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Abstract. If g is an analytic function in the unit disc D, we consider the generalized Hilbert
operator Hg defined by

Hg(f)(z) =

ˆ

1

0

f(t)g′(tz) dt.

We study these operators acting on classical spaces of analytic functions in D. More precisely,

we address the question of characterizing the functions g for which the operator Hg is bounded

(compact) on the Hardy spaces Hp, on the weighted Bergman spaces Ap

α
or on the spaces of

Dirichlet type Dp

α
.

1. Introduction

1.1. Generalized Hilbert operators. We denote by D the unit disc in the
complex plane C, and by Hol(D) the space of all analytic functions in D.

The Hilbert matrix

H =




1 1
2

1
3

.
1
2

1
3

1
4

.
1
3

1
4

1
5

.
. . . .


 ,

can be viewed as an operator on spaces of analytic functions, called the Hilbert

operator, by its action on the Taylor coefficients:

an 7→

∞∑

k=0

ak
n + k + 1

, n = 0, 1, 2, · · · ,

that is, if f(z) =
∑∞

k=0 akz
k ∈ Hol(D), we define

(1.1) H(f)(z) =
∞∑

n=0

(
∞∑

k=0

ak
n + k + 1

)
zn,
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whenever the right hand side makes sense and defines and analytic function in D.
Hardy’s inequality [5, p. 48] guarantees that the transformed power series in (1.1)

converges on D and defines there an analytic function H(f) whenever f ∈ H1. In
other words, H(f) is a well defined analytic function for every f ∈ H1.

It turns out that H(f) can be written also in the form,

H(f)(z) =
∞∑

n=0

(
ˆ 1

0

tnf(t) dt

)
zn =

ˆ 1

0

f(t)
1

1− tz
dt,

or, equivalently,

H(f)(z) =

ˆ 1

0

f(t)g′(tz) dt, with g(z) = log
1

1− z
.

The resulting Hilbert operator H is bounded fromHp toHp, whenever 1 < p <∞
but H is not bounded on H1 [3, Theorem 1.1]. In [4] the norm of H acting on Hardy
spaces was computed. Concerning the Bergman spaces Ap, the operator H : Ap → Ap

is bounded if and only if 2 < p <∞, [2]. But H is not even defined in A2, for it was
shown in [4] that there exist functions f ∈ A2 such that the series defining H(f)(0)
is divergent. In a recent paper [14] Lanucha, Nowak, and Pavlović have considered
the question of finding subspaces of H1 and of A2 which are mapped by H into H1

and A2, respectively, and also the action of the operator H on the Bloch space and
on Besov spaces.

In this article we shall be dealing with certain generalized Hilbert operators.
Given g ∈ Hol(D), we consider the generalized Hilbert operator Hg defined by

(1.2) Hg(f)(z) =

ˆ 1

0

f(t)g′(tz) dt.

As noted above, H = Hg with g(z) = log 1
1−z

. We mention [8] for a different gener-
alization of the classical Hilbert operator.

The Fejér–Riesz inequality [5, page 46] guarantees that given any g ∈ Hol(D),
the integral in (1.2) converges absolutely, and therefore the right hand side of (1.2)
defines an analytic function on D, for every f ∈ H1.

We note that Hg has a representation in terms of the Taylor coefficients similar
to (1.1). Indeed, a simple computation shows that if g(z) =

∑∞
n=0 bnz

n ∈ Hol(D)
and f(z) =

∑∞
n=0 anz

n ∈ H1, then

Hg(f)(z) =

∞∑

k=0

(
(k + 1)bk+1

ˆ 1

0

tkf(t) dt

)
zk =

∞∑

k=0

(
(k + 1)bk+1

∞∑

n=0

an
n+k+1

)
zk.

Our main objective in this paper is characterizing those functions g for which Hg

is bounded on the Hardy spaces Hp, the Bergman spaces Apα and on the the spaces
of Dirichlet type Dp

α (0 < p <∞, α > −1). These results are stated in Section 2.

1.2. Spaces of analytic functions. If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reit)|p dt

)1/p

, 0 < p <∞,

M∞(r, f) = sup
|z|=r

|f(z)|.
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1.2.1. Hardy and Bergman spaces. If 0 < p ≤ ∞, the Hardy space Hp

consists of those f ∈ Hol(D) such that ‖f‖Hp
def
= sup0<r<1Mp(r, f) < ∞. Functions

f in Hardy spaces have non-tangential boundary values f(eiθ) almost everywhere on
the unit circle T.

If 0 < p < ∞ and α > −1, the weighted Bergman space Apα consists of those
f ∈ Hol(D) such that

‖f‖Ap
α

def
=

(
(α+ 1)

ˆ

D

|f(z)|p(1− |z|2)α dA(z)

)1/p

<∞.

The unweighted Bergman space Ap0 is simply denoted by Ap. Here, dA(z) = 1
π
dx dy

denotes the normalized Lebesgue area measure in D. For each p ∈ (0,∞) the Hardy
space Hp is contained in A2p and the exponent 2p cannot be improved. We refer to
[5] for the theory of Hardy spaces, and to [6], [13] and [20] for Bergman spaces.

1.2.2. Dirichlet type spaces. If 0 < p <∞ and α > −1, the space of Dirichlet
type Dp

α consists of all indefinite integrals of functions in Apα. Hence, if f is analytic
in D, then f ∈ Dp

α if and only if

‖f‖p
Dp

α

def
= |f(0)|p + ‖f ′‖p

Ap
α
<∞.

The space D2
0 is the classical Dirichlet space D and D2

1 = H2. For each p, the range
of values of the parameter α for which Dp

α is most interesting is p− 2 ≤ α ≤ p− 1.
If α > p− 1, then it is easy to see that Dp

α = Apα−p. Indeed, this follows from the
well known estimate

ˆ

D

|f(z)|p(1− |z|)s dA(z) ≍ |f(0)|p +

ˆ

D

|f ′(z)|p(1− |z|)p+s dA(z),

(see, e. g., [7, Theorem6]). On the other hand, if α < p−2, then α+2−p
p

< 0 and then

it follows easily that Dp
α ⊂ H∞ in this case. For α = p− 2 the space Dp

p−2 coincides
with the Besov space usually denoted by Bp.

For α = p− 1 the space Dp
p−1 is the closest to the Hardy space Hp but does not

coincide with it for p 6= 2. If 0 < p ≤ 2, then Dp
p−1 ⊂ Hp [7], and if 2 ≤ p <∞, then

Hp ⊂ Dp
p−1 [15].

1.2.3. Mean Lipschitz spaces. We shall consider also the mean Lipschitz
spaces Λ (p, α). For 1 ≤ p < ∞ and 0 < α ≤ 1 the space Λ (p, α) consists of those
g ∈ Hol(D) having a non-tangential limit g(eiθ) almost everywhere and such that

ωp(g, t) = O(tα), t→ 0,

where

ωp(g, t) = sup
0<h≤t

(
ˆ 2π

0

|g(ei(θ+h))− g(eiθ)|p
dθ

2π

)1/p

is the integral modulus of continuity of order p. A classical result of Hardy and
Littlewood [11] (see also Chapter 5 of [5]) asserts that

(1.3) Λ (p, α) =
{
f ∈ Hp : Mp(r, f

′) = O
(
(1− r)α−1

)}
,

for 1 ≤ p < ∞, 0 < α ≤ 1. The corresponding “little oh” spaces are denoted by
λ(p, α).
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Among all the mean Lipschitz spaces, the spaces Λ(p, 1
p
), 1 < p <∞, will play a

fundamental role in our work. They form a nested scale of spaces contained in the
space BMOA [1]:

Λ

(
q,

1

q

)
⊂ Λ

(
p,

1

p

)
⊂ BMOA, 1 ≤ q < p <∞.

Furthermore the function log( 1
1−z

) belongs to Λ
(
p, 1

p

)
for each p > 1.

2. Main results

Our main results regarding Hardy spaces are contained in Theorem 1 and Theo-
rem 2.

Theorem 1. Suppose that 1 < p ≤ 2 and g ∈ Hol(D). Then Hg is bounded

from Hp to Hp if and only if g ∈ Λ
(
p, 1

p

)
.

Theorem 2. Suppose that 2 < p <∞ and g ∈ Hol(D). We have:

(i) If Hg is bounded from Hp to Hp, then g ∈ Λ
(
p, 1

p

)
.

(ii) If g ∈ Λ
(
q, 1

q

)
for some q with 1 < q < p, then Hg is bounded from Hp to

Hp.

It is natural to ask whether or not the condition g ∈ Λ
(
p, 1

p

)
implies that Hg is

bounded from Hp to Hp, for 2 < p <∞. We do not know the answer to this question

but we conjecture that it is affirmative. The condition g ∈ Λ
(
q, 1

q

)
for some q with

1 < q < p which appears in (ii) is slightly stronger than that of g belonging to

Λ
(
p, 1

p

)
.

Using (1.3) it follows that if g ∈ Hol(D) has power series g(z) =
∑∞

k=0 bkz
k with

supk∈N k|bk| < ∞, then g ∈ Λ
(
2, 1

2

)
. Also, using (1.3) and the Littlewood subordi-

nation principle, it follows easily that a function g ∈ Hol(D) such that ℜ(g′(z)) ≥ 0,

for all z ∈ D, belongs to Λ
(
q, 1

q

)
for all q > 1, a result which readily implies that the

same is true for any g ∈ Hol(D) which is the Cauchy transform of a finite, complex,
Borel measure µ on the circle T, that is,

g(z) =

ˆ

T

dµ(ζ)

1− ζ̄z
.

Consequently, it is clear that we have the following.

Corollary 1. Let K be the class of those analytic functions in D which are the
Cauchy transform of a finite, complex, Borel measure on T and let

C =

{
g(z) =

∞∑

k=0

bkz
k ∈ Hol(D) : sup

k∈N
k|bk| <∞

}
.

We have:

(i) If 2 ≤ p <∞ and g ∈ C, then Hg : H
p → Hp is bounded.

(ii) If 1 < p <∞ and g ∈ K, then Hg : H
p → Hp is bounded.
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We note that K and C are subclasses of the mentioned mean Lipschitz spaces
containing the function g(z) = log 1

1−z
. Thus, Corollary 1 generalizes the classical

result on the boundedness of the Hilbert operator on Hp.

It turns out that g ∈ Λ
(
p, 1

p

)
is equivalent to the boundedness of the operator

Hg on the weighted Bergman spaces Apα and on the spaces of Dirichlet type Dp
α for

the admissible values of p and α.

Theorem 3. Suppose that 1 < p <∞, −1 < α < p− 2 and g ∈ Hol(D). Then

Hg : A
p
α → Apα is bounded if and only if g ∈ Λ

(
p, 1

p

)
.

The condition −1 < α < p − 2 is not a real restriction. It is needed to insure

that any function f ∈ Apα satisfies that
´ 1

0
|f(t)| dt < ∞, which is necessary for the

operator Hg being well defined on Apα. The result does not remain true for α ≥ p−2.

Theorem 4. Suppose that 1 < p < ∞, p − 2 < α ≤ p − 1 and g ∈ Hol(D).

Then Hg : D
p
α → Dp

α is bounded if and only if g ∈ Λ
(
p, 1

p

)
.

The paper is organized as follows. In Section 3 we state and prove a number of
lemmas which will be used specially in Section 4 where we shall prove the necessity
parts of our just mentioned results. Section 5 will be devoted to study the the

sublinear Hilbert operator H̃ defined by

H̃(f)(z) =

ˆ 1

0

|f(t)|

1− tz
dt.

We shall prove that if g ∈ Λ
(
p, 1

p

)
and X is either Hp with 1 < p ≤ 2, or Apα with

1 < p <∞ and −1 < α < p− 2, or Dp
α with 1 < p <∞ and p− 2 < α ≤ p− 1, then

‖Hg(f)‖X ≤ C‖H̃(f)‖X, f ∈ X.

The sufficiency parts of our Theorems 1-4 will follow using this and the following
result which has independent interest.

Theorem 5. (i) If p > 1, then H̃ : Hp → Hp is bounded.

(ii) If p > 1 and −1 < α < p− 2, then H̃ : Apα → Apα is bounded.

(iii) If p > 1 and p− 2 < α ≤ p− 1, then H̃ : Dp
α → Dp

α is bounded.

In Section 7 we shall deal with the question of characterizing the functions g
for which Hg is compact on Hardy, Bergman and Dirichlet spaces. We prove the
“expected results”, that is, Theorems 1–4 remain true if we change “bounded” to
“compact” and the mean Lipschitz space Λ(s, α) appearing there to the corresponding
“little oh” space λ(s, α). We also obtain the characterization of the functions g for
which the operator Hg is Hilbert–Schmidt on the relevant Hilbert spaces.

Theorem 6. The following are equivalent:

(i) Hg is Hilbert–Schmidt on H2.
(ii) Hg is Hilbert–Schmidt on A2

α for any −1 < α < 0.
(iii) Hg is Hilbert–Schmidt on D2

α for any 0 < α ≤ 1.
(iv) g ∈ D.

Note that the case α = 1 of (iii) is assertion (i).
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We close this section noticing that, as usual, we shall be using the convention
that C = C(p, α, q, β) . . . will denote a positive constant which depends only upon
the displayed parameters p, α, q, β . . . (which sometimes will be omitted) but not
necessarily the same at different occurrences. Moreover, for two real-valued func-
tions E1, E2 we write E1 ≍ E2, or E1 . E2, if there exists a positive constant C
independent of the argument such that 1

C
E1 ≤ E2 ≤ CE1, respectively E1 ≤ CE2.

3. Preliminary results

Throughout the paper we shall use the following notation: If g(z) =
∑∞

k=0 bkz
k ∈

Hol(D) and n ≥ 0, we set

∆ng(z) =
∑

k∈I(n)

bkz
k

where I(n) = {k ∈ N : 2n ≤ k ≤ 2n+1 − 1}.
Let us recall several distinct characterizations of Λ(p, α) spaces, (see [1], [5], [9]

and [17]).

Theorem A. Suppose that 1 < p < ∞, 0 < α < 1 and g ∈ Hol(D). The
following conditions are equivalent:

(i) g ∈ Λ(p, α).

(ii) Mp(r, g
′) = O

(
1

(1−r)1−α

)
, as r → 1−.

(iii) ‖∆ng‖Hp = O(2−nα), as n→ ∞.
(iv) ‖∆ng

′‖Hp = O
(
2n(1−α)

)
, as n→ ∞.

(v) ‖∆ng
′′‖Hp = O

(
2n(2−α)

)
, as n→ ∞.

Remark 1. The corresponding results for the little-oh space λ(p, α) remain true,
and they can be proved following the proofs in the references for Theorem A.

Suppose W (z) =
∑

k∈J bkz
k is a polynomial, so J is a finite subset of N, and

f(z) =
∑∞

k=0 akz
k ∈ Hol(D). We consider the Hadamard product

(W ∗ f)(z) =
∑

k∈J

bkakz
k,

and observe that if f ∈ H1, then

(W ∗ f)(eit) =
1

2π

ˆ 2π

0

W (ei(t−θ))f(eiθ) dθ

is the usual convolution.
If Φ: R → C is a C∞-function such that supp(Φ) is a compact subset of (0,∞),

we set

AΦ = max
s∈R

|Φ(s)|+max
s∈R

|Φ′′(s)|,

and for N = 1, 2, . . . , we consider the polynomials

WΦ
N (z) =

∑

k∈N

Φ

(
k

N

)
zk.

Now, we are ready to state the next result on smooth partial sums.

Theorem B. Assume that Φ: R → C is a C∞-function with supp(Φ) a compact
set contained in (0,∞). Then:
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(i) There exists an absolute constant C > 0 such that if m ∈ {0, 1, 2, . . .} and
N ∈ {1, 2, 3, . . . }, then

∣∣WΦ
N (e

iθ)
∣∣ ≤ Cmin

{
N max

s∈R
|Φ(s)|, N1−m|θ|−mmax

s∈R
|Φ(m)(s)|

}
,

for 0 < |θ| < π.
(ii) There exists a positive constant C such that

∣∣(WΦ
N ∗ f)(eiθ)

∣∣ ≤ CAΦM(|f |)(eiθ), for all f ∈ H1,

where M is the Hardy–Littlewood maximal-operator, that is,

M(|f |)(eiθ) = sup
0<h<π

1

2h

ˆ θ+h

θ−h

|f(eit)| dt.

(iii) For every p ∈ (1,∞) there exists Cp > 0 such that

‖WΦ
N ∗ f‖Hp ≤ CpAΦ‖f‖Hp, f ∈ Hp.

(iv) For every p ∈ (1,∞) and α > −1 there is Cp > 0 such that

‖WΦ
N ∗ f‖Ap

α
≤ CpAΦ‖f‖Ap

α
, f ∈ Apα.

Theorem B follows from the results and proofs in [18, p. 111− 113].
The following lemma also plays an essential role in our work.

Lemma 1. Suppose that 1 < p < ∞ and α > −1. For N = 1, 2, . . . , let
aN = 1− 1

N
and define the functions

(3.1) ψN,α(s) =
1

N3− 2+α
p

ˆ 1

0

tsN

(1− aN t)2
dt, s > 0.

and

(3.2) ϕN,α(s) =
1

ψN,α(s)
s > 0.

Then:

(i) ψN,α, ϕN,α ∈ C∞((0,∞)).
(ii) Asymptotically, |ψN,α(s)| ≍

1

N
2− 2+α

p

, 1
2
< s < 4, N → ∞.

(iii) For each m ∈ N there is a constant C(m) > 0 (depending on m but not on
N) such that

|ψ
(m)
N,α(s)| ≤

C(m)

N2− 2+α
p

, 1
2
< s < 4, N = 1, 2, . . . .

(iv) For each m ∈ N there is a constant C(m) > 0 (depending on m but not on
N) such that

(3.3) |ϕ
(m)
N,α(s)| ≤ C(m)N2− 2+α

p , 1
2
< s < 4, N = 1, 2, . . . .

Proof. (i) is clear.
(ii) We note that

ˆ 1

0

tsN

(1− aN t)2
dt ≤

ˆ 1

0

1

(1− aN t)2
dt = N,
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while if 1
2
< s < 4, then

ˆ 1

0

tsN

(1− aN t)2
dt ≥

ˆ 1

aN

tsN

(1− aN t)2
dt ≥ (1− aN)

a4NN
(1− a2N )

2
=

(1− 1
N
)4N

(2− 1
N
)2
N ≥ CN.

So, for 1
2
< s < 4, we have |ψN,α(s)| ≍

1

N
2− 2+α

p

, as N → ∞.

(iii) Since

sup
0<t<1, 1

2
<s<4

(
log

1

tN

)m
tsN ≤ sup

0<x<1

(
log

1

x

)m
x1/2 = C(m) <∞,

we deduce that

|ψ
(m)
N,α(s)| =

1

N3− 2+α
p

ˆ 1

0

(
log 1

tN

)m
tsN

(1− aN t)2
dt ≤ C(m)

1

N3− 2+α
p

ˆ 1

0

1

(1− aN t)2
dt

≤ C(m)
1

N2− 2+α
p

, 1
2
< s < 4, N = 1, 2, . . . .

(iv) For m = 0, the assertion follows from part (ii). For m = 1, using parts (ii)
and (iii), we have

|ϕ′
N,α(s)| ≤

|ψ′
N,α(s)|

|ψN,α(s)|2
≤ C(1)N2− 2+α

p , 1
2
< s < 4.

Now we shall proceed by induction. Assume that (3.3) holds for j = 0, 1 . . . , m−1.
Since 1 = ϕN,α(s)ψN,α(s), we have

0 = (ϕN,α(s)ψN,α(s))
(m)(s) =

m∑

j=0

(
m

j

)
ψ

(m−j)
N,α (s)ϕ

(j)
N,α(s),

which implies

|ϕ
(m)
N,α(s)| ≤

∑m−1
j=0

(
m
j

) ∣∣∣ψ(m−j)
N,α (s)ϕ

(j)
N,α(s)

∣∣∣
|ψN,α(s)|

, 1
2
< s < 4.

This together with the induction hypothesis and part (iii) concludes the proof. �

We shall use also the following lemma which follows easily from results in [17].

Lemma 2. Assume that 0 < p <∞, α > −1, N ∈ N, and set

h(z) =
∑

N/2≤k≤4N

akz
k.

Then

‖h‖Ap
α
≍ N− 1+α

p ‖h‖Hp .

Proof. Assume N is even. (If N is odd the proof can be adjusted by using [N
2
]+1

instead of N
2
). Using [17, Lemma 3.1] we have for each 0 < r < 1,

‖h‖pHprp4N ≤Mp
p (r, h) ≤ ‖h‖pHprp

N
2

which gives

‖h‖pHp

ˆ 1

0

rp4N+1(1− r2)αdr ≤
‖h‖p

Ap
α

α + 1
≤ ‖h‖pHp

ˆ 1

0

rp
N
2
+1(1− r2)αdr.
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Each of the two integrals appearing above can be expressed in terms of the usual
Beta function, and using the Stirling asymptotic series we can see that each of the
integrals grows as N−(α+1) as N → ∞, and the assertion follows. �

4. Necessary conditions for the boundedness of Hg

Putting together the conditions stated in Theorem 1 and Theorem 2 as necessary
for the boundedness of the operator onHp for 1 < p ≤ 2 and 2 < p <∞, respectively,
yields the following statement.

Theorem 7. Suppose that 1 < p <∞ and g ∈ Hol(D). If Hg is bounded from

Hp to Hp, then g ∈ Λ
(
p, 1

p

)
.

Proof. Let g(z) =
∑∞

k=0 bkz
k be the Taylor expansion of g. We start by consid-

ering the functions ψN,α and ϕN,α = 1
ψN,α

defined in Lemma 1 with α = p − 1 and,

for simplicity, write ψN = ψN,p−1 and ϕN = ϕN,p−1.
For each N = 1, 2, . . . , we can find a C∞-function ΦN : R → C with supp (ΦN ) ⊂(

1
2
, 4
)
, satisfying

(4.1) ΦN(s) = ϕN (s), 1 ≤ s ≤ 2,

and such that, by using part (iv) of Lemma 1, for each m ∈ N there exists C(m)
(independent of N) with

(4.2) |Φ
(m)
N (s)| ≤ C(m)N1− 1

p , s ∈ R, N = 1, 2, . . . .

In particular, we have

(4.3) AΦN
= max

s∈R
|ΦN (s)|+max

s∈R
|Φ′′

N (s)| ≤ CN1− 1
p .

Let us consider now the family of test functions {fN} given by

fN(z) =
1

N2− 1
p

1

(1− aNz)2
, z ∈ D, N = 1, 2, . . . .

An easy calculation using [5, Lemma, p. 65]) shows that theHp-norms of the functions
fN are uniformly bounded. By the hypothesis

sup
N

‖Hg(fN)‖Hp = C <∞.

This, together with part (iii) of Theorem B and (4.3), implies

‖WΦN

N ∗ Hg(fN)‖Hp ≤ CpAΦN
‖Hg(fN)‖Hp ≤ CpN

1− 1
p .(4.4)

On the other hand,

(WΦN

N ∗ Hg(fN ))(z) =
∑

N
2
≤k≤4N

[
(k + 1)bk+1

(
ˆ 1

0

tkfN (t) dt

)
ΦN (

k

N
)

]
zk

=
∑

N
2
≤k≤N−1

[· · · ]zk +
∑

N≤k≤2N−1

[· · · ]zk +
∑

2N≤k≤4N

[· · · ]zk

= FN
1 (z) + FN

2 (z) + FN
3 (z)
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and by (4.1)

FN
2 (z) =

∑

N≤k≤2N−1

(k + 1)bk+1

(
ˆ 1

0

tkfN (t) dt

)
ΦN

(
k

N

)
zk

=
∑

N≤k≤2N−1

(k + 1)bk+1ψN

(
k

N

)
ϕN

(
k

N

)
zk

=
∑

N≤k≤2N−1

(k + 1)bk+1z
k.

(4.5)

Using the M. Riesz projection theorem and (4.4) we have

‖FN
2 ‖Hp ≤ Cp‖W

ΦN

N ∗ Hg(fN)‖Hp ≤ CpN
1− 1

p ,

valid for each N . Finally observing that for n ∈ N,

∆ng
′(z) =

2n+1−1∑

k=2n

(k + 1)bk+1z
k = F 2n

2 (z),

we obtain

‖∆ng
′‖Hp ≤ Cp2

n(1− 1
p
),

and using part (iv) of Theorem A, we conclude g ∈ Λ
(
p, 1

p

)
. �

Proof of the necessity statement in Theorem 4. The proof is similar to that
of Theorem 7, hence, we shall omit some details. Let p, α and g(z) =

∑∞
k=0 bkz

k ∈
Hol(D) be as in the statement and assume that Hg : D

p
α → Dp

α is bounded. We
consider the functions ψN,α and ϕN,α = 1

ψN,α
defined in Lemma 1. By part (iv)

of Lemma 1, for each N = 1, 2, . . . , there is a C∞-function ΦN,α : R → C with
supp (ΦN,α) ⊂

(
1
2
, 4
)

such that

(4.6) ΦN,α(s) = ϕN,α

(
s+

1

N

)
, 1 ≤ s ≤ 2,

and for each m ∈ N there exists C(m) (independent of N) such that

(4.7) |Φ
(m)
N,α(s)| ≤ C(m)N2− 2+α

p , s ∈ R, N = 1, 2, . . . .

Since α < 3p− 2, the family of test functions

(4.8) fN(z) = fN,α(z) =
1

N3− 2+α
p

1

(1− aNz)2
, z ∈ D,

forms a bounded set in Dp
α (see [20, Lemma 3.10]), and the hypothesis implies that

sup
N

‖Hg(fN)‖Dp
α
<∞.

This, together with the easily checked identity Hg(f)
′ = Hg′(zf), gives

sup
N

‖Hg′(zfN )‖Ap
α
= C <∞.

Then part (iv) of Theorem B and (4.7) imply that

‖W
ΦN,α

N ∗ Hg′(zfN )‖Ap
α
≤ CpAΦN,α

‖Hg′(zfN )‖Ap
α
≤ CpN

2− 2+α
p .(4.9)
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Moreover,

(W
ΦN,α

N ∗Hg′(zfN ))(z) =
∑

N
2
≤k≤4N

(k + 1)(k + 2)bk+2

(
ˆ 1

0

tk+1fN (t) dt

)
ΦN,α

(
k

N

)
zk

and, by (4.6),

2N−1∑

k=N

(k + 1)(k + 2)bk+2

(
ˆ 1

0

tk+1fN(t) dt

)
ΦN,α

(
k

N

)
zk

=

2N−1∑

k=N

(k + 1)(k + 2)bk+2z
k.

(4.10)

Consequently, using (4.10), the M. Riesz projection theorem, Lemma 2, and (4.9),
and setting N = 2n, n ∈ N,

‖∆ng
′′‖Hp =

∥∥∥∥∥

2n+1−1∑

k=2n

(k + 1)(k + 2)bk+2z
k

∥∥∥∥∥
Hp

≤ Cp

∥∥∥∥∥

2n+2∑

k=2n−1

(k + 1)(k + 2)bk+2

(
ˆ 1

0

tk+1f2n(t) dt

)
Φ2n,α

(
k

2n

)
zk

∥∥∥∥∥
Hp

= Cp

∥∥∥WΦ2n,α

2n ∗ Hg′(zf2n)
∥∥∥
Hp

≤ Cp2
n( 1+α

p
)
∥∥∥WΦ2n,α

2n ∗ Hg′(zf2n)
∥∥∥
Ap

α

≤ Cp2
n(2− 1

p
),

and by part (v) of Theorem A, we deduce that g ∈ Λ
(
p, 1

p

)
. �

We note that the proof we have just finished remains valid for p > 1 and α <
3p− 2.

Proof of the necessity statement in Theorem 3. Let p, α be as in the statement
and assume Hg : A

p
α → Apα is bounded. Since α < p− 2, then α + p < 3p− 2. This

together with the fact that Apα = Dp
p+α gives the assertion as a consequence of the

preceding proof. �

5. The sublinear Hilbert operator

Let us consider the following space of analytic functions in D

A1
[0,1) =

{
f ∈ Hol(D) :

ˆ 1

0

|f(t)| dt <∞

}
.

The well-known Fejér–Riesz inequality [5] implies that H1 ⊂ A1
[0,1). We remark also

that an application of Hölder’s inequality yields

(5.1) Apα ⊂ A1
[0,1), if p > 1 and − 1 < α < p− 2,

an inclusion which is not longer true for α ≥ p− 2.

Condition (5.1) insures that H̃ is well defined on Apα for p and α in that range of
values.

Now, we proceed to state some lemmas which will be needed for the proof The-
orem 5.
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Lemma 3. (i) Assume that 0 < p < ∞. Then there exists a positive con-
stant C = C(p) such that

ˆ 1

0

Mp
∞(r, g) dr ≤ C‖g‖pHp, for all g ∈ Hol(D).

(ii) Assume that 0 < p < ∞ and α > −1. Then there exists a positive constant
C = C(p, α) such that

ˆ 1

0

Mp
∞(r, f)(1− r)α+1 dr ≤ C‖f‖p

Ap
α
, for all f ∈ Hol(D).

Proof. Part (i) follows taking q = ∞ and λ = p in Theorem5. 11 of [5].
Now we proceed to prove part (ii). Applying (i) to g(z) = f(sz) (0 < s < 1) and

making a change of variables, we obtain
ˆ s

0

Mp
∞(r, f) dr ≤ CsMp

p (s, f), 0 ≤ r < 1,

Multiplying both sides of the last inequality by (1 − s)α, integrating the resulting
inequality, and applying Fubini’s theorem yieds

ˆ 1

0

Mp
∞(r, f)(1− r)α+1 dr = C

ˆ 1

0

(1− s)α
ˆ s

0

Mp
∞(r, f) dr ds ≤ C‖f‖p

Ap
α
. �

Lemma 4. Assume that 1 < p <∞ and p−2 < α. Then there exists a constant
C = C(p, α) such that for any f ∈ Hol(D)

ˆ 1

0

Mp
∞(r, f)(1− r)α−p+1 dr ≤ C‖f‖p

Dp
α
.

Proof. The identity f(z) = f(0) +
´ z

0
f ′(ζ) dζ , z ∈ D, gives

Mp
∞(r, f) ≤ C

(
|f(0)|p +

(
ˆ r

0

M∞(t, f ′) dt

)p)
,

for some constant C. Since α− p+ 1 > −1 we have
ˆ 1

0

Mp
∞(r, f)(1− r)α−p+1 dr ≤ C|f(0)|p + C

ˆ 1

0

(
ˆ r

0

M∞(t, f ′) dt

)p
(1− r)α−p+1 dr

= C|f(0)|p + C

ˆ 1

0

(
ˆ 1

1−r

M∞(1− s, f ′) ds

)p
(1− r)α−p+1 dr.

We now use the following version of the classical Hardy inequality [12, pp. 244–245]:
If k > 0, q > 1 and h is a nonnegative function defined in (0,∞), then

ˆ ∞

0

(
ˆ ∞

x

h(t)dt

)q
xk−1 dx ≤

( q
k

)q ˆ ∞

0

h(x)qxq+k−1 dx.

Taking h ≡ 0 in [1,∞), and making the change of variable x = 1 − r in each side,
the inequality takes the form

(5.2)

ˆ 1

0

(
ˆ 1

1−r

h(t) dt

)q
(1− r)k−1 dr ≤

( q
k

)q ˆ 1

0

(h(1− r))q(1− r)q+k−1 dr.
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Now apply this inequality to the function h(s) =M∞(1−s, f ′) with k = α−p+2 > 0
to obtain
ˆ 1

0

(
ˆ 1

1−r

M∞(1− s, f ′) ds

)p
(1− r)α−p+1 dr ≤ C

ˆ 1

0

Mp
∞(r, f ′) (1− r)α+1 dr.

Putting together the above and using Lemma 3 we find,
ˆ 1

0

Mp
∞(r, f)(1− r)α−p+1 dr ≤ C

(
|f(0)|p +

ˆ 1

0

Mp
∞(r, f ′) (1− r)α+1 dr

)

≤ C
(
|f(0)|p + ‖f ′‖p

Ap
α

)
= C‖f‖p

Dp
α
,

and the proof is complete. �

The first part of the following Lemma is a special case of [16, Theorem 2.1], and
the second part is an immediate consequence of the first part.

Lemma 5. (i) If 1 < p < ∞ and α > −1, then the dual of Apα can be
identified with Aqβ where 1

p
+ 1

q
= 1 and β is any number with β > −1, under

the pairing

(5.3) 〈f, g〉Ap,α,β
=

ˆ

D

f(z)g(z)(1− |z|2)
α
p
+β

q dA(z).

(ii) If 1 < p < ∞ and α > −1, then the dual of Dp
α can be identified with Dq

β

where 1
p
+ 1

q
= 1 and β is any number with β > −1, under the pairing

(5.4) 〈f, g〉Dp,α,β
= f(0)g(0) +

ˆ

D

f ′(z)g′(z)(1− |z|2)
α
p
+β

q dA(z).

Proof of Theorem 5. (i) Recall that for 1 < p < ∞, the dual of Hp can be
identified with Hq, 1

p
+ 1

q
= 1, under the H2-pairing,

〈f, h〉H2 = lim
r→1

1

2π

ˆ 2π

0

f(reiθ)h(reiθ) dθ,

thus it is enough to prove that there exists a constant C > 0 such that

(5.5)

∣∣∣∣ limr→1−

1

2π

ˆ 2π

0

H̃(f)(reiθ)h(reiθ) dθ

∣∣∣∣ ≤ C‖f‖Hp‖h‖Hq

for any f ∈ Hp and g ∈ Hq. Now, by Fubini’s theorem

1

2π

ˆ 2π

0

H̃(f)(reiθ)h(reiθ) dθ =

ˆ 1

0

|f(t)|

(
1

2π

ˆ 2π

0

h(reiθ)

1− tre−iθ
dθ

)
dt

=

ˆ 1

0

|f(t)|h(r2t) dt.

Using Hölder’s inequality and the Fejér–Riesz inequality we have
∣∣∣∣
1

2π

ˆ 2π

0

H̃(f)(reiθ)h(reiθ) dθ

∣∣∣∣ ≤
(
ˆ 1

0

|f(t)|p dt

)1/p(ˆ 1

0

|h(r2t)|q dt

)1/q

≤ C‖f‖HpMq(r
2, h) ≤ C‖f‖Hp‖h‖Hq ,

which implies (5.5) and finishes the proof of (i).
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(ii) Using Lemma 5 we can choose β = −αq
p

= −α
p−1

so that the weight in the

pairing (5.3) is identically equal to 1, and we have for f ∈ Apα and h ∈ Aqβ,

〈H̃(f), h〉Ap,α,β
=

ˆ

D

H̃(f)(z)h(z) dA(z)

=

ˆ

D

(
ˆ 1

0

|f(t)|

1− tz
dt

)
h(z) dA(z)

=

ˆ 1

0

|f(t)|

(
ˆ

D

h(z)

1− tz̄
dA(z)

)
dt

= 2

ˆ 1

0

|f(t)|

(
ˆ 1

0

h(r2t)r dr

)
dt,

(5.6)

so that

(5.7) |〈H̃(f), h〉Ap,α,β
| ≤ 2

ˆ 1

0

|f(t)|G(t) dt,

where G(t) =
´ 1

0
|h(r2t)|r dr. Using Hölder’s inequality we obtain,

ˆ 1

0

|f(t)|G(t) dt =

ˆ 1

0

|f(t)|(1− t)
α+1
p G(t)(1− t)−

α+1
p dt

≤

(
ˆ 1

0

|f(t)|p(1− t)α+1 dt

)1/p(ˆ 1

0

|G(t)|q(1− t)−
q(α+1)

p dt

)1/q

≤

(
ˆ 1

0

Mp
∞(t, f)(1− t)α+1 dt

)1/p(ˆ 1

0

|G(t)|q(1− t)−
q(α+1)

p dt

)1/q

≤ C‖f‖Ap
α

(
ˆ 1

0

|G(t)|q(1− t)−
q(α+1)

p dt

)1/q

,

where in the last step we have used Lemma 3. Next we show that

(5.8)

ˆ 1

0

|G(t)|q(1− t)−
q(α+1)

p dt ≤ C‖h‖q
Aq

β

.

This together with (5.7) will finish the proof. To show (5.8) observe first that if
0 < t < 1/2 then |h(r2t)| ≤ M∞

(
1
2
, h
)

for each 0 < r < 1, thus
ˆ 1

0

|h(r2t)|rdr ≤ M∞

(
1

2
, h

)
, 0 < t < 1/2,

and we have
ˆ 1/2

0

|G(t)|q(1− t)−
q(α+1)

p dt =

ˆ 1/2

0

(
ˆ 1

0

|h(r2t)|rdr

)q
(1− t)−

q(α+1)
p dt

≤ CM q
∞

(
1

2
, h

)
≤ C‖h‖q

Aq

β

.

On the other hand,

−
q(α + 1)

p
=

−α + p− 2

p− 1
− 1 > −1,
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and making a change of variable we obtain
´ 1

0
|h(r2t)|rdr = 1

2t

´ t

0
|h(s)|ds so,

ˆ 1

1/2

|G(t)|q(1− t)−
q(α+1)

p dt =

ˆ 1

1/2

(
ˆ 1

0

|h(r2t)|rdr

)q
(1− t)−

q(α+1)
p dt

=

ˆ 1

1/2

1

(2t)q

(
ˆ t

0

|h(s)|ds

)q
(1− t)−

q(α+1)
p dt

≤

ˆ 1

1/2

(
ˆ t

0

M∞(s, h) ds

)q
(1− t)−

q(α+1)
p dt

≤

ˆ 1

0

(
ˆ 1

1−t

M∞(1− s, h) ds

)q
(1− t)−

q(α+1)
p dt

≤ C

ˆ 1

0

M q
∞(t, h)(1− t)−

qα

p
+1 dt (by (5.2))

≤ C‖h‖q
Aq

β

,

where we have used Lemma 3 in the last step. Thus (5.8) is proved and the proof of
(ii) is complete.

(iii) Case α = p− 1. By Lemma 5 the dual of Dp
p−1 can be identified with Dq

q−1,
1
p
+ 1

q
= 1, taking α = p − 1 and β = q − 1 in the relevant pairing in (5.4), so that

the weight becomes (1− |z|2). Thus for f ∈ Dp
p−1 and h ∈ Dq

q−1 we have by Fubini’s
theorem

〈H̃(f), h〉Dp,p−1,q−1 = H̃(f)(0)h(0) +

ˆ

D

H̃(f)′(z)h′(z) (1− |z|2) dA(z)

= H̃(f)(0)h(0) +

ˆ 1

0

|f(t)|

(
ˆ

D

th′(z)

(1− tz)2
(1− |z|2)dA(z)

)
dt,

and a routine calculation gives
ˆ

D

th′(z)

(1− tz)2
(1− |z|2) dA(z) = h(t)−

ˆ 1

0

h(rt) dr.

Now ∣∣∣∣h(t)−
ˆ 1

0

h(rt) dr

∣∣∣∣ ≤ 2M∞(t, h),

therefore∣∣∣∣
ˆ

D

H̃(f)′(z)h′(z) (1− |z|2) dA(z)

∣∣∣∣ ≤
ˆ 1

0

|f(t)|

∣∣∣∣h(t)−
ˆ 1

0

h(rt) dr

∣∣∣∣ dt

≤ 2

ˆ 1

0

M∞(t, f)M∞(t, h) dt ≤ 2

(
ˆ 1

0

Mp
∞(t, f) dt

)1/p(ˆ 1

0

M q
∞(t, h) dt

)1/q

≤ C‖f‖Dp
p−1

‖h‖Dq
q−1
,

where for the last inequality we have used Lemma 4 twice with α = p−1 and α = q−1
in the two integrals respectively. Moreover, |h(0)| ≤ ‖h‖Dq

q−1
and

|H̃(f)(0)| =

ˆ 1

0

|f(t)| dt ≤

(
ˆ 1

0

Mp
∞(t, f) dt

)1/p

≤ C‖f‖Dp
p−1
,
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and combining the above we obtain

|〈H̃(f), h〉Dp,p−1,q−1| ≤ C‖f‖Dp
p−1

‖h‖Dq
q−1

which completes the proof of this case.
Case p − 2 < α < p − 1. In this case the dual of Dp

α can be identified with Dq
β

with β = −αq
p

. The weight in the pairing (5.4) is then identically equal to 1. Thus

for f ∈ Dp
α and h ∈ Dq

β we have

〈H̃(f), h〉Dp,α,β
= H̃(f)(0)h(0) +

ˆ

D

H̃(f)′(z)h′(z) dA(z).

Now using Fubini’s theorem and the reproducing formula

h′(a) =

ˆ

D

h′(z)

(1− az̄)2
dA(z), a ∈ D, h ∈ Dq

β,

we find
ˆ

D

H̃(f)′(z)h′(z) dA(z) =

ˆ 1

0

t|f(t)|

(
ˆ

D

h′(z)

(1− tz)2
dA(z)

)
dt =

ˆ 1

0

t|f(t)|h′(t) dt.

We set s = −1 + α+1
p

and use Hölder’s inequality to obtain
∣∣∣∣
ˆ 1

0

t|f(t)|h′(t) dt

∣∣∣∣ =
∣∣∣∣
ˆ 1

0

t|f(t)|(1− t)sh′(t)(1− t)−s dt

∣∣∣∣

≤

(
ˆ 1

0

|f(t)|p(1− t)ps dt

) 1
p
(
ˆ 1

0

|h′(t)|q(1− t)−qs dt

) 1
q

.

By Lemma 4 the first integral above is
ˆ 1

0

|f(t)|p(1− t)ps dt =

ˆ 1

0

|f(t)|p(1− t)α−p+1 dt

≤

ˆ 1

0

Mp
∞(f, t)(1− t)α−p+1 dt ≤ C‖f‖p

Dp
α
,

while the second integral by Lemma 3 is
ˆ 1

0

|h′(t)|q(1− t)−qs dt =

ˆ 1

0

|h′(t)|q(1− t)1−
αq

p dt

=

ˆ 1

0

|h′(t)|q(1− t)β+1 dt ≤

ˆ 1

0

M q
∞(h′, t)(1− t)β+1 dt

≤ C‖h′‖q
Aq

β

≤ C‖h‖q
Dq

β

.

Thus ∣∣∣∣
ˆ

D

H̃(f)′(z)g′(z) dA(z)

∣∣∣∣ ≤ C‖f‖Dp
α
‖g‖Dq

β
.

This together with the inequalities |h(0)| ≤ ‖h‖Dq

β
and

|H̃(f)(0)| =

ˆ 1

0

|f(t)| dt ≤ C‖f‖Dp
α

imply that

|〈H̃(f), h〉Dp,α,β
| ≤ C‖f‖Dp

α
‖h‖Dq

β
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and the proof is complete. �

6. Sufficient conditions

In this section we will prove the sufficient conditions for Theorems 1, 2(ii), 3, and
4. In order to do that we state first some needed results.

A nice result of Hardy–Littlewood [5, Section 6.2] [18, Theorem 7.5.1] asserts
that if 0 < p ≤ 2 and f(z) =

∑∞
k=0 akz

k ∈ Hp, then

(6.1) Kp(f) =
∞∑

k=0

(k + 1)p−2|ak|
p ≤ Cp‖f‖

p
Hp.

On the other hand, if 2 ≤ p < ∞ and f(z) =
∑∞

k=0 akz
k ∈ Hol(D) satisfies that

Kp(f) <∞, then f ∈ Hp and

(6.2) ‖f‖pHp ≤ CpKp(f).

The converse of each of these two statements is not true for a general power series
f(z) =

∑∞
k=0 akz

k ∈ Hol(D) and for arbitrary indices p 6= 2. If, however, we restrict
to the class of power series with non-negative decreasing coefficients, then we have
the following result (see [10], [21, Chapter XII, Lemma 6.6], [18, 7.5.9] and [19]).

Theorem C. Assume that 1 ≤ p <∞ and f(z) =
∑∞

k=0 akz
k ∈ Hol(D), where

{an} is a sequence of positive numbers which decreases to zero. Then the following
assertions are equivalent:

(i) f ∈ Hp.
(ii) f ∈ Dp

p−1.
(iii) Kp(f) <∞.

Furthermore, ‖f‖pHp ≍ ‖f‖p
Dp

p−1
≍ Kp(f).

The following decomposition theorem can be found in [17, Theorem 2.1] and [18,
7.5.8].

Theorem D. (i) Assume 0 < p <∞, 1 < q <∞ and 0 < α <∞. Then,
ˆ 1

0

(1− r)pα−1Mp
q (r, f) dr ≍ |f(0)|p +

∞∑

n=0

2−n(pα)‖∆nf‖
p
Hq , for all f ∈ Hol(D).

(ii) In particular, if p > 1 and β > −1,

‖f‖p
Ap

β

≍ |f(0)|p +

∞∑

n=0

2−n(β+1)‖∆nf‖
p
Hp, for all f ∈ Hol(D).

The following lemma can be found in [18, 7.3.5], in a slightly different form. The
proof suggested there can be applied to obtain it in the form we need it.

Lemma 6. Suppose 0 < p < ∞ and γ ∈ R. For f(z) =
∑∞

k=0 akz
k ∈ Hol(D)

let F (z) =
∑∞

k=0(k + 1)γakz
k. Then ‖∆nF‖Hp ≍ 2nγ‖∆nf‖Hp.

Lemma 7. Suppose that 1 < p < ∞. There exists a constant C = C(p) > 0
such that if f ∈ H1, g(z) =

∑∞
k=0 ckz

k ∈ Hol(D), and we set

h(z) =
∞∑

k=0

ck

(
ˆ 1

0

tk+1f(t) dt

)
zk,
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then

‖∆nh‖Hp ≤ C

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)
‖∆ng‖Hp, n ≥ 3.

Proof. For each n = 1, 2, . . . , define

Υn(s) =

ˆ 1

0

t2
ns+1f(t) dt, s ≥ 0.

Clearly, Υn is a C∞(0,∞)-function and

(6.3) |Υn(s)| ≤

ˆ 1

0

t2
n−2+1|f(t)| dt, s ≥

1

2
.

Furthermore, since sup0<x<1

(
log 1

x

)2
x1/2 = C(2) <∞, we have

|Υ′′
n(s)| ≤

ˆ 1

0

[(
log

1

t2n

)2

t2
n−1

]
t2

ns+1−2n−1

|f(t)| dt

≤ C(2)

ˆ 1

0

t2
ns+1−2n−1

|f(t)| dt ≤ C(2)

ˆ 1

0

t2
n−2+1|f(t)| dt, s ≥ 3

4
.

(6.4)

Then, using (6.3) and (6.4), for each n = 1, 2, . . . , we can take a function Φn ∈
C∞(R) with supp(Φn) ∈

(
3
4
, 4
)
, and such that

Φn(s) = Υn(s), s ∈ [1, 2],

and

AΦn
= max

s∈R
|Φn(s)|+max

s∈R
|Φ′′

n(s)| ≤ C

ˆ 1

0

t2
n−2+1|f(t)| dt.

We can then write

∆nh(z) =
∑

k∈I(n)

ck

(
ˆ 1

0

tk+1f(t) dt

)
zk =

∑

k∈I(n)

ckΦn

(
k

2n

)
zk = WΦn

2n ∗∆ng(z).

So by using part (iii) of Theorem B, we have

‖∆nh‖Hp = ‖WΦn

2n ∗∆ng‖Hp ≤ CpAΦn
‖∆ng‖Hp

≤ C

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)
‖∆ng‖Hp. �

We shall need several lemmas. The first one can be found in [19, p. 4]

Lemma A. Assume that 1 < p <∞ and λ = {λn}
∞
n=0 is a monotone sequence of

non negative numbers. Let (λg)(z) =
∑∞

n=0 λnbnz
n, where g(z) =

∑∞
n=0 bnz

n. Then:

(a) If {λn}
∞
n=0 is nondecreasing, there is C > 0 such that

C−1λ2n−1‖∆ng‖
p
Hp ≤ ‖∆nλg‖

p
Hp ≤ Cλ2n‖∆ng‖

p
Hp.

(b) If {λn}
∞
n=0 is nonincreasing, there is C > 0 such that

C−1λ2n‖∆ng‖
p
Hp ≤ ‖∆nλg‖

p
Hp ≤ Cλ2n−1‖∆ng‖

p
Hp.

Lemma 8. (i) Assume 1 < p <∞, −1 < α <∞, and f ∈ Dp
α. Then

‖H̃(f)‖p
Dp

α
≍ |H̃(f)(0)|p +

∞∑

j=1

(j + 1)2p−3−α

(
ˆ 1

0

tj+1|f(t)| dt

)p
.
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(ii) Assume 1 < p <∞, −1 < α < p− 2, and f ∈ Apα. Then

‖H̃(f)‖p
Ap

α
≍ |H̃(f)(0)|p +

∞∑

j=1

(j + 1)p−3−α

(
ˆ 1

0

tj |f(t)| dt

)p
.

Proof. Set rn = 1 − 1
2n

. Applying [17, Lemma 3.1] to the function h(z) = 1
1−z

=∑∞
k=0 z

k, we deduce that

(6.5) ‖∆nh‖
p
Hp ≍

ˆ π

−π

1

|1− rneit|p
dt ≍

1

(1− rn)p−1
≍ 2n(p−1).

Now, we shall prove (i). By Theorem D (ii) we have

‖H̃(f)‖p
Dp

α
= |H̃(f)(0)|p + ‖H̃(f)′‖p

Ap
α

≍ |H̃(f)(0)|p + |H̃(f)′(0)|p +

∞∑

n=0

2−n(α+1)‖∆nH̃(f)′‖pHp

≍ |H̃(f)(0)|p +

∞∑

n=0

2−n(α+1)‖∆nH̃(f)′‖pHp,

where we have taken into account that

H̃(f)′(0) =

ˆ 1

0

t|f(t)| dt ≍

ˆ 1

0

|f(t)| dt = H̃(f)(0).

We then apply Lemma 6 and subsequently Lemma A (b) with the nonincreasing

sequence
´ 1

0
tj+1|f(t)|dt and (6.5) to obtain

∞∑

n=0

2−n(α+1)‖∆nH̃(f)′‖pHp =
∞∑

n=0

2−n(α+1)

∥∥∥∥∥∥

∑

j∈I(n)

(j + 1)

(
ˆ 1

0

tj+1|f(t)| dt

)
zj

∥∥∥∥∥∥

p

Hp

≍

∞∑

n=0

2−n(α+1−p)

∥∥∥∥∥∥

∑

j∈I(n)

(
ˆ 1

0

tj+1|f(t)| dt

)
zj

∥∥∥∥∥∥

p

Hp

.

∞∑

n=0

2−n(α+1−p)

(
ˆ 1

0

t2
n−1+1|f(t)| dt

)p
∥∥∥∥∥∥

∑

j∈I(n)

zj

∥∥∥∥∥∥

p

Hp

≍
∞∑

n=0

2n(2p−2−α)

(
ˆ 1

0

t2
n−1+1|f(t)| dt

)p

≍
∞∑

j=1

(j + 1)(2p−3−α)

(
ˆ 1

0

tj+1|f(t)| dt

)p
.

Analogously, it can be proved that
∞∑

n=0

2−n(α+1)‖∆nH̃(f)′‖pHp &

∞∑

j=1

(j + 1)(2p−3−α)

(
ˆ 1

0

tj+1|f(t)| dt

)p
.

and the assertion of (i) follows.
The proof of (ii) is similar and is omitted. �

We are now ready to prove the sufficient conditions.
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Proof of the sufficiency statement in Theorem 4. Let p, α be as in the statement

and assume g ∈ Λ
(
p, 1

p

)
. For f ∈ Dp

α, bearing in mind that Hg(f)
′(z) = Hg′(zf)

and using Theorem D (ii), we obtain

‖Hg(f)‖
p
Dp

α
= |Hg(f)(0)|

p + ‖Hg′(zf)‖
p
Ap

α

= |Hg(f)(0)|
p + |Hg′(zf)(0)|

p +
∞∑

n=0

2−n(α+1)‖∆nHg′(zf)‖
p
Hp .

Now,

|Hg(f)(0)|
p + |Hg′(zf)(0)|

p ≤ (|g′(0)|p + |g′′(0)|p)

(
ˆ 1

0

|f(t)| dt

)p

≤ C(g)

ˆ 1

0

|f(t)|p dt ≤ C(g)

ˆ 1

0

Mp
∞(t, f)(1− t)α−p+1 dt ≤ C(g, p, α)‖f‖p

Dp
α
,

where in the last step we have used Lemma 4 and the observation that since p− 2 <
α ≤ p− 1 we have −1 < α− p+ 1 ≤ 0.

On the other hand, if we write g′′(z) =
∑∞

k=0 ckz
k, then

Hg′(zf)(z) =

∞∑

k=0

ck

(
ˆ 1

0

tk+1f(t) dt

)
zk

and we can apply Lemma 7 and part (v) of Theorem A to obtain

‖∆nHg′(zf)‖
p
Hp ≤ C

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)p
‖∆ng

′′‖pHp

≤ C

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)p
2pn(2−

1
p
)

for n ≥ 3. Thus
∞∑

n=3

2−n(α+1)‖∆nHg′(zf)‖
p
Hp ≤ C

∞∑

n=3

2n(2p−2−α)

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)p

≍ C

∞∑

n=0

2(n+1)(2p−2−α)

(
ˆ 1

0

t2
n+1+1|f(t)| dt

)p
.

Now it is easy to see that

2n
(
ˆ 1

0

t2
n+1+1|f(t)| dt

)p
≤
∑

j∈I(n)

(
ˆ 1

0

tj+1|f(t)| dt

)p
,

and we can continue the above estimate as follows

≤ C
∞∑

n=0

2(n+1)(2p−3−α)
∑

j∈I(n)

(
ˆ 1

0

tj+1|f(t)| dt

)p

≍ C
∞∑

j=1

(j + 1)(2p−3−α)

(
ˆ 1

0

tj+1|f(t)| dt

)p

≤ C

(
|H̃(f)(0)|p +

∞∑

j=1

(j + 1)(2p−3−α)

(
ˆ 1

0

tj+1|f(t)| dt

)p)
≍ ‖H̃(f)‖p

Dp
α
≤ C‖f‖p

Dp
α
,
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where we have used Lemma 8 (i) and Theorem 5 (iii). This together with the in-
equality for |Hg(f)(0)|

p + |Hg′(zf)(0)|
p finishes the proof. �

Proof of the sufficiency statement in Theorem 3. Let p, α be as in the statement
and let g(z) =

∑∞
k=0 bkz

k be the power series for g. For f ∈ Apα, from Theorem D we
have

‖Hg(f)‖
p
Ap

α
≍|Hg(f)(0)|

p +
∞∑

n=0

2−n(α+1)‖∆nHg(f)‖
p
Hp.(6.6)

Now,

|Hg(f)(0)| ≤ |g′(0)|

ˆ 1

0

|f(t)| dt = |g′(0)|

ˆ 1

0

|f(t)|(1− t)
α+1
p (1− t)−

α+1
p dt

and by Hölder’s inequality,

≤ C(g, p, α)

(
ˆ 1

0

Mp
∞(t, f)(1− t)α+1 dt

)1/p

≤ C(g, p, α)‖f‖Ap
α
,

where the last inequality is from Lemma 3.
Now write g′(z) =

∑∞
k=0 ckz

k, then

Hg(f)(z) =
∞∑

k=0

(
ck

ˆ 1

0

tkf(t) dt

)
zk.

Now Lemma 7 remains valid if we replace the power tk+1 appearing in the definition
of the function h in statement of the Lemma by tk, and the power t2

n−2+1 in the
conclusion by t2

n−2
. This variation can be proved in the same way as the original

version. Applying the Lemma in this new form and using the assumption for g, we
find

‖∆nHg(f)‖
p
Hp ≤ C

(
ˆ 1

0

t2
n−2

|f(t)| dt

)p
‖∆ng

′‖pHp ≤ C

(
ˆ 1

0

t2
n−2

|f(t)| dt

)p
2pn(1−

1
p
).

Now, the proof can be completed as the previous one using Theorem D (ii), Lemma 8 (ii)
and Theorem 5 (ii). Namely,

∞∑

n=3

2−n(α+1)‖∆nHg(f)‖
p
Hp ≤ C

∞∑

n=3

2n(p−2−α)

(
ˆ 1

0

t2
n−2

|f(t)| dt

)p

≍ C
∞∑

n=0

2(n+1)(p−2−α)

(
ˆ 1

0

t2
n+1

|f(t)| dt

)p

≤ C
∞∑

n=0

2(n+1)(p−3−α)
∑

j∈I(n)

(
ˆ 1

0

tj |f(t)| dt

)p

≍ C

∞∑

j=1

(j + 1)(p−3−α)

(
ˆ 1

0

tj |f(t)| dt

)p

≤ C

(
|H̃(f)(0)|p +

∞∑

j=1

(j + 1)(p−3−α)

(
ˆ 1

0

tj |f(t)| dt

)p)

≍ ‖H̃(f)‖p
Ap

α
≤ C‖f‖p

Ap
α
,
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and together with the inequality |Hg(f)(0)| ≤ C(g, p, α)‖f‖Ap
α

this finishes the proof.
�

If p > 1 and f ∈ Hp, then H̃(f)(z) =
∑∞

j=0

(
´ 1

0
tj |f(t)| dt

)
zj is analytic in D

and has nonnegative Taylor coefficients decreasing to zero. Thus Theorem C implies
that

(6.7) ‖H̃(f)‖p
Dp

p−1
≍ ‖H̃(f)‖pHp ≍

∞∑

j=0

(j + 1)p−2

(
ˆ 1

0

tj |f(t)| dt

)p
.

Proof of the sufficiency statement in Theorem 1. Assume that 1 < p ≤ 2 and

g(z) =
∑∞

k=0 bkz
k ∈ Λ

(
p, 1

p

)
. Take f ∈ Hp. Since Dp

p−1 ⊂ Hp with domination in

the norms, by the proof of Theorem 4 with α = p − 1, (6.7) and Theorem 5 (i) we
obtain

‖Hg(f)‖
p
Hp ≤ C‖Hg(f)‖

p
Dp

p−1
≤ C‖H̃(f)‖p

Dp
p−1

≍ ‖H̃(f)‖pHp ≤ C‖f‖pHp.

Hence Hg : H
p → Hp is bounded. This finishes the proof. �

Proof of Theorem 2 (ii). Let 2 < p < ∞ and g ∈ Λ(q, 1
q
) for some q with

1 < q < p. Let f ∈ Hp. Applying [17, Corollary 3.1] to the analytic function Hg(f)
we have,

‖Hg(f)‖
p
Hp ≤ C

(
|Hg(f)(0)|

p +

ˆ 1

0

(1− r)p(1−
1
q )Mp

q (r,Hg(f)
′) dr

)

where C = C(p, q) is an absolute constant. By Theorem D (i), applied here with
α = 1− 1

q
+ 1

p
we further have

ˆ 1

0

(1− r)p(1−
1
q )Mp

q (r,Hg(f)
′) dr

≍ |Hg(f)
′(0)|p +

∞∑

n=0

2−n(p−
p

q
+1)‖∆nHg(f)

′‖pHq .

(6.8)

Now for the constant terms of the two relations above it is easy to see, using Hölder’s
inequality and the Fejér–Riesz inequality that

(6.9) |Hg(f)(0)|
p + |Hg(f)

′(0)|p ≤ C(g, p)‖f‖pHp.

To estimate the sum in (6.8) write g′′(z) =
∑∞

k=0 ckz
k so that

Hg(f)
′(z) = Hg′(zf)(z) =

∞∑

k=0

(
ck

ˆ 1

0

tk+1f(t) dt

)
zk,
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and use Lemma 7 and Theorem A (v) to obtain

∞∑

n=3

2−n(p(1−
1
q
)+1)‖∆nHg(f)

′‖pHq ≤ C
∞∑

n=3

2−n(p−
p

q
+1)

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)p
‖∆ng

′′‖pHq

≤ C
∞∑

n=3

2n(p−1)

(
ˆ 1

0

t2
n−2+1|f(t)| dt

)p
≤ C

∞∑

n=0

2(n+1)(p−1)

(
ˆ 1

0

t2
n+1+1|f(t)| dt

)p

≤ C
∞∑

n=0

2(n+1)(p−2)
∑

j∈I(n)

(
ˆ 1

0

tj+1|f(t)| dt

)p
≍ C

∞∑

j=0

(j + 1)p−2

(
ˆ 1

0

tj+1|f(t)| dt

)p

≍ ‖H̃(f)‖pHp ≤ C‖f‖pHp,

where in the last two lines we have used (6.7) and Theorem 5 (ii). This and (6.9)
finish the proof. �

7. Compactness

Let us recall that an operator T acting on a Banach space X is compact if any
bounded sequence {fk} of elements of X has a subsequence {fki} such that T (fki)
converges in X. For the generalized Hilbert operator Hg acting on the appropriate
spaces we have.

Theorem 8. Suppose that 1 < p <∞ and g ∈ Hol(D), then:

(i) If Hg : H
p → Hp is compact, then g ∈ λ(p, 1

p
).

(ii) If 1 < p ≤ 2 and g ∈ λ(p, 1
p
), then Hg : H

p → Hp is compact.

(iii) If 2 < p < ∞ and g ∈ λ(q, 1
q
) for some 1 < q < p, then Hg : H

p → Hp is
compact.

Theorem 9. Suppose that 1 < p <∞, −1 < α < p− 2 and g ∈ Hol(D). Then

Hg : A
p
α → Apα is compact if and only if g ∈ λ

(
p, 1

p

)
.

Theorem 10. Suppose that 1 < p < ∞, p − 2 < α ≤ p − 1 and g ∈ Hol(D).

Then Hg : D
p
α → Dp

α is compact if and only if g ∈ λ
(
p, 1

p

)
.

We shall use the following lemma.

Lemma 9. Suppose that 1 < p < ∞ and let X be either Hp, or Apα for some α
with −1 < α < p − 2, or Dp

α for some α with p − 2 < α ≤ p − 1. Let {fk}
∞
k=1 be a

sequence in X satisfying supk ‖fk‖X = K <∞ and fk → 0, as k → ∞, uniformly on
compact subsets of D. Then:

(i) lim
k→∞

ˆ 1

0

|fk(t)| dt = 0.

(ii) For every g ∈ Hol(D) we have

Hg(fk) → 0, as k → ∞, uniformly on compact subsets of D.

Proof. Let’s start with the proof of (i). Let q be the exponent conjugate to p,
that is, 1

p
+ 1

q
= 1. Take ε > 0.
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Suppose first that X = Hp. Take r0 ∈ (0, 1) such that (1 − r0)
1/q < ε. By the

hypothesis there exists k0 ∈ N such that

|fk(z)| < ε, if k ≥ k0 and |z| ≤ r0.

Then, using Hölder’s inequality and part (i) of Lemma3, we see that for k ≥ k0, we
have

ˆ 1

0

|fk(t)| dt ≤ ε+

ˆ 1

r0

M∞(t, fk) dt ≤ ε+

(
ˆ 1

r0

Mp
∞(t, fk) dt

)1/p

(1− r0)
1/q

≤ ε+ CKε = C ′ε.

Thus (i) holds in this case.
Similarly, if X = Apα with −1 < α < p − 2, take r0 ∈ (0, 1) such that (1 −

r0)
p−α−2

p < ε. There exists k0 ∈ N such that

|fk(z)| < ε, if k ≥ k0 and |z| ≤ r0.

Then, using Hölder’s inequality and part (ii) of Lemma3, we obtain, for k ≥ k0,
ˆ 1

0

|fk(t)| dt ≤ ε+

ˆ 1

r0

|fk(t)| dt

≤ ε+

(
ˆ 1

r0

Mp
∞(t, fk)(1− t)α+1 dt

) 1
p
(
ˆ 1

r0

(1− t)−(α+1) q
p dt

) 1
q

≤ ε+K
p

p− α− 2
(1− r0)

p−α−2
p ≤ C ′ε.

So, we see that (i) holds in this case too.
Finally, suppose that X = Dp

α for a certain α with p − 2 < α ≤ p − 1. Since
α−p ≤ −1, we have that Dp

α ⊂ Apβ for all β > −1. Take and fix β with −1 < β < p−2.

We have X ⊂ Apβ and then, using the hypothesis and the closed graph theorem,
we deduce that supk ‖f‖Ap

β
< ∞ and then the result in this case follows from the

preceding one.
Part (ii) follows easily from part (i). Indeed, if g ∈ Hol(D) and |z| ≤ r < 1, we

have

|Hg(fk)(z)| =

∣∣∣∣
ˆ 1

0

fk(t)g
′(tz) dt

∣∣∣∣ ≤M∞(r, g′)

ˆ 1

0

|fk(t)| dt.

Thus (ii) holds. �

Now the following result follows easily.

Lemma 10. Suppose that 1 < p < ∞ and let X be either Hp, or Apα for some
α with −1 < α < p − 2, or Dp

α for some α with p − 2 < α ≤ p − 1. For a function
g ∈ Hol(D) the following conditions are equivalent:

(i) Hg : X → X is compact.
(ii) If {fk}

∞
k=1 is a sequence in X such that

(7.1) sup
k

‖fk‖X = K <∞

and

(7.2) fk → 0, as k → ∞, uniformly on compact subsets of D,

then limk→∞ ‖Hg(fk)‖X = 0.
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Proof of Theorem 10. Assume first that Hg : D
p
α → Dp

α is compact. Since the
family of test functions

fN,α(z) =
1

N3− 2+α
p

1

(1− aNz)2
, z ∈ D,

considered in (4.8) satisfies (7.1) and (7.2), we have

lim
N→∞

‖Hg(fN,α)‖Dp
α
= 0.

Next, scrutinizing the proof of Theorem 4 (necessity part), we see that the quantity
‖Hg(fN,α)‖Dp

α
is incorporated in the constant Cp which appears in the final lines of

the argument of the proof. In particular,

‖∆ng
′′‖Hp ≤ C ′

p (‖Hg(f2n,α)‖Dp
α
) 2n(2−

1
p
),

therefore

lim
n→∞

‖∆ng
′′‖Hp

2n(2−
1
p
)

= 0,

so by Remark 1, g ∈ λ
(
p, 1

p

)
.

Conversely, let ε > 0 and g ∈ λ
(
p, 1

p

)
. Suppose {fk} is a sequence of analytic

functions in D satisfying (7.1) and (7.2). Then there exists n0 ∈ N such that

‖∆ng
′′‖Hp

2n(2−
1
p
)

< ε for all n ≥ n0.

Then it follows from the proof of Theorem 4 (sufficiency part) that for all k

‖Hg(fk)‖
p
Dp

α
. |Hg(fk)(0)|

p +
∞∑

n=0

2−n(α+1)

(
ˆ 1

0

t2
n−2+1|fk(t)| dt

)p
‖∆ng

′′‖
p
Hp .

Using Lemma 9 we see that

|Hg(fk)(0)| =

ˆ 1

0

|fk(t)| dt→ 0 as k → ∞.

On the other hand

∞∑

n=0

2−n(α+1)

(
ˆ 1

0

t2
n−2+1|fk(t)| dt

)p
‖∆ng

′′‖
p
Hp

≤ C

n0−1∑

n=0

2n(2p−2−α)

(
ˆ 1

0

t2
n−2+1|fk(t)| dt

)p

+ Cε

∞∑

n0

2n(2p−2−α)

(
ˆ 1

0

t2
n−2+1|fk(t)| dt

)p
.
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The finite sum above tend to 0 as k → ∞ by appealing to Lemma 9. The second
sum is

∞∑

n0

2n(2p−2−α)

(
ˆ 1

0

t2
n−2+1|fk(t)| dt

)p

≤ C

∞∑

j=1

(j + 1)(2p−3−α)

(
ˆ 1

0

tj+1|fk(t)| dt

)p

≤ C‖H̃(fk)‖
p
Dp

α
≤ C sup

k
‖fk‖Dp

α
≤ CK

by (7.1). This gives

lim
k→∞

‖Hg(fk)‖Dp
α
≤ CKε,

and since ε is arbitrary the proof is complete. �

Theorem 8 and Theorem 9 can be proved with the same technique. We omit the
details.

Finally, we shall prove Theorem 6.

Proof of Theorem 6. We recall that an operator T on a separable Hilbert space
H is a Hilbert–Schmidt operator if for an orthonormal basis {en : n = 0, 1, 2, · · · } of
H the sum

∑∞
n=0 ‖T (en)‖

2 is finite. The finiteness of this sum does not depend on
the basis chosen. The class of Hilbert–Schmidt operators on H is denoted by S2(H).

(i) The set {1, z, z2, · · · } is a basis of H2. If g(z) =
∑∞

0 bkz
k ∈ Hol(D), then

Hg(z
n) =

ˆ 1

0

tng′(tz) dt =

∞∑

k=0

(k + 1)bk+1

n + k + 1
zk,

thus

‖Hg(z
n)‖2H2 =

∞∑

k=0

(k + 1)2|bk+1|
2

(n+ k + 1)2

and
∞∑

n=0

‖Hg(z
n)‖2H2 =

∞∑

n=0

∞∑

k=0

(k + 1)2|bk+1|
2

(n+ k + 1)2

=

∞∑

k=0

(k + 1)2|bk+1|
2

∞∑

n=0

1

(n + k + 1)2

∼

∞∑

k=0

(k + 1)2|bk+1|
2 1

k + 1

=

∞∑

k=0

(k + 1)|bk+1|
2 ∼ ‖g‖2D.

Thus Hg ∈ S2(H2) if and only if g ∈ D.
(ii) On A2

α, −1 < α < 0, an orthonormal basis is

{en(z) = cnz
n : n = 0, 1, 2, · · · },
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where

cn =
1

‖zn‖A2
α

=

√
Γ(n+ 2 + α)

n!Γ(2 + α)
.

Now

Hg(en)(z) = cnHg(z
n) = cn

∞∑

k=0

(k + 1)bk+1

n+ k + 1
zk

and

‖Hg(en)‖
2
A2

α
= c2n

∞∑

k=0

k!Γ(2 + α)

Γ(k + 2 + α)

(k + 1)2|bk+1|
2

(n+ k + 1)2
.

Thus using the Stirling formula estimate Γ(n+β)
n!

∼ (n + 1)β−1 we have

∞∑

n=0

‖Hg(en)‖
2
A2

α
=

∞∑

n=0

∞∑

k=0

Γ(n+ 2 + α)

n!Γ(2 + α)

k!Γ(2 + α)

Γ(k + 2 + α)

(k + 1)2|bk+1|
2

(n+ k + 1)2

∼

∞∑

n=0

∞∑

k=0

(n+ 1)α+1

(k + 1)α+1

(k + 1)2|bk+1|
2

(n + k + 1)2

=

∞∑

k=0

(k + 1)1−α|bk+1|
2

∞∑

n=0

(n+ 1)α+1

(n+ k + 1)2
.

Now a calculation shows that the asymptotic order of the inside series is
∞∑

n=0

(n+ 1)α+1

(n+ k + 1)2
∼ (k + 1)α,

and it follows that
∞∑

n=0

‖Hg(en)‖
2
A2

α
∼

∞∑

k=0

(k + 1)|bk+1|
2 ∼ ‖g‖2D.

(iii) On D2
α, 0 < α ≤ 1, an orthonormal basis is

{en} = {1, d1z, d2z
2, · · · },

where

dn =
1

‖zn‖D2
α

=
1

n

√
Γ(n− 1 + 2 + α)

(n− 1)!Γ(2 + α)
.

In this case we find (omitting the details)

∞∑

n=0

‖Hg(en)‖
2
D2

α
∼

∞∑

k=0

(k + 1)(3−α)|bk+2|
2

∞∑

n=0

(n+ 1)α−1

(n+ k + 1)2

∼

∞∑

k=0

(k + 1)(3−α)|bk+2|
2(k + 1)(α−2)

∼

∞∑

k=0

(k + 1)|bk+1|
2 ∼ ‖g‖2D,

and the assertion follows. �
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