the metric spines). Hence so is each
homeomorphism gi ◦ f−1

i , and the limit g. �

To complete the proof of Theorem 1.1 (in the case of a single marked point p) it
only remains to show that the half-plane differential has a leading order term c with
respect to the fixed choice of coordinate neighborhood U around p. By Lemma 3.8
it will be enough to show that the above conformal map g has derivative of suitable
magnitude with respect to this conformal neighborhood. This is where a suitable
choice of the constant H0 in (11) will be made.

As before let φ : U → D be a conformal homeomorphism such that φ(p) = 0. Let
g(U) be a subset of a planar end is identified with a complement of a compact set in C.
As in §3.3, by an inversion map, one has a conformal homeomorphism ψ : g(U)→ V
that takes ∞ to 0, where V is a simply connected domain in C containing 0. In the
rest of this section we shall show:

Proposition 11.2. There is a choice of H0 in (11) for which the conformal map
G = ψ ◦ g ◦ φ−1 : D → C that takes 0 to 0, has derivative |G′(0)| = c−

1
n−2 . For

this H0, we have that the leading term of the half-plane differential for ΣG is c with
respect to the coordinate chart U .

The proof of this needs the following analytical lemma:
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Lemma 11.3. Let fi : D→ C be a sequence of quasiconformal embeddings such
that

(1) fi(0) = 0 for all i,
(2) fi is (1 + εi)-quasiconformal, where εi → 0 as i→∞, and
(3) for some sequence ri → 0 we have that f(Bri) = Vi, where Vi is an open simply

connected domain containing 0 ∈ C having a uniformizing map φi : (Vi, 0)→
(D, 0), such that

(38) |riφ′i(0)| → α

as i→∞.
Then after passing to a subsequence, fi converges uniformly to f , a univalent con-
formal map such that |f ′(0)| = 1/α.

Proof. It is a standard fact that a sequence of K-quasiconformal self maps of Ĉ
normalized by the additional requirement that it fixes two points 0 and ∞ forms a
sequentially compact family with respect to uniform convergence. This is satisfied
by the family {fi} for each K > 1 and hence there is a limiting conformal map
f as required, which is either univalent or constant. It only remains to show that
|f ′(0)| = 1/α - this will also rule out the latter possibility.

Consider the conformal dilatation ψi : D → Bri where ψi(z) = riz. Note that
ψ′i(0) = ri. Then the composition Fi = φi ◦fi ◦ψi : D→ D is (1+ εi)-quasiconformal,
where εi → 0 as i → ∞ by property (2) above. The compactness result men-
tioned above (see also Theorem 1 of [Ahl06]) implies that there is a subsequence that
converges uniformly to a conformal map F . Moreover, since each map along the
sequence preserves the point 0 ∈ D, so does the limit and by the Schwarz lemma, F
is a rotation and in particular

(39) |F ′(0)| = 1.

If each fi were differentiable at 0, and the sequence of derivatives converged to the
derivative of the limit, we would have by using the chain rule

|F ′(0)| = lim
i→∞
|(φi ◦ fi ◦ ψi)′(0)| = lim

i→∞
|φ′i(0)| · |fi′(0)| · ri = α |f ′(0)| ,

where the last equality is from (38). By (39) the argument would be complete,
namely |f ′(0)| = 1/α as desired. However, fi are merely quasiconformal, and may
not be differentiable at 0. However they have derivatives which are defined almost-
everywhere and are locally integrable, and that converge in norm to the derivative of
the limit. So we run the above argument with the averages (L1-norms) of the total
derivatives in a sequence of shrinking disks around 0:

Let Bδ be a disk around 0 of radius δ > 0 (sufficiently small). For a conformal
or quasiconformal map F defined on D we have a nonnegative real number

Dδ
avgF =

1

Area(Bδ)

ˆ

Bδ

|DFi(z)| dz dz̄.

In what follows we shall pass to a converging subsequence wherever needed.
The sequence of quasiconformal maps Fi : D → D converges uniformly to a

rotation, and hence

(40) Dδ
avgFi → 1
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as i→∞.
Also, the sequence of quasiconformal maps fi : D→ C converges uniformly to a

conformal map f , and this implies that

(41) Dδ
avgfi → |f ′(0)|

as i→∞ and δ → 0.
Further, for the univalent conformal map φi : Vi → D, one has that

(42) φ′i(z) = φ′i(0) + Az +O(z2),

where |A| is bounded above by a universal constant (a standard fact in univalent
mappings).

Since quasiconformal maps are differentiable almost everywhere, we have by the
chain rule that

(43) |DFi(z)| = |Dφi(z)Dfi(z)Dψi(z)| = ri |Dfi(z)| |φ′i(z)|
for z ∈ B′δ, a full-measure subset of Bδ.

By (38) for any ε > 0 there is i sufficiently large such that α−ε < ri |φi(0)| < α+ε
and Ari < ε where A is the constant in (42). Using (43) we then have:ˆ

B′δ

|DFi(z)| dz dz̄ =

ˆ

B′δ

|Dfi(z)| ri |φ′i(z)| dz dz̄ ≤
ˆ

B′δ

|Dfi(z)| (α + 2ε) dz dz̄,

where we have used (42) and the above observations for the last inequality.
We have a similar bound from below. By taking i→∞ we get that∣∣αDδ

avgfi −Dδ
avgFi

∣∣→ 0

and hence by (40) we have
Dδ

avgfi → 1/α

which by (41) is equal to |f ′(0)| as δ → 0. This completes the proof. �

In our case, we shall apply Lemma 11.3 to the sequence of quasiconformal maps
gi ◦ f−1

i : Σ → ΣG (see Prop. 11.1) after restricting to the open set U that we con-
formally identify with D (see the discussion preceding Prop. 11.2). Recall that by
construction the above quasiconformal map takes the open set Vi ⊂ U to a planar
end PHi that can be identified with an open neighborhood UHi of 0 ∈ C (See also
Lemma 3.4).

To use Lemma 11.3, we need to verify the condition (3). Recall from §3.3 that
UHi is the image of the planar end truncated at height Hi. Consider a sequence of
uniformizing conformal maps φi : UHi → D for i ≥ 1, and recall that ri = 2−i by
construction (§6). In this setup, we have:

Corollary 11.4. After passing to a subsequence, ri |φ′i(0)| has a limit L as i→
∞. Moreover, L → ∞ as H0 → ∞, and L → 0 as H0 → 0, where H0 > 0 was the
constant chosen arbitrarily in (11), and L varies continuously with H0.

Proof. By construction (see the first part of §6) we have ri = 2−i and H
2/n
i =

H0 ·2i (see also (11)). Corollary 3.5 now shows that the sequence {ri |φ′i(0)|}i≥1 lies in
the interval [H0/4D2, H0/D1], and hence after passing to a subsequence converges to
L in that interval. As one varies H0, all domains (and hence the conformal maps φi
and its derivatives) vary continuously (see also Lemma 3.6) and the same subsequence
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converges to a value that varies continuously (and lies in an appropriately shifted
interval). �

Proof of Proposition 11.2. By the previous corollary, there exists a choice of H0

in (11) for which
ri |φ′i(0)| → c

1
n−2 .

Applying Lemma 11.3 to the sequence of quasiconformal maps

ψ ◦ gi ◦ f−1
i ◦ φ−1 : D→ C

it follows that G = ψ ◦ g ◦ φ−1 has derivative c−
1

n−2 at 0.
Now, the half-plane differential on the disk D uniformizing U is the pullback

of the standard meromorphic differential on C (see (6)) by this map G. Since the
leading order term at the pole for this standard differential is 1, by Lemma 3.8, the
leading order term is of the half-plane differential is |G′(0)|2−n = c , as required. �

12. Summary of the proof

Collecting the results of the previous sections, we have:

Proof of Theorem 1.1. Propositions 11.1 and 11.2 complete the proof of Theorem
1.1 in the case of a single marked point. This easily generalizes to the case of multiple
poles, as we briefly summarize:

For a set P = {p1, . . . , pn} on Σ consider fixed coordinate charts U1, . . . Un around
each. As in §6 , we consider a compact exhaustion of the surface by excising subdisks
of radii ri tending to zero, from each (more specifically, we choose ri = 2−i). For each
compact subsurface Σi we choose a number of arcs on each boundary component
depending on the desired orders of poles and by the quadrupling construction we
construct a compact Riemann surface with a collection of distinct homotopy classes
of curves (the assumption that Σ 6= Ĉ if n = 1 ensures that the homotopy classes
are distinct). We prescribe a Jenkins–Strebel differential with closed trajectories in
these homotopy classes and given cylinder circumferences on this surface. Moreover,
by Lemma 7.2 one can choose the arcs so that the extremal lengths of these curves
are precisely what is needed for the cylinder lengths to be

Hj
i =

(
Hj

0 · 2i
)nj/2

for the j-th marked point (1 ≤ j ≤ n), where nj is the desired order of the pole at that
marked point. (See 11) in §6.) By quotienting back, one gets a “rectangular” metric
on Σi with polygonal boundaries of prescribed dimensions, that can be completed
to a half-plane surface Σ′i by gluing in n planar ends. As in Lemma 7.4, the above
prescribed dimensions of the polygonal boundary ensures that the planar end glued
in is conformally a disk of radius O(ri) around 0 ∈ C.

The fact that the conformal structures on Σ \ P and Σ′i differ only a union of
disks of small radii (ri) allows us to build an almost conformal homeorphism between
them (§8) that tends to a conformal homeomorphism as i → ∞. The geometric
control on the dimensions of polygonal boundaries of the rectangular surfaces Σi

also shows that the corresponding half-plane differentials converge to a meromorphic
quadratic differential on Σ with poles at P (as in §9), and as in §10 this limiting
differential is in fact half-plane. Finally, as in §11 one can show that an appropriate
choice of “scaling” factors (the constants Hj

0 above) while constructing the sequence
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of rectangular surfaces, ensures that the leading order terms at each pole of the
resulting half-plane differential are the desired real numbers. �

13. Applications and questions

13.1. An asymptoticity result. We had previously shown (see [Gup12] for a
precise statement):

Theorem. [Gup12] A grafting ray in a generic direction in Teichmüller space is
strongly asymptotic to some Teichmüller ray.

The main result of [Gup] is a generalization of the above asymptoticity result to
all directions. The idea of the proof is to consider the conformal limit of the grafting
ray, and find a conformally equivalent singular flat surface that shall be the conformal
limit of the corresponding Teichmüller ray. The strong asymptoticity is shown by
adjusting this conformal map to almost-conformal maps between surfaces along the
rays.

The result of this paper is used to find the conformally equivalent singular flat
surface mentioned above: namely, Theorem 1.1 can be generalized easily to include
poles of order 2, which correspond to half-infinite cylinders in the quadratic differ-
ential metric. This is used to obtain a (generalized) half-plane surface Y∞ and a
conformal map

g : X∞ → Y∞

for each component X∞ of the conformal limit of the grafting ray.
Prescribing the leading order term, or equivalently the derivative of the above

conformal map g, helps to construct the controlled quasiconformal gluings of trun-
cations of these infinite-area surfaces.

13.2. The question of uniqueness. The construction of single-poled half-
plane differentials on surfaces (see §4.4) proceeds by introducing a slit in the metric
spine of a single-poled hpd Ĉ as above, and gluing by an interval-exchange. (This
does not affect the residue and leading order coefficient at the pole.)

Since there are non-unique choices of single-poled hpds (of order greater than 4)
on Ĉ which have the same residue and leading order coefficient (see §4.2), one can
see that uniqueness does not hold in general, in Theorem 1.1.

However, we conjecture:

Conjecture 1. When all the orders of the poles are 4, the half-plane differential
with prescribed residues and leading order terms that exists by Theorem 1.1, is
unique.

And more generally one can ask:

Question 13.1. Does uniqueness of the half-plane differential hold if one pre-
scribes further local data, in addition to the order of pole, residue and leading order
term?

13.3. Limits of Teichmüller rays. One obtains half-plane surfaces as geomet-
ric limits of Teichmüller rays (details in the forthcoming papers, including [Gup]).
Roughly speaking, along a Teichmüller geodesic there is a stretching of the quadratic-
differential metric in the “horizontal” direction (after rescaling we can assume that
distances in the vertical direction remains unchanged). This increases the area of the
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surface monotonically, and stretches a neighborhood of the critical graph of vertical
saddle-connections, to a half-plane surface.

Generically (for directions determined by arational laminations) one obtains a
collection of 2g − 2 half-plane differentials (C, zdz2), and more interesting limits are
obtained for directions determined by non-filling laminations.

One of the questions to be addressed in forthcoming work is:

Question 13.2. Given a collection of half-plane surfaces with pairings of poles
with matching order and residues, is it possible to construct a Teichmüller ray with
that (disconnected) half-plane surface as a limit?

Appendix A. Criteria for convergence

Let Σ be a Riemann surface with marked points p1, p2, . . . , pn, and k1, k2, . . . , kn
a tuple of integers such that kj ≥ 4. Let Q̂m(Σ) be the meromorphic quadratic
differentials on Σ with a pole of order kj at pj, for each 1 ≤ j ≤ n.

We prove here some criteria for convergence of meromorphic quadratic differen-
tials. As throughout this paper, for ease of notation we shall write these criteria only
for the case of a single marked point p of order k, but the results hold for any number
of them. We list them in order of sophistication - the later criteria will depend on
the previous ones. The final one was used in the proof of Theorem 1.1 (see §9).

For the following lemma, one might find it useful to keep in mind this toy example:

Example. Let fi : C → C be a sequence of meromorphic functions such that
in an open set U that is the complement of the closed ball BR0(0), we have that
fi(z) = φi(z)

zn
for some fixed n ≥ 1, where {φi(z)}i≥1 are holomorphic functions on

U that form a normal family. Then for any R > R0 the values that fi take on the
circle ∂BR(0) are uniformly bounded (independent of i). By the maximal principle,
the fis are uniformly bounded on BR(0), and hence after passing to a subsequence,
they converge uniformly on compact sets to a meromorphic function f .

Lemma A.1. (Criterion 1) Let {qi}1≤i<∞ be a sequence of meromorphic qua-
dratic differentials in Qm(Σ) having the local expressions

qi(z) =
φi(z)

zk
dz2

in a fixed coordinate neighborhood (U, z) around the pole p. If the holomorphic
functions {φi}1≤i<∞ form a normal family and converge to a holomorphic function
non-vanishing at 0 then qi → q ∈ Q̂m(Σ) after passing to a subsequence.

Proof. Let V ⊂ U be the radius-1/2 disk containing p, via the conformal chart
φ that takes U to the unit disk. The restriction of each qi to the compact subsurface
Σ′ = Σ \ V is holomorphic in its interior. Our goal is to show that they are locally
uniformly bounded, and it is enough to show that their L1-norms (or equivalently,
the qi-areas of Σ′) have a uniform bound.

Fix an arbitrary conformal metric on Σ′ and δ > 0 and let Dδ is a radius-δ disk
on Σ′. Then we have:

Claim. ‖qi‖L1(Σ′) ≤ C‖qi‖L1(Dδ), where C is a constant depending on Σ′ and δ.

The proof of this is identical to that of Lemma 12.1 of [Dum07]. By rescaling,
it suffices to prove that for unit-norm quadratic differentials, ‖qi‖L1(Dδ) ≥ 1/C for
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some constant C. We proceed by contradiction: if not, we obtain a sequence of
unit-norm quadratic differentials on Σ′ such that the qi-area of Dδ goes to zero. By
compactness of unit-norm quadratic differentials, there is a convergent subsequence,
and the limiting quadratic differential has unit norm. However it vanishes on Dδ, and
hence, by holomorphicity, is identically zero on the surface, which is a contradiction.

By the above claim it is enough to show that the qi-area of some radius-δ disk is
uniformly bounded (independent of i). We choose the metric, and δ, such that the
annular region U \ V contains such a δ-disk W . The sequence {qi}i≥1 then restricts
to a uniformly bounded family on W by assumption, and this completes the proof.
The final assumption of non-vanishing at 0 ensures that the limiting meromorphic
quadratic differential has a poles of the same order k at p, so the limit lies in the
space Q̂m. �

In what follows, we shall fix a sequence {qi}1≤i<∞ be a sequence of meromorphic
quadratic differentials in Q̂m(Σ) as in Criterion 1 above, together with a coordinate
neighborhood U around the pole p. In what follows, we shall implicitly identify U
with the disk D in z-coordinates.

Lemma A.2. (Criterion 2) Let there exist a fixed meromorphic quadratic dif-
ferential q0 in C with a pole of order k, and a sequence of univalent conformal maps
fi : (U, z)→ (C, 0) where i ≥ 1 such that the restriction of qi to U is the pullback of
q0 via fi. Moreover, assume that there is a uniform bound on the derivatives:

(44) c < |f ′i(0)| < C

for all i, for some fixed reals c, C. Then qi → q ∈ Q̂m(Σ) after passing to a subse-
quence.

Proof. One applies Criterion 1: it is a standard fact that the derivative bound (44)
implies that the family of univalent maps is normal, and so are the local expressions
of the pullback differentials. Moreover, by Lemma 3.8 and the lower bound on the
derivatives above, the leading order term (coefficient of 1/zn) does not vanish in the
limit, and hence the limiting differential q has the pole of correct order. �

As in §3.3 a planar end PH can be thought of as the restriction of a “standard”
holomorphic quadratic differential on C to a neighborhood of∞, or by inversion, the
restriction of a meromorphic quadratic differential on C (see (6)), to a neighborhood
UH of the pole at 0. Note that the neighborhoods UH shrink down to 0, at a controlled
rate (Lemma 3.4).

In what follows, we shall consider, as earlier in the paper, a sequence Hi → ∞
such that

(45) dist(0, ∂UHi) = O(ri)

where ri = 2−i (see Lemma 7.4).

Lemma A.3. (Criterion 3) Let there be the same setup as in Criterion 2, except
that instead of a derivative bound (44) we have that fi maps the disk Bri = {z ∈ U |
|z| ≤ ri} to UHi for the sequence Hi →∞. Then qi → q ∈ Q̂m(Σ) after passing to a
subsequence.

Proof. One only needs to prove the derivative bound (44) and apply Criterion 2.
Recall the following growth theorem concerning a univalent conformal map f : D→
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C such that f(0) = 0 (see, for example, Theorem 1.3 of [Pom92]):

|f ′(0)| |z|
(1 + |z|)2

≤ |f(z)| ≤ |f ′(0)| |z|
(1− |z|)2

Applying this to f = fi, and |z| = ri, we obtain from (45) that |f(z)| = O(ri) and
the required bounds on |f ′i(0)| follow. �

Lemma A.4. (Criterion 4) Let there be the same setup as in Criterion 3, ex-
cept that instead of fi mapping Bri to UHi , it maps some simply connected set Vi
containing 0 to UHi , where

(46) dri ≤ dist(0, ∂Vi) ≤ Dri

for each i ≥ 1 and some fixed reals d,D. (Here dist(0, ∂UHi) = ri as before.) Then
qi → q ∈ Q̂m(Σ) after passing to a subsequence.

Proof. As in the proof of the previous criterion, it shall suffice to show uniform
derivative bounds of fi at 0.

For any conformal map f : D → C the following holds for any z ∈ D (see
Corollary 1.4 of [Pom92]):

1

4

(
1− |z|2

)
|f ′(z)| ≤ dist(f(z), ∂f(D)) ≤

(
1− |z|2

)
|f ′(z)|

Consider the conformal map f = φi : D→ Vi ⊂ C that fixes 0.
In particular, for z = 0 we get by rearranging the above inequalities and using

that φi(0) = 0 that

(47) dist(0, ∂f(D)) ≤ |φ′i(0)| ≤ 4 dist(0, ∂f(D))

Since φi(D) = Vi and (46) holds this gives

(48) dri ≤ |φ′i(0)| ≤ 4Dri.

Now, consider the univalent conformal map g = fi ◦ φi : D → UHi ⊂ C. Using
the assumption that dist(0, ∂UHi) = ri and the distortion estimate (47) we have by
the same argument:

(49) |g′(0)| = O(ri).

But by the chain rule g′(0) = f ′i(0) ·φ′i(0) so by (48) and (49) we see that |f ′i(0)| have
uniform bounds (independent of i), and one can apply Criterion 2. �

Varying Σ. The previous criteria were for a fixed surface Σ. We now record a
criterion, for meromorphic quadratic differentials on a sequence of surfaces converging
in Tg, to converge in the subset Q̂m of the total bundle Qm over Tg consisting of
meromorphic quadratic differentials of a pole of order exactly k.

Namely, consider a sequence of meromorphic quadratic differentials {qi}i≥1 on
underlying surfaces {Σi}i≥1 in Tg that converge to Σ, that is, there exist (1 + εi)-
quasiconformal maps hi : Σi → Σ where εi → 0 as i → ∞. Suppose also that there
exist a neighborhood Ui of the pole of qi such that hi(Ui) = U for the fixed disk U
on Σ.
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Lemma A.5. (Criterion 1′) Assume that in the sequence just described, the re-
striction of qi on Ui is, in local coordinates via a conformal identification ci : (Ui, p)→
(D, 0), given by

qi(z) =
φi(z)

zk
dz2,

where φi(z) are univalent holomorphic functions that form a normal family that
converges to a holomorphic function non-vanishing at 0. Then qi → q ∈ Q̂m(Σ) after
passing to a subsequence.

Proof. Via the (1 + εi)-quasiconformal homeomorphisms ci ◦ h−1
i , the functions

φi can be pulled back to a family of locally integrable complex-valued functions on
U . By the assumption that the {φi} are a normal family, by arguing as in the
proof of Criterion 1, one shows that the pullback quadratic differentials (which are
measurable, but no longer holomorphic, sections of K⊗2

C for the Riemann surface Σ)
have bounded L2 norms on every (fixed) compact set away from p, and hence converge
after passing to a subsequence. Since εi → 0, away from p the limiting quadratic
differential is weakly holomorphic, and hence by Weyl’s Lemma, holomorphic. By
the condition that the limit of φi is non-vanishing at 0, the quadratic differential has
a pole of order k at p. �

The above lemma implies that appropriate versions of Criteria 2, 3 and 4 also
hold for the case when the underlying Riemann surfaces vary and form a converging
sequence. In particular, we have:

Lemma A.6. (Criterion 4′) Assume that in the sequence just described, the
restriction of qi on Ui is the pullback by a univalent conformal map fi : Ui → C of a
fixed meromorphic quadratic differential q0 on C. Moreover, fi maps the subdomain
Vi ⊂ Ui to UHi ⊂ C, where

dist(0, ∂UHi) = ri
and Vi satisfies the uniform distance bounds

dri ≤ dist(0, ∂Vi) ≤ Dri

as in (46). (Here d,D > 0 are some constants independent of i.) Then qi → q ∈
Q̂m(Σ) after passing to a subsequence.

The above lemma is summarized as Lemma 9.1 in §9, and used in the proof of
Proposition 9.3.
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