
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 275–304

ON THE RELATIONSHIP BETWEEN DERIVATIONS

AND MEASURABLE DIFFERENTIABLE STRUCTURES

Andrea Schioppa

New York University, Courant Institute, Department of Mathematics
251 Mercer St., New York, NY 10012, U.S.A.; schioppa@cims.nyu.edu

Abstract. We study the relationship between measurable differentiable structures on doubling
metric measure spaces and derivations. We prove:

(1) the existence of a measurable differentiable structure assuming that one can control the
pointwise upper Lipschitz constant of a function through derivations;

(2) an extension of a result of Keith about the choice of chart functions.

1. Introduction

The extension of first order calculus to metric measure spaces which are not
smooth has been a topic of research in the last decade. The search for regularity
conditions on a metric measure space allowing to generalize results and concepts of
first order calculus, for example the notions of derivative and gradient, has been a
topic of intensive research. We refer the reader to the survey [Hei07] for more details.
A fundamental result about the geometry of Lipschitz functions on Euclidean spaces
is the Rademacher Differentiation Theorem which asserts that a Lipschitz function
is differentiable a.e. with respect to the Lebesgue measure.

The Rademacher Differentiation Theorem for metric measure spaces.

In [Che99] Cheeger formulated an extension of this result to doubling metric measure
spaces which admit a weak version of the Poincaré inequality in the sense presented
by Heinonen and Koskela in [HK98, Hei01]. The starting point of this generalization
is the introduction of a notion of linear independence of Lipschitz functions at a
point (compare Definition 4.5). Because of the the Poincaré inequality it is possible
to prove that there is a uniform bound on the number of Lipschitz functions that are
linearly independent on a set of positive measure. Such kind of finite dimensionality
result can be interpreted as a Rademacher Differentiation Theorem and used to
introduce the notion of a measurable differentiable structure which allows to take
partial derivatives with respect to chart functions (see Section 4). In [Kei04a] Keith
found a weaker condition, the “Lip-lip” inequality, which implies the existence of a
measurable differentiable structure. This condition can be interpreted as a constraint
on the oscillation of a Lipschitz function at small scales. The oscillation is of course
dependent on the scale, but the “Lip-lip” inequality prevents a Lipschitz function
from oscillating a lot on some scales and very little on others. For another account
of this result we refer the reader to [KM11]. Keith showed also in [Kei04b] that
chart functions can be chosen among distance functions from points. His argument
assumed a Poincaré inequality and exploited Sobolev spaces techniques.
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Derivations. One can introduce a notion of “derivatives” on metric measure
spaces without requiring much regularity on the metric space, but the construction
can then become trivial. In [Wea00] Weaver introduced a concept of derivation
which can be thought as an extension of the concept of a measurable vector field
on a Lipschitz manifold to a metric measure space. Cheeger and Weaver proved
that their constructions agree for the spaces considered in [Che99]: details can be
found in [Wea00, sec. 5, example F]. However, the relationship between measurable
differentiable structures and derivations is still unclear. We were motivated to study
this relation by the work of Gong [Gon11] which produces bounds on the number
of independent derivations on a doubling metric measure space and recovers a finite
dimensionality result from a “Lip-derivation” inequality.

Main results. We summarize here the results of this work and refer the reader to
the corresponding sections for explanations of the terminology. It is first necessary
to investigate the linear algebraic structure of the derivation module. In [Wea00,
Theorem 10] it is shown that one can decompose a finitely generated abelian W ∗-
module over L∞(X) into the module of measurable sections of some bundle of finite
dimensional Banach spaces. The point of view here is slightly different because we
are not interested in choosing a norm or an explicit realization of the bundle as in
[Wea00]. We are interested in a decomposition into free modules and in developping
some linear algebra tools needed in the following sections, in particular Corollary 2.26
corresponding to the “Gram–Schmidt” orthogonalization for derivations in [Gon11].

Theorem 2.42. Suppose that the module of derivations Der(X, µ) has index
locally bounded by N . Then there is a measurable partition

X = X0 ⊔ · · · ⊔XN ⊔ Ω,

such that

• µ(Ω) = 0;
• if Xi 6= ∅, the L∞(Xi, µ) module Der(Xi, µ) is free of rank i.

A basis for Der(Xi, µ) will be called a local basis of derivations.

We then show the existence of a measurable differentiable structure assuming that
derivations control the pointwise upper Lipschitz constant £f (defined in Sec. 3) of
the function. There are different motivations for this result. The Lip-lip inequality
can be regarded as an infinitesimal version of the Poincaré inequality sufficient for
the existence of a differentiable structure. One might then wonder if there is a
similar condition involving derivations. For instance, in [Wea00, Definition 30] the
concept of rigidly differentiable space is introduced. In this case derivations control
the global Lipschitz constant of the functions and the same argument used to show
that a Poincaré inequality space is quasiconvex implies that a rigidly differentiable
complete metric space is a length space. In the case of metric differentiable structures
one might expect to weaken the condition to allow a local bound on the pointwise
upper Lipschitz constant. Moreover, it is no longer necessary to assume a uniform
bound, but the conformal factor λ can vary with the point (but nevertheless the
bound on the dimension of the differentiable structure does not depend on λ; in the
case of the “Lip-lip” inequality the bound produced by Keith depends on the “Lip-lip”
constant):

Theorem 5.9. Let (X, ρ, µ) be a doubling metric measure space. Assume that:
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• there are N derivations D1, · · · , Dn and a nowhere vanishing λ ∈ L∞(X, µ);
• for any Lipschitz function f , there is a set Ωf such that

µ(Ωf ) = 0;

max
j=1,··· ,N

|Djf(x)| ≥ λ(x)£f(x) ∀x ∈ X \ Ωf ;

then X admits of a measurable differentiable structure whose dimension is at most
N .

The last result is an extension of the result of [Kei04b] about the choice of the
chart functions.

Theorem 6.26. Suppose the doubling metric measure space (X, ρ, µ) admits a
measurable differentiable structure and that for each chart (Xα, {x

j
α}

Nα

j=1) the partial

derivatives are derivations. If {gj}
M

j=1 is a generating set for the Lipschitz algebra

Lip∞(X), the charts can be chosen so that the chart functions belong to {gj}
M

j=1.

A simple example of a metric measure space to which this result applies is a
totally disconnected subset K of R

n with positive Lebesgue measure. Denoting
by ρ the Euclidean distance and by µ the Lebesgue measure, (K, ρ, µ) admits a
differentiable structure by the classical Rademacher Theorem. Note that K does not
admit a Poincaré inequality, for example observing that a minimal upper gradient
for χK is identically zero. Given f ∈ Lip∞(K), ∂f

∂xi ∈ L∞(K,µ) and it is easy to see

that partial derivatives with respect to the coordinate functions ∂
∂xi are derivations.

Another family of examples is obtained by considering K totally disconnected in
a Carnot group and using horizontal vector fields to define derivations; compare
[Wea00, Sec. 5D] for a discussion of derivations in subRiemannian geometry.

Organization of the paper. In Section 2 we discuss the linear algebraic struc-
ture of the module of derivations. The module of derivations is a module over L∞(X).
The ring L∞(X) is not an integral domain and some care must be taken in intro-
ducing notions like “basis” or “rank”. We decided to restrict the term “basis” to the
case in which the module is free and replace “rank” by index (so the terminology is
different from that used in [Gon11]).

In Section 3 we recall some results about the local Lipschitz constants of a func-
tion. We then prove, assuming that the metric space is doubling, the localized deriva-
tion inequality (3.18) which, roughly speaking, says that if we apply a derivation D

to a Lipschitz function f , the size of Df is locally controlled by the local Lipschitz
constant £f .

In Section 4 we recall background material about measurable differentiable struc-
tures. In particular, to a metric measure space with a measurable differentiable
structure it is possible to associate a measurable cotangent bundle and use this to
construct (reflexive) Sobolev spaces H1,p for p > 1. We choose a different class of
Sobolev spaces from that employed by Cheeger because the minimal upper gradient
might become trivial if the space lacks enough rectifiable curves. An example to
keep in mind is a positive Lebesgue measure Cantor set in [0, 1]: it has a measurable
differentiable structure as it is a positive Lebesgue measure subset of [0, 1] but the
corresponding H1,p does not inject into the corresponding Lp space. The question
of injectivity is closely related to the closability of the exterior differential d coming
from the measurable differentiable structure (Proposition 4.26).
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In Section 5 we present a finite dimensionality result, i.e. the existence of a mea-
surable differentiable structure, assuming that the metric measure space is doubling
and the “reverse infinitesimal derivation inequality” (5.11) holds. This condition,
roughly speaking, says that there are sufficiently many derivations to control the
size of the local Lipschitz constant £f up to an L∞ conformal factor λ (uniform in
the sense that does not depend on the Lipschitz function). The reverse infinitesi-
mal derivation inequality should be compared with the “Lip-derivation” inequality of
[Gon11]. Our argument differs from that used by Gong to prove finite dimensional-
ity as we do not use an embedding into Euclidean space but we exploit the linear
algebraic structure of the derivation module and the localized derivation inequality.

In Section 6 we extend the results of Keith [Kei04b] about the choice of the chart
functions. We first present a representation formula (6.3) of derivations in terms
of partial derivatives. We then show that if the partial derivatives are derivations
the existence of a measurable differentiable structure is equivalent to the reverse
infinitesimal derivation inequality. We give sufficient conditions for partial derivatives
to be derivations but we are not able to settle the question as Sobolev space techniques
seem insufficient if H1,p does not inject in Lp. We then generalize the result of Keith
on the choice of chart functions (Theorem 6.26) using Lipschitz algebra techniques.

2. Derivations and linear algebra

In this section we first recall the definition and some properties of the Lips-
chitz algebra Lip∞(X) of a metric space (X, ρ). We then recall the definition of
the L∞(X, µ)-module Der(X, µ) of derivations of a metric measure space (X, ρ, µ).
Derivations form a module over the ring of essentially bounded functions. We proceed
to investigate the algebraic structure of this module using linear algebra and measure
theory. In particular, we give conditions to decompose the module of derivations into
free modules over “smaller rings” L∞(U, µ) where U ⊂ X has positive measure (The-
orem 2.42). An example to keep in mind is that of smooth vector fields defined on a
smooth manifold M . In that case one replaces Lip∞(X) by the algebra of bounded
smooth functions and Der(X, µ) by the C∞(M)-module of smooth vector fields.

Definition 2.1. (Lipschitz algebra) Let (X, ρ) be a metric space. We denote the
collection of bounded real-valued Lipschitz functions on (X, ρ) by Lip∞(X), which is
a real algebra.

Definition 2.2. For a Lipschitz function f : X → R we denote by L(f) its global
Lipschitz constant:

L(f) = sup
x 6=y

|f(x)− f(y)|

ρ(x, y)
.

For f ∈ Lip∞(X) we define the norm

(2.3) ‖f‖Lip∞(X) = ‖f‖∞ ∨ L(f).

This gives (Lip∞(X), ‖ · ‖Lip∞(X)) the structure of a Banach algebra, compare [Wea99,

Sec. 4.1].

As Weaver points out in [Wea99, Sec. 4.1], the term “Banach algebra” is used
slightly differently in this context as Lip∞(X) is actually bi-Lipschitz to a Banach
algebra in the usual sense. An important property of Lip∞(X) is that it is a dual
Banach space and it has a unique predual. The are two approaches to prove this
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result. The first approach uses the de Leeuw’s map [dL62]. The second approach
gives an explicit description of the dual space in terms of the Arens–Eells space
[AE56]. For more information we refer the reader to [Wea99, Chap. 2]. As Lip∞(X)
is a dual Banach space with a unique predual, we can consider the weak* topology
on it. It turns out that fn → f in the weak* topology if and only if fn → f pointwise
and if supn L(fn) < ∞.

Definition 2.4. A set {gj}
M

j=1 ⊂ Lip∞(X) is called a generating set for Lip∞(X)

if the subalgebra generated by it is weak* dense in Lip∞(X).

An important result connected to the previous definition is the Stone–Weierstraß
Theorem 6.30. Following Weaver we define derivations: [Wea00].

Definition 2.5. (Derivations) Let (X, ρ, µ) be a separable metric measure space
with µ Borel and σ-finite. A map

(2.6) D : Lip∞(X) → L∞(X, µ),

is called a derivation if:

• it is linear and bounded;
• it satisfies the product rule

(2.7) D(fg)(x) = Df(x)g(x) + f(x)Dg(x);

• if fn → f in the weak* topology in Lip∞(X), then Dfn → Df in the weak*
topology in L∞(X, µ).

The set of all derivations is denoted by Der(X, µ) and is an L∞(X, µ)-module. If
we restrict the Lipschitz functions to a measurable subset of U ⊂ X we denote the
L∞(U, µ)-module of derivations by Der(U, µ).

In the subsequent sections we will often assume, to simplify the notation in the
proofs, that the metric spaces considered are bounded and the measures are finite,
this being possible by taking a countable Borel partition. In particular, note that if
U ⊂ X any D ∈ Der(X, µ) can be restricted to give an element D|U ∈ Der(U, µ). If

f̃ ∈ Lip∞(X) extends f ∈ Lip∞(U), then one defines

(2.8) D|U(f) = (Df̃)|U (restricted on U).

This definition is well-posed by the locality result Proposition 3.16. An alternative
might have been to define derivations as maps

(2.9) D : Liploc(X) → L∞
loc(X, µ),

where Liploc(X) denotes the algebra of locally Lipschitz functions (i.e. f ∈ Liploc(X)
if for each point there is a neighbourhood on which f is Lipschitz), and L∞

loc(X, µ) is
the algebra of functions which are locally essentially bounded.

For U ⊂ X, µ(U) > 0, L∞(U, µ) is a commutative ring with unity. The subset

(2.10) V∞(U, µ) = {f ∈ L∞(U, µ) : µ ({x ∈ U : f(x) = 0}) = 0}

consists of those functions which are non vanishing (essentially). We define the set
V∞
M (U, µ) of those functions whose absolute value is a.e. bounded from below by

M > 0:

(2.11) V∞
M (U, µ) = {f ∈ L∞(U, µ) : µ ({x ∈ U : |f(x)| < M}) = 0} .

Note that f ∈ L∞(U, µ) is a unit if and only if f ∈ V∞
M (U, µ) for some M > 0.
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Lemma 2.12. Let V1, · · · , VM : X → V be Borel maps, with (V, ‖ · ‖) a normed
vector space and ‖Vi‖ ∈ L∞(X, µ). Suppose that µ(A) > 0 and ∀x ∈ A

(2.13) R〈V1(x), · · · , VM(x)〉 (real span)

has dimension M − 1; then there are Borel functions λi ∈ L∞(A, µ) such that

‖λi‖L∞(A,µ) ≤ 1

and

M
∑

i=1

λi(x)Vi(x) = 0 for a.e. x ∈ A,(2.14)

µ ({x : ∀i, λi(x) = 0}) = 0.(2.15)

Furthermore, if ∀x ∈ A

(2.16) R〈V1(x), · · · , VM(x)〉 = R〈V1(x), · · · , VM−1(x)〉,

then λM ∈ V∞(A, µ).

Proof. For almost every point x ∈ X we have {α1(x), · · ·αM(x)} ⊂ R such that

(2.17) (α1(x), · · · , αM(x)) 6= 0,

and
M
∑

i=1

αi(x)Vi(x) = 0.

Note that if the additional hypothesis (2.16) holds, we can assume that

αM(x) 6= 0.

Once the proof is complete, this will imply that λM is nowhere vanishing.
By assumption any other M-tuple such that (2.17) holds is a multilple of

(α1(x), · · · , αM(x)).

Therefore, the map

Λ: X → RP
M−1 (real projective space)(2.18)

x 7→ [(α1(x), · · · , αM(x))];(2.19)

is well-defined (a.e. as we need the ‖Vi(x)‖ to be finite). We define

G : RP
M−1 ×X → R(2.20)

(σ, x) 7→ max

{

‖
M
∑

i=1

αiVi(x)‖ : (αi) ∈ R
M : |(αi)| ≤ 1 and [(αi)] = σ

}

;(2.21)

then G is continuous in σ and Borel measurable in x. To show that Λ is Borel
measurable, it suffices to show that Λ−1(C) is a Borel set whenever C ⊂ RP

M−1 is
closed. If {αi} ⊂ C be a countable dense subset, then

(2.22) Λ−1(C) =
⋂

n

⋃

i

{

x : G(αi, x) <
1

n

}

.
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Therefore Λ is a Borel function. Finally, RP
M−1 can be covered by M differentiable

charts. On each chart Λ can be lifted to (λ1, · · · , λM) with

‖λi‖L∞(X,µ) ≤ 1.

�

Definition 2.23. The derivations {D1, · · · , Dn} ⊂ Der(U, µ) are said to be lin-

early independent (over L∞(U, µ)) if for any {λ1, · · · , λn} ⊂ L∞(U, µ),

(2.24)
n
∑

i=1

λiDi = 0,

implies that λi = 0. This means that for any choice of the representatives for the λi,
these vanish a.e. In the sequel, we have not kept the distinction between elements of
Lp-spaces and their representatives.

Definition 2.25. (Finite index) If in Der(U, µ) any linearly independent set of
derivations has at most N elements, Der(U, µ) is said to have finite index. The
smallest value of N is the index of Der(U, µ).

The previous definition of index is an attempt to generalize the notion of the rank
of a free module. If Der(U, µ) were free, i.e. if Der(U, µ) had a basis over L∞(U, µ),
rank and index would agree. We now prove an implication of the condition that
Der(U, µ) has finite index. We first assume that Lip∞(X) has a finite generating set

{gj}
M

j=1 (M < ∞). We will then reformulate this result for the case in which {gj}
M

j=1

is countable.

Proposition 2.26. Suppose that {Di}
n
i=1 ⊂ Der(U, µ) is a linearly independent

set. Suppose Lip∞(U) has a finite generating set {gj}
M

j=1. Then for a.e. x ∈ U the
row vectors

(2.27) Dig(x) ≡ (Dig1(x), · · · , DigM(x))

are linearly independent. In particular, M ≥ n.

Proof. Let Vi = Dig. Suppose that there is a measurable V ⊂ U such that
µ(V ) > 0 and ∀x ∈ V

R〈V1(x), · · · , Vn(x)〉

has dimension strictly smaller than n. Without loss of generality we can assume that
∀x ∈ V

R〈V1(x), · · · , Vk(x)〉

has dimension k − 1. We now apply Lemma 2.12 with V = R
M obtaining

{λ1, · · · , λk} ⊂ L∞(V, µ)

with

k
∑

i=1

λi(x)Vi(x) = 0(2.28)

µ ({x : ∀i, λi(x) = 0}) = 0.(2.29)
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We extend the λi to L∞(U, µ) by setting them equal to 0 on U \ V . The conclusion
is that the derivation

D′ =

k
∑

i=1

λiDi

maps each gi to 0. By the product rule, D′ = 0 on the algebra generated by {gj}
M

j=1.

But by weak* continuity,the derivation D′ is trivial on Lip∞(U). Therefore the
derivations D1, · · · , Dk are linearly depedent, contrary to the hypothesis. Note also
that as the Vi have to be linearly independent a.e., M ≥ n. �

Corollary 2.30. Suppose that {Di}
n
i=1 ⊂ Der(U, µ) is a linear independent set,

U Borel with µ(U) > 0. Let {gj}
M

j=1 be a finite generating set for Lip∞(U). Then
there are:

• a subset of the generators {g′1, · · · , g
′
n} ⊂ {gj}

M

j=1;

• a Borel measurable V ⊂ U with µ(V ) > 0;
• an invertible n× n matrix A over the ring L∞(V, µ), that is,

(2.31) A = (aij)i,j=1,··· ,n

for aij ∈ L∞(V, µ) such that if we define a new set of derivations {D′
i}

n
i=1 ⊂

Der(U, µ) by

(2.32) AD ≡ D′,

then ∀x ∈ V

(2.33) D′
ig

′
j(x) = δi,j.

Proof. By Proposition 2.26 for a.e. x ∈ U the Dig(x) are linearly independent.
Therefore there are

• a measurable U ′ ⊂ U with µ(U ′) > 0 and

• a subset {g′1, · · · , g
′
n} ⊂ {gj}

M

j=1,

such that the matrix

B(x) =





D1g
′
1(x) · · · D1g

′
n(x)

...
...

...
Dng

′
1(x) · · · Dng

′
n(x)





is non-singular for each x ∈ U ′. In particular, detB 6= 0 on U ′ so we can find ε > 0
and V ⊂ U ′ with µ(V ) > 0 and | detB| > ε on V . As detB ∈ V∞

ε (V, µ), we have
that

(2.34) f(x) =
1

detB(x)
∈ L∞(V, µ).

If we let C be the cofactor matrix of B and define new derivations in Der(V, µ) by

D′
i =

n
∑

j=1

fCijDj|V ,

we have that (2.33) holds a.e. in V . We finally let A = fC. �

We now discuss the modifications for the case M = ∞ by which we mean that
{gj}

M

j=1 is countable.
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Proposition 2.35. Suppose that {Di}
n
i=1 ⊂ Der(U, µ) is a linearly independent

set, U Borel. Let {gj}
∞
j=1 be a countable generating set for Lip∞(U) with

(2.36) sup
j=1,··· ,∞

‖gj‖Lip∞(X) ≤ C < ∞.

Then for a.e. x ∈ U the row vectors

(2.37) Dig(x) ≡ (Digj(x))
∞
j=1 ∈ l∞(N)

are linearly independent. Furthermore there are {g′1, · · · , g
′
n}, V and A such that the

conclusions of Corollary 2.30 hold.

Proof. The proof of the first part is like that of Proposition 2.26 but we take
V = l∞(N). For the proof of the second part we could argue as in Corollary 2.30
provided that there are a subset of the generators {g′1, · · · , g

′
n} and a set U ′ of positive

measure such that

B(x) =





D1g
′
1(x) · · · D1g

′
n(x)

...
...

...
Dng

′
1(x) · · · Dng

′
n(x)





is nonsingular on U ′. We prove this arguing by contradiction. Let TM : l∞(N) →
l∞(N) be the truncation map:

(2.38) TM(ci)
∞
i=1 = (c1, c2, · · · , cM , 0, 0, · · · ).

If we cannot find a subset U ′ ⊂ U and a subset of the generators such that B is
nonsingular on U ′, then for each M the vectors TM(Dig) are linearly dependent a.e.
This implies that there is a subset Ũ ⊂ U with µ(U \ Ũ) = 0 and for each M ≥ 1

and x ∈ Ũ , the vector subspace

(2.39) ΛM(x) =

{

(λ1, · · · , λn) ∈ R
n :

n
∑

i=1

λiTM(Dig)(x) = 0

}

has dimension at least 1. Now, ΛM(x) ⊃ ΛM+1(x) and so

(2.40)
∞
⋂

M=1

ΛM(x) 6= {0}

as the dimension of a vector subspace of R
n has to lie in {0, 1, · · · , n} and the

dimension of
⋂k

M=1 ΛM(x) can decrease only by integer values as we increase k. But
then (2.40) would imply that the Dig(x) are linearly dependent. �

Note that in Proposition 2.26 the role of generators and derivations is not sym-
metrical. For example, we can have M > n (trivially if M = ∞ as in Proposi-
tion 2.35). An example is the standard Cantor set whose Lipschitz algebra is gen-
erated by the single function x and where all derivations are trivial (see [Wea00,
Section 5. Examples A] or use the localized derivation inequality (3.18) which is
proved in the next section). Note that the bound M > n for M finite implies the
hypothesis of Theorem 2.42.

Definition 2.41. (Modules of derivations whose index is locally bounded) We
say that the module of derivations Der(X, µ) has index locally bounded by N if for
any set U ⊂ X of positive measure, Der(U, µ) has index at most N over L∞(U, µ).
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Theorem 2.42. Suppose that the module of derivations Der(X, µ) has index
locally bounded by N . Then there is a measurable partition

(2.43) X = X0 ⊔ · · · ⊔XN ⊔ Ω,

such that:

• µ(Ω) = 0;
• if Xi 6= ∅ the L∞(Xi, µ) module Der(Xi, µ) is free of rank i.

A basis for Der(Xi, µ) will be called a local basis of derivations.

Proof. Recall that we assume µ(X) < ∞. Let RN (X) denote the collection of
subsets U ⊂ X satisfying the following properties:

• U is measurable and µ(U) > 0;
• Der(U, µ) has index N ;

if RN (X) = ∅ we let XN = ∅. If RN(X) 6= ∅, let UN,1 ∈ RN(X) be such that

µ(UN,1) >
2

3
sup

V ∈RN (X)

µ(V ).

If

RN(X \ UN,1) = ∅,

we stop; otherwise we select UN,2 ∈ RN (X \ UN,1) with

µ(UN,2) >
2

3
sup

V ∈RN (X\UN,1)

µ(V ).

The construction of the sets {UN,i} proceeds by induction. There are two cases:
either we stop after N ′ steps or we continue up to infinity. In the first case we let

XN = UN,1 ⊔ · · · ⊔ UN,N ′

and observe that

RN (X \XN ) = ∅.

In the second case, as the sets {UN,i} are disjoint and as µ(X) < ∞, we conclude
that

lim
i→∞

µ(UN,i) = 0.

We now observe that

sup
V ∈RN(X\

⊔
∞

i=1
UN,i)

µ(V ) ≤ sup
V ∈RN(X\

⊔k
i=1

UN,i)
µ(V )

≤
3

2
µ(UN,k+1) → 0

(2.44)

as k ր ∞; this shows that

RN (X \ ∪iUN,i) = ∅.

The conclusion is that if we let XN = ⊔∞
i=1UN,i then there is no measurable subset

V ⊂ X \ XN such that µ(V ) > 0 and Der(V, µ) has index N . We now show that
Der(XN , µ) has index N . We first show that the index is at most N . Given a
linearly independent set {D1, · · · , Dm} ⊂ Der(XN , µ) we can consider the restrictions
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χUN,1
Di ∈ Der(UN,1, µ). We claim that these are linearly independent in Der(UN,1, µ);

otherwise there would be λi ∈ L∞(UN,1, µ) with

(2.45)

m
∑

i=1

λiχUN,1
Di = 0

with some λi0 6= 0. But extending each λi to an element of L∞(XN , µ), namely,
by letting it be 0 on the complement of UN,1, we would obtain a linear dependence
relation

(2.46)
m
∑

i=1

λiDi = 0

in Der(XN , µ). This would contradict the linear independence of the Di. Finally,
as the index of Der(UN,1, µ) is N , m ≤ N . We now show that there are N linearly
independent derivations in Der(XN , µ). For each j choose N independent derivations
{D1,j, · · · , DN,j} ⊂ Der(UN,j, µ). Without loss of generality we can assume that
‖Di,j‖ ≤ 1. As each function in L∞(UN,j , µ) can be extended to L∞(XN , µ) by setting
it equal to 0 on the complement of UN,j, we get extensions χUN,j

Di,j ∈ Der(XN , µ)
(with slight abuse of notation). Therefore

(2.47) Di =
∑

j

χUN,j
Di,j

defines an element of Der(XN , µ) with norm at most 1. The Di are independent:
assuming that there are λi ∈ L∞(XN , µ) such that λi0 6= 0 and

(2.48)
∑

i

λiDi = 0,

for some index j, χUN,j
λi0 6= 0 in L∞(UN,j, µ). But we would then obtain a dependence

relation

(2.49)
∑

i

χUN,j
λiDi,j = 0

in Der(UN,j , µ). The sets XN−1, XN−2, · · · , X0 are constructed by induction. Here we
use the hypothesis that the index is locally bounded by N . For example, this implies
that X \ XN has index locally bounded by N − 1. The induction step proceeds as
follows. Suppose we have already constructed XN , · · · , XN−k and N − k > 0. If we
let

Y = X \ (XN−k ⊔ · · · ⊔XN) ,

then Y has index locally bounded by N−k−1. Let RN−k−1(Y ) denote the collection
of subsets U ⊂ Y satisfying the following properties:

• U is measurable and µ(U) > 0;
• Der(U, µ) has index N − k − 1;

then we apply the same argument used to construct XN . In particular, there is no
measurable subset V ⊂ Y \ XN−k−1 such that µ(V ) > 0 and Der(V, µ) has index
N − k − 1. Before proceeding further, we remark that X0 might be nonempty. We
now show that

µ (X \ (X0 ⊔ · · · ⊔XN )) = 0
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arguing by contradiction. If

µ (X \ (X0 ⊔ · · · ⊔XN)) > 0,

there would be some measurable

V ⊂ X \X0 ⊔ · · · ⊔XN

with µ(V ) > 0 and Der(V, µ) having index in {0, · · · , N}. This contradicts the
construction of the Xi’s. Note that in this step we have again used that the index is
locally bounded by N .

We now prove that Der(Xk, µ) is free over L∞(Xk, µ). We choose a maximal
linearly independent set

{D1, · · · , Dk} ⊂ Der(Xk, µ)

and we show it is a basis. As the elements of this set are linearly independent, it
suffices to show that it spans Der(Xk, µ) over L∞(Xk, µ). Let D′ ∈ Der(Xk, µ) and
define the collection SD′(Xk) of subsets of Xk in the following way: V ∈ SD′(Xk) if
and only if the following holds:

• V is measurable and µ(V ) > 0;
• there are {λ1,V , · · · , λk,V } ⊂ L∞(Xk, µ) such that:

(2.50) χV ·

(

D′ −
k
∑

j=1

λj,VDj

)

= 0.

We first show that SD′(Xk) is not empty. By the maximality of {D1, · · · , Dk} there
are {λ′, λ1, · · · , λk} ⊂ L∞(Xk, µ) such that

µ (x : λ′(x) = 0) = 0,(2.51)

λ′D′ −
k
∑

j=1

λjDj = 0.(2.52)

Let V be a measurable set with µ(V ) > 0 and λ′|V ∈ V∞
M (V, µ) for some M > 0,

implying that λ′|V is invertible in L∞(V, µ). Without loss of generality we can assume
that |λ′(x)| ≥ M for x ∈ V . If we define

λj,V =

{

λj(x)

λ′(x)
for x ∈ V ,

0 for x ∈ cV ,

then (2.50) holds implying that V ∈ SD′(Xk). The same argument used for the set
RN(X) shows that there is a measurable partition

⊔

i∈I

Ui

of Xk such that for each Ui there are {λ1,Ui
, · · ·λk,Ui

} with

(2.53) χUi
·

(

D′ −
k
∑

j=1

λj,Ui
Dj

)

= 0;

if we let
λj =

∑

i∈I

χUi
λj,Ui
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and sum the equations (2.53) we conclude that

D′ =

k
∑

j=1

λjDj . �

3. The local Lipschitz constants

In this section we recall the definition of the local Lipschitz constants £f and
ℓf for a function f . Using Egorov and Lusin Theorems, we obtain a measurable de-
composition where the local Lipschitz constants behave nicely. In a doubling metric
measure space, using the Lebesgue Differentiation Theorem and the locality princi-
ple for derivations, we obtain the local estimate (3.18) which we call the localized
derivation inequality.

Definition 3.1. [Variation and local Lipschitz constants] Let f be a Lipschitz
function. We define the lower and upper variations of f at x from scale r down to 0
by

£f(x, r) = sup
s≤r

sup
y∈B(x,s)

|f(x)− f(y)|

s
(3.2)

ℓf(x, r) = inf
s≤r

sup
y∈B(x,s)

|f(x)− f(y)|

s
.(3.3)

Let us define the infinitesimal Lipschitz constants of f at x by

£f(x) = inf
r≥0

£f(x, r)(3.4)

ℓf(x) = sup
r≥0

ℓf(x, r).(3.5)

As far a we understand, the behaviour of ℓf is not so nice in general. Also, this
is not really a local Lipschitz constant. The behaviour of £f is more regular. For
example, if we blow up f near some point, then £f really is a Lipschitz constant for
the blow up. We also note that £f behaves like a seminorm in f in the following
sense, if f, g are Lipschitz functions and λ, µ ∈ R, then

(3.6) £(λf + µg) ≤ |λ|£f + |µ|£g.

The proof of the following Lemma is a direct application of Egorov and Lusin Theo-
rems and will be omitted; for details, compare [KM11]:

Lemma 3.7. Let f be a Lipschitz function. Then there is a measurable partition

(3.8) X =
∞
⊔

i=1

Ai ⊔ Ω,

such that

• Ω has measure 0,
• £f and ℓf are continuous on each Ai,
• £f(·, r) ց £f and ℓf(·, r) ր ℓf uniformly on each Ai for r ց 0.

The following discussion is not actually needed to prove Theorem 3.18, which is
the main result of this section. However, it clarifies the point we made when we said
that £f(x) is essentially the Lipschitz constant of f in a neighbourhood of x.
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Definition 3.9. (Local density) Let (X, ρ) be a metric space, A ⊂ X and x ∈ X.
We say that A is locally dense at x if for any ε > 0 there is an r(ε) > 0 such that
if r ≤ r(ε), A ∩ B(x, (1 + ε)r) is εr-dense in B(x, r), in the sense that ∀y ∈ B(x, r),
∃z ∈ A ∩B(x, (1 + ε)r) with ρ(y, z) < εr.

Proposition 3.10. Let (X, ρ, µ) be a doubling metric measure space and A ⊂ X

a measurable subset. Then for a.e. x ∈ A, A is locally dense at x.

Proof. The case µ(A) = 0 is trivial so we assume that A has positive measure.
As µ is doubling, there are constants C ≥ 1 and κ > 0 such that if z, w ∈ X and
B(w, s) ⊂ B(x, r), we have

(3.11)
µ(B(w, s))

µ(B(x, r))
≥

1

C

(s

r

)κ

;

let x ∈ A and suppose that A∩B(x, (1 + ε)r) is not εr-dense in B(x, r) In this case,
there is a point y ∈ B(x, r) such that B(y, εr) is disjoint from

A ∩ B(x, (1 + ε)r).

As B(y, εr) ⊂ B(x, (1 + ε)r), (3.11) implies that

(3.12)
µ (B(x, (1 + ε)r) \A)

µ (B(x, (1 + ε)r))
≥

µ (B(y, εr))

µ (B(x, (1 + ε)r))
≥

1

C

(

ε

1 + ε

)κ

;

as the Lebesgue differentiation theorem holds in the metric measure space (X, ρ, µ),
for a.e. x ∈ A, x is a density point of A, that is,

lim
sց0

µ(B(x, s) \ A)

µ(B(x, s))
= 0.

If we choose sε so that r ≤ sε implies

µ(B(x, (1 + ε)r) \ A)

µ(B(x, (1 + ε)r))
<

1

C

(

ε

1 + ε

)κ

,

then (3.12) does not hold, impliying that A∩B(x, (1+ε)r) is εr-dense in B(x, r). �

Corollary 3.13. Suppose x0 ∈ A is a density point of A. Suppose that f, g are
Lipschitz function with f = g on A. Then

£f(x0) = £g(x0),(3.14)

ℓf(x0) = ℓg(x0).(3.15)

We now come back to the proof of Theorem 3.17. We need a result about the local
behaviour of derivations (see the Appendix). References are [Hei07, Lemma 13.4],
[Wea99, Lemma 7.2.3] and [Wea00, Lemma 27]. Note that Proposition 3.16 does not
require the measure to be doubling.

Proposition 3.16. Let A ⊂ X be a measurable set and D ∈ Der(X, µ) a
derivation. If the Lipschitz functions f, g agree on A, then Df(x) = Dg(x) for a.e.
x ∈ A.

We can now prove the main result of this section. Note that we assume that
the measure µ is doubling, but the proof just requires the Lebesgue Differentiation
Theorem.
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Theorem 3.17. Let D ∈ Der(X, µ) and f ∈ Lip∞(X). Assume that the measure
µ is doubling. Then there is a Borel set Ωf such that

• µ(Ωf ) = 0;
• if x ∈ X \ Ωf ,

(3.18) |Df(x)| ≤ ‖D‖£f(x).

We will refer to this as the localized derivation inequality.

Proof. Without loss of generality we assume that

‖D‖ ≤ 1.

We apply Lemma 3.7 to f obtaining a Borel partition

X =

∞
⊔

i=1

Ai ⊔ Ω,

and it sufficies to show that (3.18) holds for a.e. x ∈ Ai. We will prove that (3.18)
holds if

• x is a Lebesgue point of Df , and
• x is a density point of Ai.

As £f is continuous on Ai, it follows that for each ε > 0 there is an r0(x, ε) > 0 such
that if r ≤ r0(x, ε) and y ∈ B(x, 2r), then

(3.19) £f(y) ≤ £f(x) + ε;

as £f(·, r) ց £f(·) uniformly on Ai, it follows that for each ε > 0 there is an
r1(x, ε) > 0 such that if r ≤ r1(x, ε) ≤ r0(x, ε), then

(3.20) £f(y, 2r) ≤ £f(y) + ε.

We now claim that for r ≤ r1(x, ε) the restriction f |Ai∩B(x,r) has Lipschitz constant
£f(x) + 2ε. To verify the claim, let y1, y2 ∈ B(x, r). Then y2 ∈ B(y1, 2r) and from
the definition of £f(y, 2r) we conclude that

|f(y1)− f(y2)| ≤ £f(y, 2r)ρ(y1, y2);

but by (3.20) we conclude that

|f(y1)− f(y2)| ≤ (£f(y) + ε)ρ(y1, y2),

and by (3.19) this gives

|f(y1)− f(y2)| ≤ (£f(x) + 2ε)ρ(y1, y2),

verifying the claim.
We now note that

(f − f(x))|Ai∩B(x,r)

has Lipschitz constant at most £f(x) + 2ε and that

‖(f − f(x))|Ai∩B(x,r)‖∞ ≤ (£f(x) + 2ε)r;

we can therefore take a MacShane extension g of (f − f(x))|Ai∩B(x,r) with

‖g‖Lip∞(X) ≤ £f(x) + ε.

We want to bound
ˆ

–
B(x,r)

Df(y) dµ(y)
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as r ց 0, because this will give an upper bound for |Df(x)|. The product rule
implies that D(1) = 0 a.e., therefore

ˆ

–
B(x,r)

Df(y) dµ(y) =

ˆ

–
B(x,r)

D(f − f(x))(y) dµ(y);

by Proposition 3.16 D(f−f(x)) = Dg a.e. in Ai∩B(x, r) and moreover, as ‖D‖ ≤ 1,

|Dg| ≤ £f(x) + 2ε

a.e. Therefore,
∣

∣

∣

∣

ˆ

–
B(x,r)

Df(y) dµ(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

–
B(x,r)

D(f − f(x))(y) dµ(y)

∣

∣

∣

∣

≤
1

µ(B(x, r))

ˆ

Ai∩B(x,r)

|Dg(y)| dµ(y)

+
1

µ(B(x, r))

ˆ

B(x,r)\Ai

|D(f − f(x))(y)| dµ(y)

≤ £f(x) + 2ε+ 2‖f‖Lip∞(X)

µ (B(x, r) \Ai)

µ (B(x, r))
;

(3.21)

letting r ց 0 gives the bound

|Df(x)| ≤ £f(x) + 2ε. �

4. Measurable differentiable structures

In this section we recall the definition of measurable differentiable structure.
In order to make the exposition more transparent, we decided to first introduce a
notion of local independence for Lipschitz functions and, building on this definition,
recall Lemma 4.10 which implies the existence of measurable differentiable structures.
This Lemma has been either explicitly or implicitly used in previous proofs that a
metric measure space admits a measurable differentiable structure [KM11], [Kei04a]
and [Che99, Section 4]. The definition of local independence makes also precise the
intuitive idea that, if the a space has a differentiable structure, the Lipschitz functions
form, infinitesimally, a finite dimensional vector space. To a space possessing a
measurable differentiable structure it is possible to associate a natural measurable
cotangent bundle. Using the sections of this bundle it is possible to construct Sobolev
spaces which are reflexive for p > 1. In this setting the exterior derivative d extends
to Sobolev functions. We finally make an observation relating d and the property
that these Sobolev spaces inject into the corresponding Lp spaces.

Definition 4.1. (Measurable differentiable structure) A metric measure space
(X, ρ, µ) has a measurable differentiable structure if:

• there is a measurable decomposition

(4.2) X =
⋃

α

Xα ∪ Ω;

• µ(Ω) = 0;
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• for each set Xα there are Lipschitz functions {xj
α}

Nα

j=1 such that if f is a
Lipschitz function, there are unique L∞(Xα, µ) functions

(4.3)
∂f

∂x
j
α

: Xα → R

such that

(4.4) £

{

f −
Nα
∑

j=1

∂f

∂x
j
α

(x)xj
α

}

(x) = 0,

for a.e. x ∈ Xα. The pairs (Xα, {x
j
α}

Nα

j=1) are called differentiable charts

and the ∂f

∂x
j
α

are called the partial derivatives of f with respect to the chart

functions;
• the integer Nα is uniformly bounded. The lowest upper bound is called the

dimension of the differentiable structure.

Definition 4.5. (Local independence of Lipschitz functions) Let f1, · · · , fn be
Lipschitz functions. We say that they are independent at x if

(4.6) £(λ1f1 + · · ·λnfn)(x) = 0

implies

(4.7) λ1 = · · · = λn = 0,

where λi ∈ R.

Another way of thinking of this notion of independence is the following. We can
define a map

Φx : R
n → R(4.8)

(λi) 7→ £

(

n
∑

i=1

λifi

)

(x);(4.9)

from the properties of £ we know that Φx is a seminorm. The linear independence
condition is equivalent to Φx being a norm. To establish the existence of a measurable
differentiable structure the following principle is usually employed:

Lemma 4.10. Suppose that there is a constant N such that if {f1, · · · , fn} ⊂
Lip∞(X) are Lipschitz functions which are independent on a set of positive mea-
sure A, then n ≤ N . Then X admits a measurable differentiable structure whose
dimension is at most N .

The proof is a modification of the ideas used to prove Theorem 2.42. The key
point is to show that the partial derivatives ∂f

∂x
j
α

are measurable, and this can be done

by using Lemma 2.12. Details can be found in [KM11] and [Kei04a, Section 7.2].

Theorem 4.11. If the metric measure space (X, ρ, µ) has a measurable differ-
entiable structure, then:

• there exists a measurable cotangent bundle T ∗X;
• on each chart (Xα, {x

j
α}

Nα

j=1) we have a basis {dxj
α}

Nα

j=1 for the fibres of T ∗Xα;
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• we can define a measurable fibrewise norm by setting:

(4.12) ‖(v1, · · · , vNα
)‖(x) = £

{

Nα
∑

j=1

vjx
j
α

}

(x);

• if on each chart (Xα, {x
j
α}

Nα

j=1), we define

(4.13) d : Lip(Xα) → Γ(T ∗Xα)

by

(4.14) df =

Nα
∑

j=1

∂f

∂x
j
α

dxj
α,

then ‖df‖ ∈ L∞(Xα, µ) and

(4.15) ‖df‖(x) = £f(x).

Therefore the set of sections Γ(T ∗X) is equipped with a norm and we can define
Lp(Γ(T ∗X), µ).

The following result is motivated by [Che99, Theorem 4.48]. Note that in this
more general setting the Sobolev spaces used by Cheeger might trivially reduce to the
corresponding Lp spaces. Therefore, the Sobolev spaces we work with are different
from those employed by Cheeger; as far as we understand, the crucial point is that
H1,p(X, µ) does not need to inject in Lp(X, µ), so in this setting there is no analogue
of the uniqueness statement in [Che99, Theorem 4.47].

Theorem 4.16. If the metric measure space (X, ρ, µ) has a measurable differ-
entiable structure, define

(4.17) D(X, p) = {f ∈ Lip(X) ∩ Lp(X, µ) : df ∈ Lp(Γ(T ∗X), µ)}

and

(4.18) ‖f‖H1,p(X,µ) = ‖f‖Lp(X,µ) + ‖df‖Lp(Γ(T ∗X),µ);

then
(

D(X, p), ‖ · ‖H1,p(X,µ)

)

is a normed vector space whose completion is denoted

by H1,p(X, µ) (“Sobolev space”). The space H1,p(X, µ) has the following properties:

(1) for p > 1 the norm ‖ · ‖H1,p(X,µ) is equivalent to a uniformly convex norm; in

particular, H1,p(X, µ) is reflexive;
(2) H1,p(X, µ) is isometric to a subspace of the Banach space

(4.19) Lp(X, µ)× Lp(Γ(T ∗X), µ)

whose norm is defined by

(4.20) ‖(f, γ)‖Lp(X,µ)×Lp(Γ(T ∗X),µ) = ‖f‖Lp(X,µ) + ‖γ‖Lp(Γ(T ∗X),µ);

(3) there are 1-Lipschitz maps

J : H1,p(X, µ) → Lp(X, µ),(4.21)

(g, γ) 7→ g;

d̃ : H1,p(X, µ) → Lp(Γ(T ∗X), µ),(4.22)

(g, γ) 7→ γ;
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which are the restrictions of the projections of Lp(X, µ) × Lp(Γ(T ∗X), µ) to
Lp(X, µ) and Lp(Γ(T ∗X), µ), respectively;

(4) d̃ agrees with d on elements f ∈ D(X, p) (which we have identified with
couples of the form (f, df)).

Proof. By [Che99, Theorem 4.48] we can replace the fibrewise norm ‖ · ‖T ∗X by
a new fibrewise norm ‖ · ‖′T ∗X which is induced, on each fibre, by a scalar product
and is equivalent to the previous norm with a bi-Lipschitz constant depending only
on the dimension of the measurable differentiable structure. Note that we can regard
D(X, p) as a linear subspace of Lp(X, µ)×Lp(Γ(T ∗X), µ) by f 7→ (f, df). In particu-
lar, taking the closure of this subspace, we conclude that H1,p(X, µ) is isometric to a
subspace of Lp(X, µ)×Lp(Γ(T ∗X), µ), implying (2). The norm ‖ · ‖Lp(X,µ)×Lp(Γ(T ∗X),µ)

is equivalent to the norm

(4.23) ‖(f, γ)‖′Lp(X,µ)×Lp(Γ(T ∗X),µ) =

(
ˆ

X

|f |p dµ+

ˆ

X

(

‖γ‖′T ∗X

)p
dµ

)
1

p

which is uniformly convex, implying (1). Finally (3) follows because we are restricting
the projections to the subspace H1,p(X, µ) and (4) follows because we identified f ∈
D(X, p) with (f, df) ∈ Lp(X, µ)× Lp(Γ(T ∗X), µ). �

Note, however, that if (f, γ) ∈ H1,p(X, µ), f does not determine, in general, γ.
For example, let X be a Vitali–Cantor subset of [0, 1], i.e. a Cantor subset of [0, 1] of
positive Lebesgue measure, and µ the Lebesgue measure; X is constructed similarly
to the standard Cantor set but it is not self-similar because the ratio between the size
of an interval removed at step k + 1 and that of an interval removed at step k tends
to 0 as k → ∞. As X is totally disconnected, we can approximate in Lp(X, µ) any
Lipschitz function f on X by functions fn which are Lipschitz and locally constant.
In particular, fn → (f, 0) in H1,p(X, µ). Therefore, both (f, df) and (f, 0) belong to
H1,p(X, µ).

We now note that H1,p(X, µ) is dense in Lp(X, µ). The operator d is therefore
densely defined in Lp(X, µ). We recall the following definition from Functional Anal-
ysis [Bre11, Chapter 2]:

Definition 4.24. The exterior differential

(4.25) d : H1,p(X, µ) ⊂ Lp(X, µ) → Lp(Γ(T ∗X), µ)

is said to be a closed operator if fn → f in Lp(X, µ) and dfn → γ in Lp(Γ(T ∗X), µ)
implies that f ∈ H1,p(X, µ) and df = γ.

The following Proposition will be used in Section 6.

Proposition 4.26. The map

J : H1,p(X, µ) → Lp(X, µ)

is injective if and only if the operator

d : H1,p(X, µ) ⊂ Lp(X, µ) → Lp(Γ(T ∗X), µ)

is closed.

Proof. Assume that J is injective. Suppose that fn → f in Lp(X, µ) and dfn →
γ in Lp(Γ(T ∗X), µ). Then (fn, dfn) is a Cauchy sequence in H1,p(X, µ) and so it
converges to a limit (f, γ). As J is injective, (f, γ) = (f, df) showing that d is
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closed. Conversely, assume that J is not injective; we can find (f, γ) ∈ H1,p(X, µ)
with γ 6= df . In particular, there is a sequence of Lipschitz functions fn with fn → f

in Lp(X, µ) and dfn → γ in Lp(X, µ). As γ 6= df , d is not closed. �

5. Finite dimensionality and derivations

In this section we prove a finite dimensionality result, that is the existence of
a measurable differentiable structure, by assuming an inequality in which the local
Lipschitz constant of a function is controlled by finitely many derivations. We have
decided to name this inequality (5.11) the reverse infinitesimal derivation inequality.
This condition should be compared with the “Lip-derivation” inequality(ies) studied
in [Gon11]. One difference is that we allow the constant in the inequality to vary
with the point (so we use λ(x)) but independently of the Lipschitz functions. The
reverse infinitesimal inequality should also be compared with the “Lip-lip” inequality
of [Kei04a]. An explanation about the terminology, “Lip” denotes the local Lipschitz
constant £ and “lip” the local Lipschitz constant ℓ. Our argument is based on measure
theory and uses linear algebra to imply finite dimensionality. The interplay between
measure theory and linear algebra is made possible by an approximation argument,
Lemma 5.12, whose proof uses the notion of Lebesgue representative which we now
recall.

Definition 5.1. (Lebesgue representative) Let g ∈ L1
loc(X, µ). If the Lebesgue

differentiation theorem holds (e.g. if µ is doubling) we can choose for g the represen-
tative defined as follows:

(5.2) g⋆(x) =

{

limrց0

´

–
B(x,r)

g(y) dµ(y) if the limit exists,

0 otherwise.

In this section if D is a derivation we will use the notation D⋆f for the Lebesgue
representative of Df .

Proposition 5.3. Let A ⊂ X, µ(A) > 0 and {f1, · · · , fn} ⊂ Lip∞(A). There is a
measurable subset A′ ⊂ A such that µ(A\A′) = 0 and for all x ∈ A′, {c1, · · · , cn} ⊂ R

(5.4) D⋆

(

n
∑

i=1

cifi

)

(x) =

n
∑

i=1

ciD
⋆fi(x).

Proof. Let A′ ⊂ A be a full measure subset of A such that for each x ∈ A′:

(5.5) D⋆fi(x) = lim
rց0

ˆ

–
B(x,r)

Dfi(y) dµ(y);

if {c1, · · · , cn} ⊂ R, then

(5.6) lim
rց0

ˆ

–
B(x,r)

D

(

n
∑

i=1

cifi

)

(y) dµ(y) = lim
rց0

ˆ

–
B(x,r)

n
∑

i=1

ciDfi(y) dµ(y);

therefore the limit

(5.7) lim
rց0

ˆ

–
B(x,r)

D

(

n
∑

i=1

cifi

)

(y) dµ(y)
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exists and equals

(5.8)

n
∑

i=1

ciD
⋆fi(x)

showing that (5.4) holds. �

Theorem 5.9. Let (X, ρ, µ) be a doubling metric measure space. Assume that:

• there are N derivations D1, · · · , Dn and a nowhere vanishing λ ∈ L∞(X, µ);
• for any Lipschitz function f , there is a set Ωf such that

µ(Ωf ) = 0;(5.10)

max
j=1,··· ,N

|Djf(x)| ≥ λ(x)£f(x) ∀x ∈ X \ Ωf ;(5.11)

then X admits of a measurable differentiable structure whose dimension is at most
N . The relation (5.11) will be referred to as the reverse infinitesimal derivation
inequality.

As we already said, the proof relies on the following approximation argument.
The point is that if we have a linear dependence relation where the ci are functions,
we would like to treat them as constants so that the linear dependence relation
“localizes” at the points of a full measure subset.

Lemma 5.12. Assume that the derivation inequality (5.11) holds. Let A ⊂ X,
µ(A) > 0 and {f1, · · · , fn} ⊂ Lip∞(A). There is a measurable subset A′ ⊂ A such
that µ(A \ A′) = 0 and for all x ∈ A′, {c1, · · · , cn} ⊂ R

max
j=1,··· ,N

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≥ λ(x)£

(

n
∑

i=1

cifi

)

(x)(5.13)

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≤ ‖Dj‖£

(

n
∑

i=1

cifi

)

(x) for j = 1, · · · , N .(5.14)

Proof. Let Ψ ⊂ Sn−1 be a countable dense subset of the unit sphere and let

(5.15) Ψ(f1, · · · , fn) ≡

{

n
∑

i=1

aifi : (a1, · · · , an) ∈ Ψ

}

.

Given a function f ∈ Lip∞(A) let Ωf denote the set where either one of the followings
fails:

max
j=1,··· ,N

∣

∣Dj
⋆f(x)

∣

∣ ≥ λ(x)£f(x)(5.16)

∣

∣Dj
⋆f(x)

∣

∣ ≤ ‖Dj‖£f(x) for j = 1, · · · , N ;(5.17)

by assumption and by Theorem 3.17, µ(Ωf) = 0. Let

(5.18) ΩΨ(f1, · · · , fn) =
⋃

f∈Ψ(f1,··· ,fn)

Ωf ;

then for x ∈ A \ ΩΨ(f1, · · · , fn), (5.16) and (5.17) hold for any multiple cf with
f ∈ Ψ(f1, · · · , fn) and c ∈ R. Let us fix some {c1, · · · , cn} ⊂ R; for any ε > 0 there
is a

(5.19) (b1, · · · , bn) = b · (a1, · · · , an)
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such that

(a1, · · · , an) ∈ Ψ;(5.20)
n
∑

i=1

|ci − bi| ≤ ε;(5.21)

in particular

max
j=1,··· ,N

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

bifi

)

(x)

∣

∣

∣

∣

∣

≥ λ(x)£

(

n
∑

i=1

bifi

)

(x)(5.22)

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

bifi

)

(x)

∣

∣

∣

∣

∣

≤ ‖Dj‖£

(

n
∑

i=1

bifi

)

(x) for j = 1, · · · , N .(5.23)

Let

C1 =
∨

‖fi‖Lip∞(X);(5.24)

C2 =
∨

‖Dj‖;(5.25)

then

(5.26)
∣

∣Dj
⋆fi(x)

∣

∣ ≤ C1C2.

We now make two estimates:

(5.27) £

(

n
∑

i=1

(ci − bi)fi

)

(x) ≤
n
∑

i=1

|ci − bi|£fi(x) ≤ εC1;

and
∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

bifi

)

(x)−Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

(bi − ci)Dj
⋆fi(x)

∣

∣

∣

∣

∣

≤
n
∑

i=1

|bi − ci|
∣

∣Dj
⋆fi(x)

∣

∣

≤ εC1C2.

(5.28)

Substitution of the last two estimates into (5.22) and (5.23) leads to

max
j=1,··· ,N

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≥ λ(x)£

(

n
∑

i=1

cifi

)

(x)− εC1C2 − εC1λ(x);(5.29)

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≤ ‖Dj‖£

(

n
∑

i=1

cifi

)

(x) + 2εC1C2(5.30)

for j = 1, · · · , N . Letting ε ց 0 completes the proof of (5.13) and (5.14). �

Proof of Theorem 5.9. The proof is reduced to Proposition 4.10. We assume
that there are n Lipschitz functions {f1, · · · , fn} ⊂ Lip(X) which are independent at
each point x ∈ A, where µ(A) > 0. We show that n ≤ N arguing by contrapositive:
we show that if n ≥ N then the functions {f1, · · · , fn} are dependent on a positive
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measure subset of A. Without loss of generality we can assume that A is bounded
and replace each fi by

(5.31)

(

fi ∧ sup
A

|fi|

)

∨

(

− sup
A

|fi|

)

so that

(5.32) {f1, · · · , fn} ⊂ Lip∞(X).

As λ is nowhere vanishing, we can suppose that λ ≥ C > 0 on A. By Lemma 5.12
there is A′ ⊂ A such that µ(A \ A′) = 0 and (5.13) and (5.14) hold on A′ (with λ

replaced by C):

max
j=1,··· ,N

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≥ C£

(

n
∑

i=1

cifi

)

(x)(5.33)

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≤ ‖Dj‖£

(

n
∑

i=1

cifi

)

(x) for j = 1, · · · , N .(5.34)

Let us consider the matrix

F =







D1
⋆f1 · · · D1

⋆fn
... · · ·

...
DN

⋆f1 · · · DN
⋆fn






,(5.35)

with entries in L∞(A′, µ). Since n > N ,there is a measurable B ⊂ A′ with µ(B) > 0
and rankF (x) = k < n for x ∈ B. Without loss of generality, we can assume that
the first k columns of F are linearly independent on B and the first k + 1 columns
of F are linearly dependent on B. By Lemma 2.12 there are λi ∈ L∞(B, µ) with

(5.36) µ ({x ∈ B : ∀i, λi(x) = 0}) = 0.

and

(5.37)
k+1
∑

i=1

λi(x) (Dj
⋆fi)(x) = 0,

for all x ∈ B and all j = 1, · · · , N . We now choose x ∈ B and define ci = λi(x). By
Proposition 5.3 we have

(5.38)

∣

∣

∣

∣

∣

Dj
⋆

(

k+1
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

= 0 for j = 1, · · · , N

and by (5.33)

(5.39) £(

k+1
∑

i=1

cifi)(x) = 0.

So the {f1, · · · , fn} are dependent at a.e. x ∈ B. �
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6. Choice of the chart functions

In this section we present some results connected with the choice of the chart
functions. The starting point is the representation formula (6.3) for derivations if the
space admits a measurable differentiable structure. This formula has an interesting
consequence: if the partial derivatives are known to be derivations, they give a basis
for the module of derivations of the chart (Corollary 6.15). This naturally leads to
the following question: when are the partial derivatives derivations? We have found
two sufficient conditions but we have been unable to find a complete answer. If
the answer were negative, then there would be two kinds of differentiable structures
and those in which the partial derivatives are also derivations would exhibit a more
regular behaviour. We next investigate the choice of the chart functions generalizing
the results of [Kei04b]. The main result is that, knowing that the partial derivatives
are derivations, the chart functions can be chosen among a generating set for the
Lipschitz algebra. This implies immediately that the chart functions can be chosen
among distance functions if the metric space X is bounded. Noting that we can
always assume the charts to be bounded by partitioning them, this implies that
chart functions can be chosen among distance functions. Note that in general the
distance functions have to be chosen as distance functions from points of each chart.
For example, let (U1, ρ1, µ1) and (U2, ρ2, µ2) be differentiability spaces (of positive
dimension) of diametre at most 1. The metric space (U1 ⊔U2, ρ) is defined by letting

(6.1) ρ(u, v) =

{

ρi(u, v) if u, v ∈ Ui,

1 otherwise.

The metric measure space (U1 ⊔ U2, ρ, µ1 + µ2) is a differentiability space and all
distance functions from points of U1 are constant on U2, so their differentials vanish
and these functions cannot be chosen as chart functions.

Lemma 6.2. Suppose the doubling metric measure space (X, ρ, µ) has a mea-
surable differentiable structure, and let (Xα, {x

j
α}

Nα

j=1) be a chart with {xj
α}

Nα

j=1 ⊂
Lip∞(Xα). If D ∈ Der(Xα, µ) and f ∈ Lip∞(Xα), then

(6.3) Df =

Nα
∑

j=1

∂f

∂x
j
α

Dxj
α.

Before giving the proof of the Lemma we will restate part of Lemma 5.12 and
of Proposition 5.3. The point is that in the proof of Lemma 5.12 the proofs of the
statements of (5.13) and (5.14) are indepedent. While (5.13) depends on the reverse
infinitesimal derivation inequality (5.11), (5.14) is just a consequence of the local-
ized derivation inequality (3.17) (which is true in a doubling metric space or, more
generally, in any metric measure space where the Lebesgue Differentiation Theorem
holds).

Lemma 6.4. Let A ⊂ X be a measurable subset of positive measure, let

{f1, · · · , fn} ⊂ Lip∞(A)

and let

{D1, · · · , DN} ⊂ Der(A, µ).
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There is a measurable subset A′ ⊂ A such that µ(A \ A′) = 0 and for all x ∈ A′,
{c1, · · · , cn} ⊂ R

∣

∣

∣

∣

∣

Dj
⋆

(

n
∑

i=1

cifi

)

(x)

∣

∣

∣

∣

∣

≤ ‖Dj‖£

(

n
∑

i=1

cifi

)

(x) for j = 1, · · · , N .(6.5)

Dj
⋆

(

n
∑

i=1

cifi

)

(x) =

n
∑

i=1

ciDj
⋆fi(x) for j = 1, · · · , N .(6.6)

Proof of Lemma 6.2. Without loss of generality we assume that Xα is bounded,
µ(Xα) < ∞. We will show that given f ∈ Lip∞(Xα) and D ∈ Der(Xα, µ), there is a
measurable subset Cf,D ⊂ Xα with µ(Xα \ Cf,D) = 0 and for all z ∈ Cf,D,

(6.7) D⋆f(z) =

Nα
∑

j=1

∂f

∂x
j
α

(z)D⋆xj
α(z).

This will imply (6.3). We apply Lemma 6.4 with A = Xα,

{D1, · · · , DN} = {D} ,

and
{f1, · · · , fn} =

{

f, x1
α, · · · , x

Nα

α

}

,

to obtain a measurable subset Af,D ⊂ Xα such that

• µ(Xα \ Af,D) = 0,
• for all z ∈ Af,D, {a, c1, · · · , cNα

} ⊂ R,
∣

∣

∣

∣

∣

D⋆

(

af +

Nα
∑

j=1

cjx
j
α

)

(z)

∣

∣

∣

∣

∣

≤ ‖D‖£

(

af +

Nα
∑

j=1

cjx
j
α

)

(z).(6.8)

D⋆

(

af +
Nα
∑

j=1

cjx
j
α

)

(z) = aD⋆f(z) +
Nα
∑

j=1

cjD
⋆xj

α(z).(6.9)

From the definition of measurable differentiable structure there are a measurable
subset Bf,D ⊂ Xα and maps:

∂f

∂x
j
α

: Bf,D → R for j = 1, · · · , Nα

such that

• µ(Xα \Bf,D) = 0;
• ∀z ∈ Bf,D

sup
j=1,··· ,Nα

sup
z∈Bf,D

∣

∣

∣

∣

∂f

∂x
j
α

(z)

∣

∣

∣

∣

≤ CL(f),

• ∀z ∈ Bf,D

(6.10) £

(

f −
Nα
∑

j=1

∂f

∂x
j
α

(z)xj
α

)

(z) = 0.

If we let Cf,D = Af,D ∩Bf,D, set

(a, c1, · · · , cNα
) =

(

−1,
∂f

∂x1
α

(z), · · · ,
∂f

∂xNα
α

(z)

)
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in (6.8), apply (6.10) and finally use (6.9) we deduce (6.7). �

Corollary 6.11. Suppose the doubling metric measure space (X, ρ, µ) has a
measurable differentiable structure which has dimension N . Then Der(X, µ) has
rank locally bounded by N , in particular Theorem 2.42 applies.

Proof. As the charts measurably partition X, it suffices to show that if U ⊂ Xα

has positive measure and if the derivations

{D1, · · · , Dn} ⊂ Der(U, µ)

are linearly independent, then n ≤ Nα ≤ N . We argue by contrapositive, that is,
by showing that if n > Nα, the derivations cannot be linearly independent. Using
Lemma 6.4 we find a set U ′ ⊂ U with µ(U \ U ′) = 0 and (5.33) and (6.5) hold for
the derivations {D1, · · · , Dn} and the chart functions. We now consider the matrix

F =







D
⋆

1 x
1
α · · · D

⋆

1 x
Nα
α

... · · ·
...

D⋆
n x

1
α · · · D⋆

n x
Nα
α







with entries in L∞(U ′, µ). As n > Nα there is a measurable subset U ′′ ⊂ U ′ of
positive measure on which the rank of F is k < n. Without loss of generality we can
assume that the first k rows are linearly independent and the first k + 1 rows are
linearly dependent. By Lemma 2.12 there are k + 1 functions λi ∈ L∞(U ′′, µ) such
that

‖λi‖L∞(A,µ) ≤ 1,(6.12)

k+1
∑

i=1

λi(x)D
⋆

i x
j
α(z) = 0 for a.e. z ∈ U ′′ and j = 1, · · · , Nα,(6.13)

µ ({x : ∀i, λi(x) = 0}) = 0.(6.14)

From (6.3) we deduce that

k+1
∑

i=1

λiD
⋆

i = 0

in Der(U ′′, µ) showing that the derivations {D1, · · · , Dk+1} are not linearly indepen-
dent. �

Corollary 6.15. Suppose the doubling metric measure space (X, ρ, µ) has a
measurable differentiable structure, and let (Xα, {x

j
α}

Nα

j=1) be a chart. If the partial

derivatives { ∂

∂x
j
α

}Nα

j=1 ⊂ Der(Xα, µ), then Der(Xα, µ) is free and { ∂

∂x
j
α

}Nα

j=1 is a basis.

We now give two criteria for the “partial derivatives” to be derivations.

Lemma 6.16. Suppose the doubling metric measure space (X, ρ, µ) has a mea-
surable differentiable structure, and let (Xα, {x

j
α}

Nα

j=1) be a chart. If the map

J : H1,p(X, µ) → Lp(X, µ)
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is injective, then the maps

∂

∂x
j
α

: Lip∞(Xα) → L∞(Xα, µ),(6.17)

f 7→
∂f

∂x
j
α

(6.18)

are derivations.

Proof. Recall Definition 2.5 where the axioms that derivations have to satisfy are
stated. The partial derivatives ∂

∂x
j
α

satisfy linearity, boundedness and the product

rule by definition. We have to check weak* continuity. As usual, there is no loss
of generality in assuming that Xα is bounded and of finite measure. Let {fk} ⊂
Lip∞(Xα) and fk → f weak* in Lip∞(Xα), that is, fk → f uniformly with L(fk)
uniformly bounded. We have to show that

∂fk

∂x
j
α

→
∂f

∂x
j
α

weak* in L∞(Xα, µ). We will prove the following statement: for any subsequence
{fkl} ⊂ {fk} we can pass to a further subsequence {fk̃l} ⊂ {fkl} such that

∂fk̃l

∂x
j
α

→
∂f

∂x
j
α

weak* in L∞(Xα, µ). This means that for any g ∈ L1(Xα, µ) we have to show that

(6.19)

ˆ

Xα

∂fk̃l

∂x
j
α

g dµ →

ˆ

Xα

∂f

∂x
j
α

g dµ.

As the sequence ∂fk

∂x
j
α

is uniformly bounded in L∞(Xα, µ) and as continuous functions

are dense in L1(Xα, µ), it will suffice to consider g continuous in (6.19). We observe
that {fkl} is a bounded sequence in H1,p(Xα, µ) and by reflexivity we can pass to
a subsequence {fk̃l} such that fk̃l → h weakly in H1,p(Xα, µ). As H1,p(Xα, µ) bi-
Lipschitz embedds in Lp(X, µ) × Lp(Γ(T ∗X), µ), we conclude that h = (f, γ) and
dfk̃l → γ weakly in Lp(Γ(T ∗X), µ). This implies that for every continuous function
g,

ˆ

Xα

∂fk̃l

∂x
j
α

g dµ →

ˆ

Xα

γjg dµ,

but, as J is injective, γ = df showing that (6.19) holds. �

Lemma 6.20. Suppose the doubling metric measure space (X, ρ, µ) satisfies
the hypotheses of Theorem 5.9 (in particular the reverse infinitesimal derivation
inequality), and let (Xα, {x

j
α}

Nα

j=1) be a chart. Then the maps

∂

∂x
j
α

: Lip∞(Xα) → L∞(Xα, µ),(6.21)

f 7→
∂f

∂x
j
α

(6.22)

are derivations.
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Proof. Let us consider the matrix

F =







D
⋆

1 x
1
α · · · D

⋆

1 x
Nα
α

... · · ·
...

D
⋆

Nx
1
α · · · D

⋆

Nx
Nα
α







with entries in L∞(Xα, µ). We first show that this matrix has a.e. rank Nα. Suppose
on the contrary that on some subset U ⊂ Xα with µ(U) > 0 the rank of F is k < Nα.
Without loss of generality we can assume that the first k columns are independent
while the first k+1 columns are linearly dependent. By Lemma 2.12 there are k+1
functions λi ∈ L∞(U, µ) such that

‖λi‖L∞(U,µ) ≤ 1,(6.23)

k+1
∑

i=1

λi(x)D
⋆

j x
i
α = 0 for a.e. z ∈ U and j = 1, · · · , N,(6.24)

µ ({x : ∀i, λi(x) = 0}) = 0.(6.25)

We choose a subset U ′ ⊂ U with µ(U ′ \ U) and such that the conclusions of Propo-
sition 5.3 and Lemma 5.12 hold for the derivations {D1, · · · , DN} and the chart
functions {x1

α, · · · , x
k+1
α }. For z ∈ U ′ application of (5.13) for

(c1, · · · , ck+1) = (λ1(z), · · · , λk+1(z))

shows that the chart functions {x1
α, · · · , x

k+1
α } are dependent at z, leading to a con-

tradiction. Therefore, the rank of F is a.e. Nα. So given U ⊂ Xα of positive measure
we can find V ⊂ U of positive measure and an Nα×Nα minor of F whose determinant
does not vanish on V . Without loss of generality we will assume that

G =







D
⋆

1 x
1
α · · · D

⋆

1 x
Nα
α

... · · ·
...

D
⋆

Nα
x1
α · · · D

⋆

Nα
xNα
α







is non-singular on V . Using an argument similar to that of Corollary 2.30 we can
find V ′ ⊂ V with µ(V ′) > 0 and derivations {D′

1, · · · , D
′
Nα

} ⊂ Der(V ′, µ) such that

D′
ix

j
α = δ

j
i .

This shows that the maps

χV ′

∂

∂x
j
α

are derivations (here we use the Representation Formula (6.3)). Therefore for any
U ⊂ Xα of positive measure, there is a subset V ⊂ U of positive measure such that
the

χV

∂

∂x
j
α

are derivations. Using an exhaustion argument similar to that in the proof of Theo-
rem 2.42 we find a measurable partition

Xα =
⊔

i

Vi ⊔ Ω
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with µ(Ω) = 0 and each

χVi

∂

∂x
j
α

is a derivation (in Der(Xα, µ)). Then the

∂

∂x
j
α

=
∑

i

χVi

∂

∂x
j
α

are derivations on the disjoint union
⊔

i Vi. �

In the next theorem we prove that chart functions can be chosen among a gen-
erating set for the Lipschitz algebra.

Theorem 6.26. Suppose the doubling metric measure space (X, ρ, µ) admits a
measurable differentiable structure and that for each chart (Xα, {x

j
α}

Nα

j=1) the partial

derivatives are derivations. If {gj}
M

j=1 is a generating set for the Lipschitz algebra

Lip∞(X), the charts can be chosen so that the chart functions belong to {gj}
M

j=1.

Proof. From Corollary 6.15 we know that
{

∂

∂x
j
α

}

is a basis for Der(Xα, µ). Given

any U ⊂ Xα with µ(U) > 0 we can apply Corollary 2.30 to find V ⊂ U with µ(V ) > 0,

functions
{

g′1, · · · , g
′
Nα

}

⊂ {gj}
M

j=1 and derivations
{

D′
1, · · · , D

′
Nα

}

⊂ Der(V, µ) such
that

D′
ig

′
j = δi,j.

Applying Lemma 6.4 to
{

D′
1, · · · , D

′
Nα

}

and
{

g′1, · · · , g
′
Nα

}

we find V ′ ⊂ V with
µ(V \ V ′) = 0 and for each z ∈ V ′,

max
i=1,··· ,Nα

|ci| = max
j=1,··· ,Nα

∣

∣

∣

∣

∣

D′⋆
j

(

Nα
∑

i=1

cig
′
i

)

(z)

∣

∣

∣

∣

∣

≤ max
j=1,··· ,Nα

‖D′
j‖£

(

Nα
∑

i=1

cig
′
i

)

(z),

(6.27)

which shows that the functions
{

g′1, · · · , g
′
Nα

}

are a.e. independent on V , implying

that (V, {g′i}
Nα

i=1) is a chart. Using and exhaustion argument similar to that in the
proof of Theorem 2.42 we can “cover” (up to a subset of measure 0) Xα by measurable

charts such that the chart functions are among the {gj}
M

j=1. �

The classical Stone–Weierstrass Theorem pertains to the Banach Algebra C(X)
of continuous functions on a compact space X, where the norm is the sup-norm.
There is an analogue of this result in the setting of Lipschitz algebras. From now to
the end of this section we will assume that X is bounded. The condition of separating
points is replaced by an uniform condition:

Definition 6.28. A subalgebra A ⊂ Lip∞(X) is said to separate points uni-
formly if there is a constant M > 0 such that for any pair of points x1, x2 ∈ X there
is an f ∈ A such that

(6.29) |f(x1)− f(x2)| = ρ(x1, x2) and ‖f‖Lip∞(X) ≤ M.

We state the result for Lip∞(X), in [Wea99, Chapter 4] one can find the proof
for Lip0(X, x0).
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Theorem 6.30. (Stone–Weierstrass for Lipschitz algebras) If A ⊂ Lip∞(X) is
a weak* closed subalgebra (with the same unit as Lip∞(X)) that separates points
uniformly, then A = Lip∞(X).

Corollary 6.31. Under the hypotheses of Theorem 6.26 the chart functions can
be chosen among distance functions from points.

Proof. By intersection with balls of increasing radii, any chart can be partitioned
into bounded charts Xα. As a consequence of the Stone–Weierstrass Theorem (6.30),
the distance functions from points are a generating set for Lip∞(Xα) and hence the
chart functions can be chosen among distance functions. �
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