
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 119–162

ELLIPTIC INTERPOLATION ESTIMATES FOR

NON-STANDARD GROWTH OPERATORS

Paolo Baroni and Jens Habermann

Uppsala University, Department of Mathematics
Lägerhyddsvägen 1, SE-751 06, Uppsala, Sweden; paolo.baroni@math.uu.se

Universität Erlangen, Department Mathematik
Cauerstr. 11, 91058 Erlangen, Germany, habermann@math.fau.de

Abstract. We derive a class of potential estimates for elliptic equations with non-standard

growth having a measure on the right-hand side; in particular our results allow to interpolate

between the pointwise estimates available for solutions to this equation and the ones for the gradient.

We allow bounded coefficients in BMO and VMO classes.

1. Introduction

In this paper we study nonlinear elliptic equations of the type

(1.1) −div
[
γ(x)a(x,Du)

]
= µ in Ω.

Here µ denotes a signed Radon measure defined on a bounded domain Ω ⊂ Rn,
n ≥ 2 with finite total mass. The vector field a : Ω×Rn → Rn is modeled upon the
non-standard p(·)-Laplacian so that the most prominent model we want to imitate
with (1.1) is the following elliptic equation with non-standard growth conditions:

(1.2) −div
[
γ(x)|Du|p(x)−2Du

]
= µ,

where the exponent function p : Ω → (2−1/n,+∞) is assumed to be bounded and to
satisfy—at least—the classical weak logarithmic continuity condition (2.8). We allow
the bounded coefficient function γ : Ω → R to be discontinuous, but in a mild way:
in particular, we will only consider coefficients with controlled integral oscillation,
namely in BMO or VMO classes.

The aim of this manuscript is to give an interpolative extension of the pointwise
estimates for weak and very weak solutions of such equations in terms of various
potentials of the right-hand side measure; more precisely, following the approach
proposed in the paper [23] of Kuusi and Mingione, we show “pointwise” estimates
for all fractional derivatives of u in terms of linear and non-linear Riesz and Wolff
potentials. We therefore provide a unified approach to both the pointwise potential
estimates—the ones for u and the ones for Du—in a scale depending on the regularity
of both γ(·) and a(·, z), that is, referring to (1.2), the regularity of both coefficient
and exponent. Finally, as a byproduct of our approach, we generalize the result
which Bögelein and one of the authors proved in [7], extending their gradient bound
from the partial case p(·) ≥ 2 to the whole range p(·) ∈ (2 − 1

n
,+∞), see Theorem

2.4. This latter result settles the gradient bound in the non-standard case for the
case p(·) < 2, providing in this setting the estimate proved in the work of Duzaar
and Mingione [10].

doi:10.5186/aasfm.2014.3915
2010 Mathematics Subject Classification: Primary 35J15, 35J60, 35J99.
Key words: Non-standard growth conditions, Wolff and Riesz potentials, pointwise estimates.



120 Paolo Baroni and Jens Habermann

We recall that with the expression (very) weak solution of equation (1.1) we mean
a function u ∈ W 1,1

loc (Ω) such that a(·, Du(·)) ∈ L1
loc (Ω) and the following integral

formulation holds true:

(1.3)

ˆ

Ω

〈γ(x)a(x,Du), Dϕ〉 dx =

ˆ

Ω

ϕdµ,

for any ϕ ∈ C∞
c (Ω). The usual (but not the unique) scheme used to approach

equations as (1.1) and (1.2) is finding a solution to (1.3) where instead of the right-
hand side measure we have a regular function f . If as right-hand side data we
take functions fn ⇀ µ in the weak sense of measures, then we get a sequence of
regular approximated solutions un which converges to a solution of (1.3). Such
a particular very weak solution is usually called a SOLA, Solution Obtained by
Limiting Approximations, and we only know that it belongs to W 1,q(·) with q(x) <
min{n(p(x) − 1)/(n − 1), p(x)}. The classical references to such an approach, in
the constant exponent case, are the works of Boccardo and Gallöuet [5, 6], whereas
for the case of a nonstandard growth exponent we refer to [7, Chapter 4] and the
references therein.

For this reason the estimates proved in this paper are stated as a priori estimates
for regular solutions of problems with L1 data, but using this approximation scheme
they can also be applied to more general situations, as when the right-hand side µ is
merely a Radon measure. Due to the reason just explained, it is therefore necessary
to involve not more than the 1-energy bound in our estimates instead of the p(·)-
energy which is typically used for non-standard growth problems; hence within the
whole paper we shall assume that the total 1-energy of the solution u is globally
bounded, i.e.

(1.4)

ˆ

Ω

|Du| dx =:M < +∞.

Since our results are local in nature, the global energy bound (1.4) could also be
replaced by a local energy bound on a sufficiently small ball. However, for simplicity
we involve in all our statements the global bound M . The appearance of the energy
bound in the constants—possibly in a local form—is unavoidable for the problems
of p(·)-Laplacian type; this is essentially linked to the anisotropicity of the problem.
Indeed even in the case µ ≡ 0, in reverse Hölder type estimates such a dependency
(eventually in the form of a dependence on the p(·)-energy of Du) appears in the
constants, see for example [1, 15, 35, 14] and in particular [3, Remark 1].

The estimates proved in this paper involve the following non-linear truncated
Wolff potential for variable exponent functions

Wµ
β(·),p(·)(x,R) :=

ˆ R

0

( |µ|(B̺(x))

̺n−β(x)p(x)

) 1
p(x)−1 d̺

̺
, β(x) ∈ (0, n/p(x)],

which is defined pointwise just as the usual constant exponent Wolff potential. More-
over, in the case p(x) ≡ 2, the Wolff potential reduces to the non-standard Riesz
potential, defined as

I
|µ|
β(·)(x,R) := Wµ

β(·)/2,2(x,R) =

ˆ R

0

|µ|(B̺(x))

̺n−β(x)

d̺

̺
, β(x) ∈ (0, n];

observe that we can suppose, without loss of generality, µ to be defined over the
whole Rn just taking µ⌊(Rn

r Ω) ≡ 0. We need to introduce also the following
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mixed potential, depending explicitly on the value of the function p(·):

(1.5) WIµβ(·),p(·)(x,R) :=





[
I
|µ|
β(·)p(·)(x,R)

] 1
p(x)−1

if p(x) < 2,

Wµ
β(·),p(·)(x,R) if p(x) ≥ 2.

Notice that both the right-hand side potentials share the same scaling property,
and subsequently also WI does. We introduce this potential since in order to get
fractional estimates on u having as an upper borderline case a pointwise bound for
the gradient, accordingly with [23], we need to catch different behaviors depending
on the value of the exponent in the point considered, see also the discussion before
Theorem 2.3.

2. Structural conditions and statement of the results

The continuous vector field a : Ω × Rn → Rn is assumed to be C1-regular in
the gradient variable z, with az(·) being Carathéodory regular, and to satisfy the
following non-standard growth and ellipticity conditions:

(2.1)




|a(x, z)|+ |az(x, z)|

(
|z|2 + s2

) 1
2 ≤

√
L
(
|z|2 + s2

) p(x)−1
2 ,

√
ν
(
|z|2 + s2

)p(x)−2
2 |λ|2 ≤ 〈az(x, z)λ, λ〉 ,

whenever x ∈ Ω and z, λ ∈ Rn, where 0 < ν ≤ 1 ≤ L and s ∈ [0, 1] are fixed. The
exponent function p : Ω → (2− 1/n,+∞) is assumed to be continuous with modulus
of continuity ω : [0,∞) → [0, 1], i.e. there holds

(2.2) 2− 1

n
< γ1 ≤ p(x) ≤ γ2 <∞ and |p(x)− p(y)| ≤ c(γ1, γ2)ω

(
|x− y|

)
,

for all x, y ∈ Ω. We shall see in few lines which kind of regularity we require upon
ω. Let us remark that the restriction γ1 > 2 − 1/n already appears in the constant
growth case since this condition guarantees that solutions u to measure data problems
belong to the Sobolev space W 1,1, which in turn allows to speak of the usual gradient
of u. Let us moreover note that since our results are of local nature, we may assume
that p(·) is globally bounded on Ω with lower bound γ1 and upper bound γ2, as in
(2.2).

Additionally, we shall impose the following continuity assumption on a(·) with
respect to x: There exists L1 ≥ 1 such that

|a(x, z)− a(x0, z)|(2.3)

≤ L1ω
(
|x− x0|

)[(
|z|2 + s2

) p(x)−1
2 +

(
|z|2 + s2

)p(xo)−1
2

][
1 +

∣∣ log
(
|z|2 + s2

)∣∣
]

holds for all x, x0 ∈ Ω and z ∈ Rn.
We made explicit the possible presence of coefficients in (1.1) since, while we

are forced to consider a continuous dependence of the vector field a(·) upon x by
the fact that we want to model the p(·)-Laplacian (1.2), and in this case (logarith-
mic) continuity is essentially an unavoidable condition, we can allow slightly weaker
assumptions when considering the regularity of the coefficient of the equation. There-
fore γ : Ω → R denotes a possibly discontinuous bounded function with

(2.4)
√
ν ≤ γ(x) ≤

√
L,
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for all x ∈ Ω. In the course of the paper we will impose a variety of conditions on
the oscillation of γ. In order to do this we introduce the quantity

v(r) :=
1

2
√
L

sup
B̺(x0)⊂Ω,

0<̺≤r

ˆ

B̺(x0)

∣∣γ(x)− (γ)x0,̺

∣∣ dx ∈ [0, 1],

where (γ)x0,̺ is the average of γ on the ball B̺(x0), and call the coefficient γ(x) of
bounded mean oscillation (or BMO regular) if there exists a constant c such that

v(r) ≤ c for all radii r ≤ 1.

Moreover we call it of vanishing mean oscillation (or VMO regular), if

(2.5) v(r) → 0 as r → 0.

2.1. The state of the art. In [28] Lukkari, Maeda and Marola generalized the
fundamental paper [20] (see also [21, 36, 29] for other notable contributions and the
recent [4] for more on Wolff potentials for non-standard growth conditions) to the
non-standard growth situation and showed a pointwise estimate for the solution to
the equation (1.1) under the structure conditions (2.1) to (2.3) of the following type:

(2.6) |u(x0)| ≤ c

[
Wµ

1,p(·)(x0, 2R) +

ˆ

BR(x0)

(|u|+ sR) dx+ R

]
,

for all BR(x0) with B2R(x0) ⊂ Ω and R ≤ R0, where R0 is a universal constant,
depending only on the structural data of the equation. On the other hand, Bögelein
and one of the authors generalized in [7] pointwise potential estimates for the gradient
of the solution, which were originally established by Duzaar and Mingione in [11],
to the non-standard growth situation. I.e. they showed that for solutions u to (1.1)
under the conditions (2.1)–(2.3) and the additional condition γ1 ≥ 2 the estimate

(2.7) |Du(x0)| ≤ c

[
Wµ

1/p(·),p(·)(x0, 2R) +

ˆ

BR(x0)

(|Du|+ s) dx+R

]
,

is valid for all BR(x0) with B2R(x0) ⊂ Ω and radii R ≤ R0. For the pointwise
potential estimates (2.6) and (2.7) to hold true, different continuity conditions have
to be imposed: Whereas for the estimate (2.6) it is sufficient to impose the logarithmic
Hölder continuity condition, i.e.

(2.8) ω(̺) log
1

̺
≤ c(ω(·)) < +∞, for all ̺ ≤ 1,

in order to make estimate (2.7) hold true, we need to impose a logarithmic Dini-
condition of the type

(2.9) dω(r) :=

ˆ r

0

[
ω(̺) log 1

̺

]κd̺
̺
<∞ for some r > 0,

where

κ := min
{2

γ 2

, 1
}
.

Condition (2.9) is stronger than (2.8). This is in accordance with the standard
growth situation in which for the pointwise estimate for u it has merely to be imposed
measurability of the vector field with respect to x, whereas for the pointwise estimate
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for the gradient Du one needs to impose a Dini-type condition on the modulus of
continuity of the form

ˆ r

0

[
ω(̺)

]min{ 2
p
,1}d̺

̺
<∞, for some r > 0.

This comparison is not completely correct, since in our case we uncouple the regular-
ity of the exponent, roughly speaking given by the behavior of ω from the regularity
of the coefficient, given by v. We therefore also need to impose a Dini-condition on
the coefficient function γ(x), involving the function v which measures its integral
oscillation, as follows:

(2.10) d
v
(r) :=

ˆ r

0

[v(̺)]σh
d̺

̺
<∞, for some r > 0

and with σh ∈ (0, 1) depending on data of the problem, i.e. on n, L/ν, γ1, γ2. Note
that it might be difficult to verify condition (2.10), since the exponent σh depends on
the higher integrability exponent for homogeneous equations with p(x)-growth (see
Lemma 5.2) but for example it is satisfied in the case v(̺) ≤ c ̺γ for some γ ∈ (0, 1).
We immediately point out that, despite we uncouple the regularity of the vector field
a and the regularity of the coefficient γ, the two conditions (2.9) and (2.10) will
always be coupled, see Theorem 2.3 and Lemma 5.8. This is due to the fact that in
order to get estimates for the gradient, we need to perform a comparison argument
with the problem where the dependence of the full vector field γ(x)a(x, z) on the
variable x will be frozen in some fixed point. Hence both the conditions (2.9) and
(2.10), through a dyadic summation process, will attend the result.

2.2. Fractional estimates. Let us first state the results of De Giorgi type,
covering Hölder continuity, resp. fractional differentiability “of order α < α0”—
with some α0 > 0 depending on the structural data. As we already pointed out, the
following theorems are stated as a priori estimates for appropriately regular solutions
to equation (1.1). We start with low order fractional differentiability estimates, which
are strongly connected to Hölder continuity estimates coming up via De Giorgi’s
theory. In particular for this first result we don’t require any further regularity
property with respect to x apart from the weak logarithmic continuity (2.8) for the
vector field a(·); this is not surprising in view of the C0,α regularity theory for non-
standard growth conditions, see for instance [3, 13, 15, 27] and also the survey [17].

Theorem 2.1. (Estimates of De Giorgi type) Let u ∈ C0(Ω) ∩W 1,p(·)(Ω) be a

weak solution to the equation (1.1) with the growth conditions (2.1), (2.2) and the

assumption (2.3) holding for a modulus of continuity ω which fulfills the weak loga-

rithmic Hölder continuity condition (2.8). Moreover let the coefficient γ be bounded

in the sense of (2.4). Then there exists αm > 0 depending only on the structural

data of the equation and a radius R0 ≡ R0(n, ν, L, γ1, γ2, ω(·)), such that the following

holds true: Whenever BR ⊂ Ω with R ≤ R0 and x, y ∈ BR/8, then

|u(x)− u(y)| ≤ c
[
Wµ

1−α p(·)−1
p(·)

,p(·)
(x, 2R) +Wµ

1−α p(·)−1
p(·)

,p(·)
(y, 2R)

]
|x− y|α

+ c
( |x− y|

R

)α
ˆ

BR

(|u|+Rs+Rαm) dξ(2.11)

holds uniformly in α ∈ [0, α̃] for every α̃ < αm, where the constant depends only on

n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·) and α̃.
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2.3. Almost-full and full interpolation estimates. The next result specifies
the dependency of the Hölder exponent—and therefore of the fractional differentia-
bility—on the continuity property of the exponent function p(·) and the x-dependence
of the vector field. It could be interesting to compare the structure of this Theorem
with the form of the C0,α regularity result in [1].

Theorem 2.2. Let u ∈ C0(Ω) ∩ W 1,p(·)(Ω) be a weak solution to (1.1) under

the structural assumptions (2.1) to (2.4). For every α̃ < 1 there exists two positive

numbers δ1, δ2 depending both on n, γ1, γ2, ν, L, L1, α̃ such that if

(2.12) lim
r→0

ω(r) log 1
r
≤ δ1, lim

r→0
v(r) ≤ δ2,

then the pointwise estimate (2.11) holds uniformly in α ∈ [0, α̃], for a constant c
which depends on n, ν, L, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), α̃, as soon as x, y ∈ BR/8 and

R ≤ R0, where R0 is a radius having the same dependencies as in Theorem 2.1.

Note that the previous condition (2.12) on v can be rephrased as γ is BMO
regular and has a small (in the sense specified above) norm; it is otherwise always
satisfied in the case γ is VMO regular. The same holds for the condition regarding
ω: (2.12) would always be satisfied if a strong logarithmic continuity condition held
(see (3.4)). Notice moreover that in order to get the borderline case α̃ = 1—which
means differentiability—it is not even sufficient to impose condition (2.12) for both
δi = 0. Indeed, we have to impose Dini conditions of the form (2.9), (2.10) to obtain
fractional differentiability in the full range α ∈ [0, 1]. In other words, not even a
strong estimate for the integral oscillations of coefficients and the strong logarithmic
continuity of the exponent are sufficient to assure differentiability: it is indeed needed
a quantitative description of the behavior of the two moduli of continuity close to
zero, i.e. (2.9) and (2.10). Again see [2, 8, 14] where it is essentially shown that Hölder
continuity of p(·) implies differentiability (actually, something more: C1,α regularity).

Moreover, we have to match the case α̃ < 1—i.e. no gradient estimate is ap-
proached, Theorem 2.1—involving the non linear Wolff potentials independently of
the value of the function p(·), with the case α̃ = 1, which is the gradient estimate
involving both the Wolff and the Riesz potential, analogously as in the constant ex-
ponent case [10, 11], depending on the value of the exponent function p(·). Namely
in the case p(x0) ≥ 2 we have the estimate (2.7), while in the case p(x0) < 2 we will
show that

|Du(x0)| ≤ c

[[
I
|µ|
1 (x0, 2R)

] 1
p(xo)−1

+

ˆ

BR(x0)

(|Du|+ s) dx+R

]
,

analogously as in the standard case [10]. In order to deal simultaneously with the two
different behaviors of the estimates, and for simplicity of notations and readability
of the estimates, we will make use of the mixed potential introduced in (1.5). In
particular, in order to “match” the two borderline estimates we were talking about,
we have to replace for every α ∈ [0, α̃] the non linear Wolff potentials Wµ

1,p(·)(x0, R)

by the slightly larger Riesz potentials [I
|µ|
p(·)(x0, 2R)]

1/(p(xo)−1) for the points where

p(x0) < 2; see also the comment before Theorem 1.5 in [23]. After this introduction
we can state the following

Theorem 2.3. Let u ∈ C1(Ω) be a weak solution to (1.1) under the structural

assumptions (2.1) to (2.4) and with ω satisfying the log-Dini condition (2.9). There
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exists a constant σh, depending on n, L/ν, γ1, γ2, such that if also (2.10) holds, then

|u(x)− u(y)| ≤ c

[
WIµ

1−α p(·)−1
p(·)

,p(·)
(x, 2R) +WIµ

1−α p(·)−1
p(·)

,p(·)
(y, 2R)

]
|x− y|α

+ c
( |x− y|

R

)α
ˆ

BR

(|u|+Rs+Rς) dξ,(2.13)

holds uniformly in α ∈ [0, 1], whenever BR ⊂ Ω is a ball with radius R ≤ R0 and

x, y ∈ BR/8, being R0 ≡ R0(n, ν, L, L1, γ1, γ2, ω(·)). Here ς has the expression

ς :=

{
αm if α ≤ αm/2;

2 if αm/2 < α ≤ 1,

and the constant c depends on n, ν, L, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·).
Note that in a sense the limiting case of the previous Theorem, in the case

p(x0) < 2, is the following Riesz pointwise gradient estimate, which will following as
Corollary of one of our intermediate result.

Theorem 2.4. Let u ∈ C1(Ω) be a weak solution to (1.1) under the structural

assumptions (2.1) to (2.4); let moreover the logarithmic-Dini condition
ˆ r

0

[
ω(̺) log 1

̺
+ [v(̺)]σh

]d̺
̺
<∞ for some r > 0,

hold, for σh as in Theorem 2.3. Then there exist a constant c and a positive radius

R0, both having the same dependencies of Theorem 2.3, such that the pointwise

estimate

(2.14) |Du(x0)| ≤ c
[
I
|µ|
1 (x0, 2R)

] 1
p(xo)−1

+ c

ˆ

BR(x0)

(|Du|+ s+R) dx,

holds for every x0 ∈ Ω such that p(x0) < 2 and for every R ≤ R0.

We shall give the proof of Theorem 2.4 after the proof of Theorem 2.7, in Sec-
tion 6. Finally we mention that very recently the Wolff gradient estimate in the super-
quadratic case, analogue of (2.7) in the constant exponent case, given by Duzaar and
Mingione in [11], has been improved by Kuusi and Mingione in [24, 25], extending
the seminal result in [32] to the full range p ≥ 2 in the following way:

(2.15) |Du(x0)| ≤ c

[[
I
|µ|
1 (x0, 2R)

] 1
p−1

+

ˆ

BR(x0)

(|Du|+ s) dx

]
, p ≥ 2;

notice that [I
|µ|
1 (x0, R)]

1
p−1 ≤ c(n, p)Wµ

1/p,p(x0, 2R) if p ≥ 2. It could be an interesting

subject to generalize endpoint estimates of this paper according to the aforementioned
results of Kuusi and Mingione; however, the presence of variable exponent makes the
situation somewhat unclear. Namely, the proof of (2.15) is based on very delicate
analysis of non-degenerate and degenerate behavior of the equation and it is not
entirely straightforward to generalize the method to our situation, where both the
behaviors could unveil at the same time. Moreover, the generalization would only
affect the endpoint estimates, namely those of Theorem 2.3, while the intermediate
estimates of Theorem 2.1 and 2.2 would not be touched.

2.4. Very weak solutions. For the particular case µ ∈ W−1,p′(·)(Ω), where

W−1,p′(·)(Ω) denotes the dual space to W
1,p(·)
0 (Ω), we know that there exists a unique
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weak solution u ∈ W
1,p(·)
0 (Ω) to the Dirichlet problem

(2.16)

{
−div a(x,Du) = µ in Ω,

u = 0 on ∂Ω,

associated to (1.1), see for instance [7, 26, 29]. Via suitable approximation schemes
we arrive at

Theorem 2.5. Let u ∈ W
1,p(·)
0 (Ω) be a weak solution to (1.1) with µ ∈ W−1,p′(·)

(Ω). Then, if the structure assumptions described in the respective statements are

satisfied, Theorems 2.1, 2.2 and 2.3 hold true in almost every point x, y ∈ BR/8.

On the other hand, if the right-hand side µ is merely a Radon measure with
finite total mass, weak solutions in the sense that u ∈ W 1,p(·)(Ω) may not exist and
we need to generalize the notion of solutions to so-called SOLAs. It is known that

these solutions belong to the Sobolev space W
1,p(·)−1
0 (Ω), which still gives a meaning

to the weak formulation of the equation (2.16). Moreover, when µ ∈ W−1,p(·)(Ω) the
SOLA of the problem (2.16) coincides with the usual weak solution. In any case our
results also hold for the case that the right-hand side µ is only a Radon measure.
This is the content of the following

Theorem 2.6. Let u ∈ W
1,p(·)−1
0 (Ω) be a SOLA of the Dirichlet problem (2.16)

with µ being a Radon measure defined on Ω with finite total mass. Then the con-

clusion of Theorem 2.5 holds true.

The proofs of these theorems can be performed analogously to the one of [7,
Theorem 1.4], taking into account the additional condition we impose here, and
therefore we refer the reader to this paper, in particular Section 4.1.

Concerning regularity of SOLAs in the case of standard p-growth problems see
also the contributions of [33, 31]; and moreover we refer to [23, Section 8] to see
how the results of this paper can be transferred into fractional regularity results for
SOLAs of the kind presented in the aforementioned papers.

2.5. Estimates for the maximal function. The following pointwise estimates
for the maximal function of u will be the starting point for the potential estimates
stated in the previous theorems; we refer the reader to Section 3.5 for the definition
of the maximal operators.

Theorem 2.7. Let u ∈ C1(Ω) be a weak solution to (1.1) under the assumptions

(2.1), (2.2) and (2.4), with ω(·) satisfying (2.8). Let BR ⊂ Ω be a ball, centered at

x. Then for every α̃ < 1 there exist positive numbers δ1 and δ2 depending on

n, ν, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), α̃ such that if (2.12) is satisfied, then the pointwise

estimate

M ♯
α,R(u)(x) +M1−α,R(Du)(x)(2.17)

≤ c
[
Mp(·)−α(p(·)−1),R(µ)(x)

] 1
p(x)−1 + cR1−α

ˆ

BR

(|Du|+ s+R) dξ

holds uniformly in α ∈ [0, α̃], for a constant c depending on n, ν, L, L1, γ1, γ2,M, |µ|(Ω),
|Ω|, diam(Ω), ω(·), α̃.

If in addition the continuity assumption (2.3) on the vector field together with

the conditions (2.9) and (2.10)—for σh as in Theorem 2.3—are in force, and moreover
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B2R ⊂ Ω, then the estimate

M ♯
α,R(u)(x) +M1−α,R(Du)(x)(2.18)

≤ cWIµ1−α(p(·)−1)/p(·),p(·)(x, 2R) + cR1−α

ˆ

BR

(|Du|+ s+R) dξ

holds true uniformly in α ∈ [0, 1], with a constant c having the same dependencies

as that in (2.17).

3. Preliminaries

3.1. The function Vp(z). Since the prototype for equations we handle in this
manuscript is the p(·)-Laplacian operator, it is convenient that we work widely with
an operator for the gradient Du, involving the growth behavior of this equation. For
s ∈ [0, 1] and p ∈ [γ1, γ2], we introduce the function

Vp(z) :=
(
s2 + |z|2

) p−2
4 z, z ∈ Rn.

A basic property of the map Vp(·) can be found in [16, Lemma 2.1] and reads as
follows: For any z1, z2 ∈ Rn, any s ∈ [0, 1] and any p ∈ [γ1, γ2] it holds

(3.1) c−1(s2 + |z1|2 + |z2|2)
p−2
2 ≤ |Vp(z2)− Vp(z1)|2

|z2 − z1|2
≤ c(s2 + |z1|2 + |z2|2)

p−2
2 .

Here the constant c depends on n and p and we notice that for p ∈ [γ1, γ2] it can
be replaced by one depending only on γ1 and γ2 instead of p. On the other hand,
in case of a function p : Ω → [γ1, γ2], the estimate (3.1) can be written pointwise for
every x and again the constant c depends only on n and the global bounds γ1 and
γ2 of the function p(·).

3.2. Monotonicity of the vector field a(·). At this point we recall that
assumption (2.1)2 implies the following monotonicity property of the vector field
z 7→ a(·, z): There exists a constant c ≡ c(γ2) ≥ 1 such that

(3.2) c−1
√
ν
(
|z1|2 + |z2|2 + s2

)p(x)−2
2 |z2 − z1|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉 ,

whenever x ∈ Ω and z1, z2 ∈ Rn. Taking into account (3.1) we have for all p(x) > 1
the estimate

(3.3) c−1
√
ν
∣∣Vp(x)(z2)− Vp(x)(z1)

∣∣2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉 ,
for a constant c ≡ c(n, γ1, γ2) ≥ 1.

3.3. The exponent function p(·). We note that the logarithmic Dini condition
(2.9) on the exponent function p(·) implies the strong logarithmic continuity of p(·),
i.e. for its modulus of continuity ω holds

(3.4) lim sup
̺↓0

ω(̺) log
1

̺
= 0,

and therefore certainly also the weak logarithmic continuity

(3.5) lim sup
̺↓0

ω(̺) log
1

̺
< +∞,

which obviously implies (2.8) and is an essential condition in many regularity proofs
for problems with non-standard growth structure in the literature, especially for
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gaining higher integrability in the spirit of Lemma 5.2, which is a starting point
for any freezing procedure. We note at this point that very recently, Zhikov and
Pastukhova [38] proved certain logarithmic type higher integrability results under
slightly weaker conditions on the modulus of continuity of p(·).

For a fixed ball B2R(x0) ⊂ Ω we define

(3.6) p1 := inf
x∈B2R(x0)

p(x) and p2 := sup
x∈B2R(x0)

p(x).

Then, assumption (2.2) directly gives

(3.7) p2 − p1 ≤ ω(4R) and
p2
p1

≤ 1 + ω(4R).

Furthermore, an elementary computation shows that (3.5) and (3.7) imply

(3.8) R−(p2−p1) ≤ R−ω(4R) ≤ c(ω(·)),

for all radii 0 < R ≤ 1. Note that from now on the fact that a constant will depend
on ω(·), i.e. the expression c ≡ c(ω(·)), will mean that it will depend on ω via (3.8).
Finally, from [7, estimate (2.8)] we take the following elementary estimate, which we
shall use several times in due course of the paper. For any α, σ > 0, R ∈ (0, 1] and
ω̃ ∈ [0, ω(2R)] we have

(3.9) Aσ ≤ c(α, ω(·)) (A+Rα)σ+ω̃, for all A ≥ 0.

3.4. Elementary facts on Wolff potentials. The statement in the following
remark is a consequence of the fact that the non-standard potentials are defined
pointwise, see for the standard case [34, Lemma 2.3].

Remark 3.1. For 1 < p(x) ≤ 2 and β >∈ (0, n/p(x)], the estimate

Wµ
β,p(·)(x,R) ≤ c(γ1, γ2, β)

[
Iµβp(·)(x, 2R)

] 1
p(x)−1

holds true.

The following simple Proposition shows how to estimate the series of the density
of the Wolff/Riesz potential, on some dyadic sequence, with the whole Wolff/Riesz
potential.

Proposition 3.2. Let R > 0 and let Ri := R/Ki, i = 0, 1, . . . , be a sequence of

geometrically shrinking radii with K > 1. Then if p(x) ≥ 2, for every m ∈ N and

θ(x) ∈ (0, n/p(x)] we have

(3.10)

m∑

i=0

[ |µ|(Bi)

R
n−θ(x)p(x)
i

] 1
p(x)−1 ≤ c(n, γ1, K)Wµ

θ(·),p(·)(x, 2R),

and for every q(x) ∈ (0, n] there holds

(3.11)

m∑

i=0

|µ|(Bi)

R
n−q(x)
i

≤ c(n, γ1, K) I
|µ|
q(x)(x, 2R),

where Bi := B(Ri, x).
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Proof. Since the nonstandard potentials are defined pointwise, the proof is exactly
the one for the standard potentials, which can be found for instance in [11, 23]. Indeed
from [11, Proof of Theorem 1.1] we deduce that the constant in estimate (3.10) is

c ≡ 2
n−θ(x)p(x)

p(x)−1

log 2
+
K

n−θ(x)p(x)
p(x)−1

logK
≤ 2

n
γ1−1

log 2
+
K

n
γ1−1

logK
,

Estimate (3.11) is just estimate (3.10) with the choices p(x) ≡ 2 and θ(x) = q(x)/2.
�

3.5. Maximal functions. In our proofs we involve different types of maximal
operators. In the following let Ω be a bounded domain of Rn.

Definition 3.3. For β ∈ [0, n], x ∈ Ω, R < dist(x, ∂Ω) and f being a L1(Ω,Rk)
function or a measure with finite total mass, the restricted, centered, fractional β
maximal function of f is defined by

Mβ,R(f)(x) := sup
0<r≤R

rβ
|f |(B(x, r))

|B(x, r)| .

For β = 0, the above defined operator MR(f) ≡ M0,R(f) is the classical centered
Hardy–Littlewood maximal operator.

Definition 3.4. For β ∈ [0, 1], x ∈ Ω, R < dist(x, ∂Ω) and f ∈ L1(Ω,Rk) we
define the restricted, centered sharp fractional β maximal function of f by

M ♯
β,R(f)(x) := sup

0<r≤R
r−β

ˆ

B(x,r)

∣∣f − (f)B(x,r)

∣∣ dξ.

In the case β = 0 the definition gives the usual Fefferman–Stein sharp maximal
operator M ♯

R(f) ≡M ♯
0,R(f).

Obviously, by Poincaré’s inequality, for any f ∈ W 1,1(Ω,Rk) we have

(3.12) M ♯
α,R(f)(x) ≤ c(n)M1−α,R(Df)(x) for all α ∈ [0, 1].

The following Lemma, whose proof is just a pointwise revisitation of the proof of [23,
Lemma 4.1], will be useful in order to estimate maximal operators associated to the
measure µ with related Wolff/Riesz potentials.

Lemma 3.5. Let µ be a Borel measure with finite total mass on Ω and let

ς ∈ (0, 1), β(x) ∈ [0, n], p(x) ∈ [γ1, γ2] and BR ⊂ Ω. Then there holds

[
Mβ(x),ςR(µ)(x)

] 1
p(x)−1 ≤ c(n, γ1, γ2, ς)W

µ
β(·)/p(·),p(·)(x,R)

and

Mβ(x),ςR(µ)(x) ≤ c(n, γ, γ1, ς)I
|µ|
β(·)(x,R).

Note that the constant appearing in [23, Lemma 4.1] is continuous and increasing
with respect to β(x), so we replaced the dependence on β(x) with a dependence on
n, and the dependence on p(x) with a dependence upon γ1, γ2. Finally the proof of
the following Lemma can be found in [9]:

Lemma 3.6. Let f ∈ L1(Ω,Rk) and B2R ⊂ Ω; then for every α ∈ (0, 1] there

exists a constant depending only on n such that the inequality

|f(x)− f(y)| ≤ c

α

[
M ♯

α,R(f)(x) +M ♯
α,R(f)(y)

]
|x− y|α
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holds for every x, y ∈ BR/4.

4. Regularity for the reference problems

Since we will prove the main theorem by suitable comparison procedures to ho-
mogeneous and “frozen” problems, in this section we collect several regularity results
for problems with non-standard growth.

4.1. Decay estimates for the reference problem. For a sub-domain A ⊂ Ω
we consider the homogeneous equation

(4.1) −div
[
γ(x)a(x,Dv)

]
= 0 in A.

Then De Giorgi’s theory is available for solutions v to this equation, since the vector
field a satisfies the ellipticity and p(x)-growth conditions (2.1) and p(·) is logarithmic
Hölder continuous. More precisely we have estimates of Morrey-type for the gradient
Dv, as the following Theorem shows:

Theorem 4.1. Let v ∈ W 1,p(·)(A) be a weak solution to (4.1) under the structure

conditions (2.1)–(2.3) with a growth exponent p(·) satisfying (2.2) and (2.8) in A and

with coefficient γ(·) bounded in the sense of (2.4). Then there exist an exponent

αm ∈ (0, 1) and a constant c ≥ 1, both depending on n, ν, L, γ1 and γ2, such that the

estimate
ˆ

B̺

(|Dv|+ s)p(x) dx ≤ c ̺p2(αm−1)(4.2)

+ c

[
ˆ

Br

(
|Dv|p(x) + 1

)
dx

] γ2−γ1
γ1

(̺
r

)p2(αm−1)
ˆ

Br

(|Dv|+ s)p(x) dx

holds, whenever B̺ ⊂ Br ⊂ A are concentric balls with r ≤ 1.

Proof. The proof works by showing that v lies in an appropriate generalized
De Giorgi class and subsequently via the embedding of De Giorgi classes into the
space of Hölder continuous functions. In fact, this is shown for local minimizers of
functionals with p(x)-growth structure in [15] and in [12] (in the latter paper more
general problems involving obstacle conditions are treated); in the context of solutions
to p(x)-growth equations the argument can be established completely analogously.
Notice that we made explicit the dependence of the constant on the p(·)-energy of
Dv for future use, see [12, Equation (4.60)]. �

Next, we consider the homogeneous frozen equation

(4.3) div a(x0, Dw) = 0 in A,

for a sub-domain A ⊂ Ω. Since the vector-field z 7→ a(x0, z) is frozen in the point
x0 ∈ Ω, it fulfills the structure conditions (2.1) with a constant exponent p(x0).
Therefore, [10, Theorem 3.3] and [11, Theorem 3.1] provide the following reference
estimate:

Theorem 4.2. Let w ∈ W 1,p(xo)(A) be a weak solution to (4.3) under the struc-

ture conditions (2.1) with constant growth exponent p(x0) > 2 − 1/n. Then there

exists βm ∈ (0, 1] and c ≥ 1, both depending only on n, ν, L, p(x0) such that the
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estimate

(4.4)

ˆ

B̺

|Dw − (Dw)B̺| dx ≤ c
( ̺
R

)βm
ˆ

BR

|Dw − (Dw)BR
| dx,

holds whenever B̺ ⊂ BR ⊂ A are concentric balls. Moreover, it holds that

(4.5)

ˆ

B̺

(|Dw|+ s) dx ≤ c

ˆ

BR

(|Dw|+ s) dx,

again for a constant c ≡ c(n, p(x0), ν, L).

Remark 4.3. (Dependence of the constants) As also mentioned in [10, Re-
mark 3.2], the constants β and c in the estimate above depend continuously on the
data. This means that for p(x0) ∈ [γ1, γ2] we may replace the dependence upon p(x0)
by a dependence on the bounds γ1 and γ2. Let us in particular point out that the
constants remain stable when p(x0) → 2, since they rely on estimates for a linearized
elliptic equation as considered in [11, Lemma 3.2].

We state a result concerning boundary regularity and nonlinear Calderón–Zyg-
mund theory for solutions to the frozen homogeneous equation. We refer the reader
for instance to [23, Theorem 2.3] and [22, Theorem 7.7] for more details and a com-
ment on the proof.

Theorem 4.4. Let w ∈ W 1,po(Ω) be a weak solution to the Dirichlet problem
{
−div a(x0, Dw) = 0 on BR,

w = v on ∂BR,

where the vector field z 7→ a(x0, z) satisfies (2.1) with constant exponent po = p(x0),
BR ⊂ Ω denotes a ball and v ∈ W 1,q(BR) denotes an assigned boundary datum with

po ≤ q <∞. Then w ∈ W 1,q(BR) and the estimate

‖Dw‖Lq(BR) ≤ c
(
‖Dv‖Lq(BR) + s

)

holds true for a constant c ≡ c(n, po, ν, L, q).

Remark 4.5. (Dependence of the constant) Again, a careful look at the proofs
of Theorem 7.7. in [22] shows that the appearing constant can be replaced by one
which depends only on the global bounds γ1 and γ2 instead of po. Later on we will
apply Theorem 4.4 for the choice q ≡ p2(1 + δ1/2), where p2 denotes the supremum
of p(·) on a small ball and δ1 a higher integrability exponent depending on the data.
However the constant in Theorem 4.4 depends in a monotone way on the parameter
q and blows up when q → ∞. Thus, we can replace the dependency of the constant
on q by the upper bound of p2(1 + δ1/2) and therefore make it independent of p(·)
itself.

5. Comparison estimates for reference problems

The proof of the main theorems will be performed by a series of comparison
procedures to suitable more regular problems. Let us denote by u ∈ C1(Ω) the
solution to the equation (1.1) with 1-energy bounded by M . We consider on a
fixed ball B2R(x0) ⊂ Ω with small radius which will be specified later, the solution
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v ∈ W 1,p(·)(Ω) to the Dirichlet problem

(5.1)

{
div

[
γ(x) a(x,Dv)

]
= 0 on B2R,

v = u on ∂B2R,

and for po ≡ p(x0) the solution w ∈ W 1,po(Ω) to the Dirichlet problem

(5.2)

{
div a(x0, Dw) = 0 on BR,

w = v on ∂BR.

Existence and uniqueness of v and w are guaranteed by standard monotonicity meth-
ods. In order to handle the cases po ≥ 2 and po < 2 widely simultaneously, we
introduce the notation

χ{po<2} :=

{
0 if po ≥ 2,

1 if po < 2.

5.1. Comparison to the homogeneous problem. We first establish a com-
parison estimate between the solution u ∈ C1(Ω) to the original measure data prob-
lem (1.1) and the unique solution v ∈ W 1,p(·)(Ω) to the homogeneous Dirichlet prob-
lem (5.1). Our result is the following

Lemma 5.1. Under the structure conditions (2.1), (2.2), (2.3), being ω(·) log-

Hölder continuous as in (2.8) and γ(·) bounded in the sense of (2.4), let u ∈ W 1,p(·)(Ω)

be the solution to the equation (1.1) and let v ∈ u+W
1,p(·)
0 (B2R) be the unique solu-

tion to the Dirichlet problem (5.1), where 0 < R ≤ 1. Then there exists a constant c
depending upon n, ν, γ1, γ2, |µ|(Ω), |Ω|,M, ω(·) such that the following estimate holds

true:
ˆ

B2R

|Du−Dv| dx(5.3)

≤ c

[ |µ|(B2R)

Rn−1

] 1
po−1

+ c χ{po<2}

[ |µ|(B2R)

Rn−1

](
ˆ

B2R

(|Du|+ s) dx

)2−po

+ cR.

Proof. Estimate (5.3), in the case p1 ≥ 2, can be almost directly inferred from [7,
Lemma 3.1]. The only difference consists in the presence of the coefficient function
γ(x) here. However, it can be easily seen that only slight modifications are sufficient,
involving in particular the bound (2.4) for γ(x), to get the estimate also in our case.
So in this proof we only concentrate on the case p1 < 2.

The proof consists in three steps. First, we reduce the situation to the one where

x0 = 0, 2R = 1, thus B2R ≡ B1, and |µ|(B1)+
[
|µ|(B1)

]( ´
B1
(|Du|+s) dx

)2−p1 ≤ c̄ for

a constant c̄ ≡ c̄(n, γ1, γ2,M, |Ω|, ω(·)). Here we have set p2 ≡ supx∈B1
p(·). Then,

in a second step we justify this simplification by a scaling argument. Finally, we
have to adjust the outcoming estimate by replacing the “wrong” exponent p2 by the
exponent po.

Step 1: Dimensionless estimate. We here show that in the case B2R(x0) ≡ B1,
setting

p2 := sup
x∈B1

p(·), p1 := inf
x∈B1

p(·)
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and supposing the estimate

(5.4) |µ|(B1) + |µ|(B1)

(
ˆ

B1

(|Du|+ s) dx

)2−p1

≤ c̄,

holding for a constant c̄ <∞, we have

(5.5)

ˆ

B1

|Du−Dv| dx ≤ c(n, ν, γ1, γ2, c̄).

First we introduce for k ∈ N0 the truncation operators

Tk(t) := max{−k,min{k, t}}, Φk(t) := T1(t− Tk(t)), t ∈ R,

and the sets

Ck := {x ∈ B1 : k < |u(x)− v(x)| ≤ k + 1}.
Subtracting the weak formulations of (1.1) and (5.1), testing the resulting equation

ˆ

B1

γ(x) 〈a(x,Du)− a(x,Dv), Dϕ〉 dx =

ˆ

B1

ϕdµ

with ϕ := Φk(u− v) and using that Dϕ = Du−Dv on Ck, Dϕ = 0 on B1 \ Ck and
|ϕ| ≤ 1, we obtain by (3.3) and the bound (2.4) for every k ∈ N

ˆ

Ck

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣2 dx ≤ c |µ|(B1),

with c ≡ c(ν, γ2). Observing that the lower bound γ1 for the exponent function p(·)
satisfies γ1 > 2− 1

n
, we find η ≡ η(γ1, n) ∈ (0, 1) such that

p1 ≥ γ1 > 2− η

n

and therefore also

(5.6)
n(p1 − 1)

n− η
> 1.

For every integer k ∈ N we then obtain

ˆ

Ck

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣ 2
p1 dx ≤ |Ck|

p1−1
p1

(
ˆ

Ck

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣2 dx

) 1
p1

≤ c |Ck|
p1−1
p1

[
|µ|(B1)

] 1
p1

≤ c

k
n(p1−1)
p1(n−η)

(
ˆ

Ck

|u− v| n
n−η dx

) p1−1
p1 [

|µ|(B1)
] 1

p1 ,

for a constant c ≡ c(ν, γ1, γ2). Moreover, by Hölder’s inequality we obtain for k = 0:
ˆ

C0

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣ 2
p1 dx ≤ c(n, ν, γ1, γ2)

[
|µ|(B1)

] 1
p1 .
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Now, having in mind (5.6), we proceed exactly as in [10, p. 2981] with p replaced by
p1 and obtain

ˆ

B1

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣ 2
p1 dx

≤ c
[
|µ|(B1)

] 1
p1 + c

(
ˆ

B1

|Du−Dv| dx
)n(p1−1)

p1(n−η) [
|µ|(B1)

] 1
p1 .(5.7)

In the preceding estimate, the constant c depends on n, ν, γ1, γ2 and η, where—in
view of (5.6)—the dependence upon η can be replaced by a dependence on γ1 and
n. In a next step we use (3.1) to write

|Du−Dv| =
[
(|Du|2 + |Dv|2 + s2)

p(x)−2
2 |Du−Dv|2

] 1
2
(
|Du|2 + |Dv|2 + s2

) 2−p(x)
4

≤ c
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣(|Du|2 + |Dv|2 + s2
) 2−p(x)

4

≤ c
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣(|Du|2 + |Dv|2 + s2 + 1
) 2−p1

4

≤ c
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣|Du−Dv|
2−p1

2

+ c
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣(|Du|2 + s2 + 1
) 2−p1

4

≤ 1
2
|Du−Dv|+ c

∣∣Vp(x)(Du)− Vp(x)(Dv)
∣∣ 2
p1

+ c
∣∣Vp(x)(Du)− Vp(x)(Dv)

∣∣(|Du|2 + s2 + 1
) 2−p1

4 .

Here the constant c depends on n, γ1 and γ2. Thus, by absorbing the first term on the
right-hand side of the preceding inequality into the left-hand side and subsequently
applying Hölder’s inequality, we get
ˆ

B1

|Du−Dv| dx ≤ c

ˆ

B1

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣ 2
p1 dx

+ c

[
ˆ

B1

∣∣Vp(·)(Du)− Vp(·)(Dv)
∣∣ 2
p1 dx

]p1
2
[
ˆ

B1

(
|Du|+ s

)
dx+ 1

] 2−p1
2

.

Combining the last estimate with (5.7) and (5.4) we arrive at
ˆ

B1

|Du−Dv| dx

≤ c

[[
|µ|(B1)

] 1
p1 +

[
|µ|(B1)

] 1
p1

(
ˆ

B1

|Du−Dv| dx
)n(p1−1)

p1(n−η)
]

+ c

[
|µ|(B1)

(
ˆ

B1

(
|Du|+ s

)
dx+ 1

)2−p1] 1
2

+ c

[
|µ|(B1)

(
ˆ

B1

(
|Du|+ s

)
dx+ 1

)2−p1] 1
2
(
ˆ

B1

|Du−Dv| dx
)n(p1−1)

2(n−η)

≤ c+ c

[
ˆ

B1

|Du−Dv| dx
]n(p1−1)

p1(n−η)

,
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for a constant c that depends on n, ν, γ1, γ2, c̄. Here we have used in the last step

also that p1 ≤ 2 and therefore n(p1−1)
2(n−η)

≤ n(p1−1)
p1(n−η)

. Having moreover p1 ≤ 2 ≤ n, we

observe that
n(p1 − 1)

p1(n− η)
<
p1(n− 1)

p1(n− η)
≤ 1

and as a consequence Young’s inequality leads to the desired estimate (5.5).

Step 2: Scaling procedures and adjusting of exponents. We show the comparison
estimate (5.3) by re-scaling. Here we have to distinguish two cases for the appearing
exponent po. We recall that we are supposing here we are in the case p1 < 2. In the

case po < 2 we define on the ball B2R ≡ B(x0, 2R) ⊂ Ω the quantity

(5.8) A :=

[ |µ|(B2R)

Rn−1

] 1
po−1

+

[ |µ|(B2R)

Rn−1

](
ˆ

B2R

(|Du|+ s) dx

)2−po

+R > 0

and consider the new functions

(5.9) ũ(y) :=
u(x0 + 2Ry)

2AR
, ṽ(y) :=

v(x0 + 2Ry)

2AR
, µ̃(y) :=

2Rµ(x0 + 2Ry)

Apo−1
,

together with the new vector field

(5.10) ã(y, z) :=
a(x0 + 2Ry,Az)

Apo−1
, γ̃(y) := γ(xo + 2Ry),

for y ∈ B1, z ∈ Rn. It is now easy to see that ũ and ṽ solve the equations

(5.11) div
[
γ̃(y)ã(y,Dũ)

]
= µ̃ and div

[
γ̃(y)ã(y,Dṽ)

]
= 0

on B1. On the other hand, we want to ensure that ã(·, ·) satisfies the assumption
(2.1)2. To see this, we estimate by (2.1)2, which holds for the vector field a(·, ·), and
x := x0 + 2Ry:

〈ãz(y, z)λ, λ〉 = A2−po 〈az(x0 + 2Ry,Az)λ, λ〉

≥
√
νA2−po

(
|Az|2 + s2

)p(xo+2Ry)−2
2 |λ|2

=
√
νAp(x)−po

(
|z|2 + (s/A)2

) p̃(y)−2
2 |λ|2,(5.12)

where p̃(y) := p(x0 + 2Ry); note that infB2R
p(·) ≤ p̃(·) ≤ supB2R

p(·) and that in
order to prove (5.5) we only used this information. Our aim is now to estimate the
expression Ap(x)−po . In a first step note that A ≥ R; therefore if p(x)− po ≥ 0, then

Ap(x)−po ≥ Rp(x)−po ≥ Rω(4R) ≥ 1

c(ω(·)) ,

from (3.8) and since R ≤ 1. On the other hand we write

A ≤
[
1 + |µ|(Ω)

] 1
γ1−1R

− n−1
γ1−1 + |µ|(Ω)

[
M + c(n)s+ 1

]2−γ1
R−(n−1)−n(2−γ1) + 1

≤ c(n, γ1, |µ|(Ω),M)R−c(n,γ1),

again since R ≤ 1. Having in mind (3.8), we therefore get in the case p(x)− po < 0

Ap(x)−po ≥ Rc(n,γ1)ω(4R)

c(n, γ1, γ2, |µ|(Ω),M)
≥ 1

c(n, γ1, γ2, |µ|(Ω),M, ω(·)) ,
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which in turn gives with (5.12)

(5.13) 〈ãz(y, z)λ, λ〉 ≥
√
ν

c⋆

(
|z|2 + (s/A)2

) p̃(y)−2
2 |λ|2,

and this means that ã(·, ·) satisfies (2.1)2 with (
√
ν, s) replaced by (

√
ν/c⋆, s/A),

where c⋆ denotes a constant depending on n, γ1, γ2, |µ|(Ω),M, ω(·). On the other
hand we have to check that the assumption (5.4) is satisfied for the measure µ̃ and
the function ũ. Here we have to be careful since in the definitions of µ̃ and ũ we used
the quantity A of (5.8) which involves the exponent po, whereas the assumption (5.4)
is formulated with the exponent p1. First, by the definition of A we directly see that
|µ̃|(B1) ≤ A1−po

[
|µ|(B2R)/R

n−1
]
≤ 1. Moreover, we have

|µ̃|(B1)

[
ˆ

B1

(
|Dũ|+ s/A

)
dy

]2−p1

(5.14)

≤ c(p1)A
p1−po−1 |µ|(B2R)

Rn−1

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−p1

.

Having in mind that A ≥ R we deduce by (3.8) that Ap1−po ≤ c(ω(·)) and moreover
that

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−p1

=

[
ˆ

B2R

(
|Du|+ s

)
dx

](2−po)+(po−p1)

(5.15)

≤ cR−n(po−p1)

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−po[ˆ

Ω

(
|Du|+ s

)
dx

]po−p1

≤ c (M + |Ω|)po−p1

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−po

,

with c ≡ c(n, γ1, γ2, ω(·)), and therefore

|µ̃|(B1)

[
ˆ

B1

(
|Dũ|+ s/A

)
dy

]2−p1

≤ cA−1 |µ|(B2R)

Rn−1

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−po

,

and the latter quantity is clearly bounded by a constant c̃ ≡ c̃(n, γ1, γ2, |Ω|,M, ω(·)).
Thus, the assumption (5.4) is satisfied and we can apply (5.5) to ũ and ṽ and obtain

ˆ

B1

|Dũ−Dṽ| dy ≤ c(n, ν, γ1, γ2, |µ|(Ω), |Ω|,M, ω(·)).

The dependence of the constant on |µ|(Ω) and |Ω| comes from the replacement of
√
ν

by
√
ν/c⋆, and we note in particular that the constant does not depend on A, since

the constant in (5.5) is independent of s. Recalling the definitions of ũ, ṽ and A we
finally arrive at (5.3), with the dependencies stated in the Lemma.

It remains to consider the case p1 < 2 ≤ po and hence p2 ≥ 2. Here we define
the quantity

A :=

[ |µ|(B2R)

Rn−1

] 1
po−1

+R

and perform the same scaling as in (5.9) and (5.10). Then with the new quantity
A, (5.11) and (5.12) hold true. With the same argument as before we observe that
the ellipticity condition (5.13) holds and it remains to check condition (5.4). The
condition |µ̃|(B1) ≤ 1 is again easy to see. Moreover, we observe that again (5.14)



Elliptic interpolation estimates for non-standard growth operators 137

holds; it remains to consider the right-hand side of the preceding estimate. We have,
exactly as in (5.15)

[
ˆ

B2R

(
|Du|+ s

)
dx

]2−p1

≤ c
(
M + |Ω|)p1−poR−n(po−p1)

[
ˆ

B2R

(
|Du|+ s

)
dx+ 1

]2−po

≤ c(n, γ1, γ2, |Ω|,M, ω(·)),

where we have used (3.8) and 2 − po ≤ 0 in the last step. On the other hand we
observe that |µ|(B2R)/R

n−1 ≤ Ap2−1 and obtain in this way

|µ̃|(B1)

[
ˆ

B1

(
|Dũ|+ s/A

)
dy

]2−p1

≤ cAp1−p2−1Ap2−1.

In the case that A ≥ 1, we have Ap1−2 ≤ 1, whereas in the case A < 1 we can exploit
that Ap2−1 ≤ A and thus Ap1−p2−1Ap2−1 ≤ Ap1−p2 ≤ c(ω(·)). Again we have used
(3.8) for the last inequality. Altogether we have shown that (5.4) is fulfilled also in
the case po ≥ 2 and the lemma is proved. �

5.2. Higher integrability and energy bounds. In this chapter we collect
integrability properties for the solution v of the homogeneous problem. We note at
this point that we have no higher integrability for the original solution u at hand,
since the right-hand side µ of the equation (1.1) is merely a L1-function. However,
the solution v of the homogenous problem shows at least local higher integrability
properties and so does the solution w of the frozen homogeneous problem. We start
with a higher integrability Lemma for v, which can be found in [37]; we refer the
reader in particular to the discussion in [7, Remark 3.3] concerning the dependence
of the constant.

Lemma 5.2. There exists a radius R1 ≡ R1(n, L, γ1, γ2, ω(·)) ≤ 1 such that

the following holds: If v ∈ u + W
1,p(·)
0 (B2R) is the function defined in (5.1), with

B2R ≡ B2R(x0) ⊂ Ω, 0 < R ≤ R1, then there exists δo ≡ δo(n, L/ν, γ1, γ2) ∈ (0, 1]
such that |Dv|p(·) ∈ L1+δo

loc (B2R) and for every θ ∈ (0, 1) and δ ∈ [0, δo] the estimate

[
ˆ

Bθ̺

(
|Dv|+ s

)p(x)(1+δ)
dx

] 1
1+δ

≤ c

ˆ

B̺

(
|Dv|+ s+ ̺

)p(x)
dx,

holds true whenever B̺ ⊂ B3R/2. Note that c ≡ c(n, L/ν, γ1, γ2,M, |µ|(Ω), |Ω|, θ),
where M was defined in (1.4) and c→ ∞ as θ ↑ 1.

We point out that the higher integrability Lemma in [7] is formulated for the
special situation of equations with non-standard growth exponent p : Ω → [2, γ2].
However, a closer look at [7, Remark 3.3] shows that only slight modifications have
to be done to adapt the Lemma to the case p(·) ∈ [γ1, γ2]. We sketch some of the
points needed, since several intermediate results will be useful. We start from the
following reverse Hölder’s inequality which, in a slight different form, can be found
before equation (3.15) in [7]:

(5.16)

ˆ

B̺1

(
|Dv|+ s

)p(x)
dx ≤ c

(̺2 − ̺1)
α

1−β

[
ˆ

B̺2

(
|Dv|+ s+R

)
dx

] γ
1−β

,
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for every 0 < ̺1 < ̺2 < 2R, with c ≡ c(n, ν, γ1, γ2, ω(·)). Here we have

α := n
(ϑp2
p1

− 1
)
, β :=

p2
p1

p1 − ϑ

p1 − 1
, γ :=

p2
p1

p1(ϑ− 1)

p1 − 1
,

where ϑ :=
√
1 + 1/n and we eventually reduced the value of R1 from one, depending

on n, γ2, ω(·), so that β < 1, see [7, (3.14)]. Now we fix ̺1 = 3R/2 and the first result
we derive from this inequality is the following:

Remark 5.3. Let v be the solution of (5.1). Then the following estimate holds:

(5.17)

[
ˆ

B3R/2

(
|Dv|+ s)p(x) dx

] 1
po

≤ c

ˆ

B7R/4

(|Dv|+ s+R) dx,

with c depending on n, ν, γ1, γ2, |µ|(Ω), |Ω|,M and ω(·). Recall that R ≤ R1 ≤ 1.

Proof. The proof of this Remark follows the lines of the one of [7, Lemma 3.5].
In order to reduce the exponent p(x) to the level 1, we take use of the reverse Hölder
inequality (5.16). Note that by their definitions

nγ

1− β
− n− α

1− β
= 0;

eventually reducing again R1 we also have

(5.18) 0 ≤ γ

1− β
− po ≤ c(n, γ2)ω(4R),

as proved in [7, Lemma 3.5]. Hence, choosing ̺2 ≡ 7R/4 and taking averages in
(5.16), the goal now is estimating the quantity

[
ˆ

B7R/4

(|Dv|+ s+R) dx

] γ
1−β

−po

≤ c J̃
γ

1−β
−po

by Lemma 5.1, where we defined

J̃ :=

ˆ

B2R

(|Du|+ s+R) dx+

[ |µ|(B2R)

Rn−1

] 1
po−1

(5.19)

+ χ{po<2}

[ |µ|(B2R)

Rn−1

](
ˆ

B2R

(|Du|+ s) dx

)2−po

+ 1.(5.20)

The estimate of J̃
γ

1−β
−po is performed similarly as the estimate of J in [7, Lemma 3.5];

for instance, since po ≥ γ1 > 2 − 1/n, we have −n(2 − po) − (n − 1) ≥ −n. Being
R ≤ R1 ≤ 1, therefore

R(−n(2−po)−(n−1))( γ
1−β

−po) ≤ R−c(n,γ2)ω(4R) ≤ c(n, γ2, ω(·))
using (5.18) and (3.8). The estimates of the other terms are performed similarly; this
yields

J̃
γ

1−β
−po ≤ c(n, γ2,M, |µ|(Ω), ω(·)),

which finishes the proof. �

Using once more Lemma 5.1 we get the following corollary:



Elliptic interpolation estimates for non-standard growth operators 139

Corollary 5.4. Under the assumptions of Lemma 5.1, the following estimate

holds true:

(5.21)

[
ˆ

B3R/2

(
|Dv|+ s)p(x) dx

] 1
po

≤ c

ˆ

B2R

(|Du|+ s+R) dx

+ c χ{po<2}

[ |µ|(B2R)

Rn−1

](
ˆ

B2R

(|Du|+ s) dx

)2−po

+ c

[ |µ|(B2R)

Rn−1

] 1
po−1

,

for a constant and radii as in Remark 5.3.

Remark 5.5. The previous Corollary 5.4 shows that the p(x)-energy of Dv
can be bounded in terms of a constant essentially depending on M , i.e. on the
1-energy of Du. Recall that our goal was to show that the constant appearing in
higher integrability Lemma 5.2 depends on M and not upon

´

Ω
|Dv|p(x) dx as in the

original paper of Zhikov [37]. Indeed there the constant depends, roughly speaking,
on [
´

B2R
|Dv|p(x) dx]ω(2R); it is now easy, using (3.8) and following [7], similarly as done

when estimating J̃ , to show that the constant in Lemma 5.2 has the dependencies
therein stated. See also the following

Remark 5.6. From the estimate (5.21) we also directly conclude the following
estimate, which will be useful later:

ˆ

BR

(
|Dv|+ s

)p(x)
dx ≤ cR−c(n,γ2),

for a constant c depending on n, ν, γ1, γ2, |µ|(Ω), |Ω|,M and ω(·).
Let δo ≡ δo(n, L/ν, γ1, γ2) ∈ (0, 1] be the higher integrability exponent from

Lemma 5.2 and choose R2 ∈ (0, R1] such that ω(4R2) ≤ δo/2; thus R2 ≡ R2(n, L/ν,
γ1, γ2, ω(·)). For a radius R ≤ R2 we define the exponents p1 and p2 as in (3.6) on the
ball B2R. By the choice of R2, with δo ≤ 1 and having in mind that p1 > 2 − 1/n ≥
1 + δo/2, we then find that

p2
(
1 + δo

2

)
≤

(
p1 + ω(4R)

)(
1 + δo

2

)
≤

(
p1 +

δo
2

)(
1 + δo

2

)
≤ p1(1 + δo)

and hence p2
(
1 + δo

2

)
≤ p(x)(1 + δo) for all x ∈ B2R. This implies that

Dv ∈ Lp2(1+δo/2)(BR).

Moreover, following the argument in [7, Chapter 3.2] we infer the following energy
bound for the function v: For any σ ∈ [p1, p2(1+ δo/2)] and p̃ ∈ [p1, p2+ω(4R)] there
holds

(5.22)

[
ˆ

BR

(
|Dv|+ s

)σ
dx

] p̃
σ

≤ c

ˆ

B3R/2

(
|Dv|+ s

)p(x)
dx+ cR2p̃,

for a constant c ≡ c(n, ν, L, γ1, γ2, |µ|(Ω),M, ω(·)) and for any radius 0 < R ≤ R2.

5.3. Decay estimate for the reference problem II. We go once again back to
Theorem 4.1 where we stated a decay estimate for the solution v to the homogeneous
problem (4.1). However, for our aim, we have to replace the exponents p(x) in this
decay estimates by the exponent 1 on both sides of the inequality. This can now be
done with the help of Lemma 5.1, following basically the argument of Remark 5.3.
The outcome is the following
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Lemma 5.7. Let v ∈ u + W
1,p(·)
0 (B2R) be the weak solution to the Dirichlet

problem (5.1) on B2R, where the structure conditions (2.1) to (2.4) and (2.8) are in

charge. Then there exists an exponent αm ∈ (0, 1), depending on n, ν, L, γ1 and

γ2, a constant c ≥ 1, depending on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω| and ω(·) and a radius

R1 ≤ 1 which depends on n, L, γ1, γ2 and ω(·), such that the estimate
ˆ

B̺

(|Dv|+ s) dx ≤ c
(̺
r

)αm−1
ˆ

Br

(|Dv|+ s) dx+ c ̺αm−1

holds true for all concentric balls B̺ ⊂ Br ⊂ B2R, with radius 0 < r ≤ R1.

Proof. We do not perform the proof in detail but we give the main arguments.
In a first step we use Hölder’s inequality and subsequently (3.9) with ω̃ := p(x)− p1
to obtain

ˆ

B̺

(|Dv|+ s) dx ≤ c(ᾱ, γ1, γ2, ω(·))
[
ˆ

B̺

(|Dv|+ s+ ̺ᾱ)p(x) dx

] 1
p1

,

where ᾱ > 0 is arbitrary but fixed. The right-hand side of the previous inequality
involves the exponent p(x) and can therefore now be estimated from above with the
help of Theorem 4.1 by the quantity

c

[(ˆ

B6r/7

(
|Dv|p(x) + 1

)
dx

)p2−p1
p1

(̺
r

)p2(αm−1)

·
ˆ

B6r/7

(|Dv|+ s)p(x) dx+ c ̺p2(αm−1) + ̺ᾱp1
] 1

p1

.

In a final step we use the argument analogous to (5.17) to reduce the exponent
p(x) inside the average on the right-hand side to exponent 1. Here, the comparison
estimate of Lemma 5.1 is also needed and the restriction on the maximal radius R1

comes into play. The same argument allows to bound

(ˆ

B6r/7

(
|Dv|p(x) + 1

)
dx

) p2−p1
p1 ≤ J̃

ω(4R)
γ1 ≤ c(n, γ1, γ2,M, |µ|(Ω), ω(·)),

where J̃ has been defined in (5.19). We finally adjust the appearing exponents by the
localization technique also used in Remark 5.3 and since αm−1 < 0 < ᾱ to conclude
the desired decay estimate. �

5.4. Comparison to the homogeneous frozen problem. In this chapter we
establish comparison estimates between Dv and Dw. We consider here a fixed ball
BR(xo) with B2R(xo) ⊂ Ω and denote po := p(xo). In order to simultaneously deal
with the cases po ≥ 2 and po < 2, we introduce the following quantity:

(5.23) p∗ := min{2, po}.
Moreover, we define

(5.24) κ := min
{
1,

2

γ2

}
≤ p∗
po

=





2

po
if po ≥ 2,

1 if po < 2,

and we will take use of this quantity at various stages in the course of the paper.
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Lemma 5.8. Let u, v be as in Lemma 5.2; moreover let the continuity assump-

tion (2.3) hold and let w ∈ v+W 1,po
0 (BR(x0)) be the solutions of the Dirichlet problem

(5.2). Then there exists a constant c depending on n, ν, L, γ1, γ2,M, |µ|(Ω) and ω(·)
and a radius R2 ≡ R2(n, ν, L, γ1, γ2, ω(·)) ≤ 1 such that whenever 0 < R ≤ R2 the

following estimate holds:
ˆ

BR

|Dv −Dw|po dx

≤ c
[
L1ω(R) log

(
1
R

)
+
[
v(R)

]σh

]p∗[ ˆ

B3R/2

(
|Dv|+ s

)p(x)
dx+Rpo

]
,(5.25)

where p∗ is defined in (5.23). Here

σh :=
δo

2(4 + δo)
∈ (0, 1)

and δo denotes the higher integrability exponent coming from Lemma 5.2.

Proof. The proof models on the one in [7], given for the case γ1 ≥ 2. Therefore
we will only give the necessary modifications for the other case, namely when po < 2.
We note that the proof for po ≥ 2 is given in [7] without the presence of the coefficient
γ(x). However, the necessary modifications are similar to the ones we also need to
carry out in the case po < 2 and therefore again we only consider the case po < 2
here. Start with R2 := R1, where R1 is the the radius appearing in Remark 5.3 and
possibly reduce R2 in order to have ω(4R) ≤ δo/4 for all R ≤ R2, being δo the higher
integrability exponent from Lemma 5.2. These two restrictions make R2 depend on.
We have in a first step by Hölder’s inequality:

ˆ

BR

|Dv −Dw|po dx ≤
[
ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2 dx

]po
2

(5.26)

·
[
ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po
2 dx

] 2−po
2

.

Taking into account that
ˆ

BR

〈γ(x)a(x,Dv)− (γ)x0,Ra(x0, Dw), Dv −Dw〉 dx = 0,

we estimate the first term of the right-hand side, using (3.2) and (2.4) in the following
way:

ν

c(γ2)

ˆ

BR

(
|Dv|2 + |Dw|2 + s2

) po−2
2 |Dv −Dw|2 dx

≤
ˆ

BR

(γ)xo,R 〈a(x0, Dv)− a(x0, Dw), Dv −Dw〉 dx

=

ˆ

BR

(γ)xo,R 〈a(x0, Dv)− a(x,Dv), Dv −Dw〉 dx

+

ˆ

BR

(
(γ)xo,R − γ(x)

)
〈a(x,Dv), Dv −Dw〉 dx =: I + II.(5.27)
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The first term I is now treated with the continuity condition (2.3) and the bound
(2.4) as follows:

I ≤ c L1ω(R)

ˆ

BR

[
(s2 + |Dv|2) p(x)−1

2 + (s2 + |Dv|2) po−1
2

]

·
[
1 +

∣∣ log(s2 + |Dv|2)
∣∣
]
|Dw −Dv| dx,

with c ≡ c(n, L, γ2). Using on the right-hand side above the elementary pointwise
estimate

(s2 + |Dv|2) p(x)−1
2 + (s2 + |Dv|2) po−1

2 ≤ (s2 + |Dv|2 + |Dw|2) po−2
4

·
[
(s2 + |Dv|2 + |Dw|2)

2p(x)−po
4 + (s2 + |Dv|2 + |Dw|2) po

4

]
,

and subsequently applying Young’s inequality and re-absorbing one of the resulting
terms into the left-hand side, we infer

ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2 dx

≤ c L2
1ω

2(R)

ˆ

BR

[
(s2 + |Dv|2 + |Dw|2)

2p(x)−po
2 + (s2 + |Dv|2 + |Dw|2) po

2

]

·
[
1 +

∣∣ log(s2 + |Dv|2)
∣∣
]2
dx

≤ c L2
1ω

2(R)
[
I1 + I2 + I3

]
,

where we have abbreviated

I1 :=

ˆ

BR

[
(s2 + |Dv|2)

2p(x)−po
2 + (s2 + |Dv|2) po

2

][
1 +

∣∣log(s+ |Dv|)
∣∣
]2
dx,

I2 :=

ˆ

BR

|Dw|po
[
1 +

∣∣log(s+ |Dv|)
∣∣
]2
dx,

I3 :=

ˆ

BR

|Dw|2p(x)−po
[
1 +

∣∣log(s+ |Dv|)
∣∣
]2
dx.

I1 is treated exactly as in [7]; hence we can write

(5.28) I1 ≤ c log2
(
1
R

) ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+Rpo.

To estimate I2, we split BR into the sets BR∩{|Dv| ≥ |Dw|} and BR∩{|Dv| < |Dw|}.
In this way we obtain

(5.29) I2 ≤
ˆ

BR

Vpo(Dv) dx+

ˆ

BR

Vpo(Dw) dx,

where we denote for the moment

Vq(ξ) := |ξ|q
[
1 +

∣∣log(s+ |ξ|)
∣∣
]2

and analogously, since 2p(x)− po ≥ 0,

(5.30) I3 ≤
ˆ

BR

V2p(x)−po(Dv) dx+

ˆ

BR

V2p(x)−po(Dw) dx.
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We want to deal with both estimates simultaneously in the following way: we estab-
lish a pointwise estimate of Vq(Dv) and Vq(Dw) for q ∈ [p1−ω(4R), p2+ω(4R)]. Note
that both po, 2p(x) − po lie in this interval. We proceed widely analogously to [7],
but we nevertheless present the argument here since our assumption po ∈ (2 − 1

n
, 2)

requires some additional comments. First we estimate Vq(Dw); to do so we split
again BR into three sets: S1 := {x ∈ BR : s+ |Dw| ≥ 1}, S2 := {x ∈ BR : s+ |Dw| ∈
[R2ñ, 1)} and S3 := {x ∈ BR : s + |Dw| ∈ (0, R2ñ)}, where ñ := 1 + n

n−1
.

Estimate on S1: Using the fact that s + |Dw| ≥ 1 on S1 and the elementary
inequality log(e + AB) ≤ log(e + a) + log(e + b) for all a, b > 0, we deduce the
point-wise estimate

Vq(Dw) ≤ 4
(
s+ |Dw|

)p2+ω(4R)
log2

[
e + (s+ |Dw|)p2+ω(4R)

]

≤ 8
(
s+ |Dw|

)p2+ω(4R)
log2

[
e+

(s+ |Dw|)p2+ω(4R)

(
(s+ |Dw|)p2+ω(4R)

)
BR

]

+ 8
(
s+ |Dw|

)p2+ω(4R)
log2

[
e+

(
(s+ |Dw|)p2+ω(4R)

)
BR

]
.(5.31)

To calculate the integral over S1, we first need to recall from [19] the inequality

(5.32)

ˆ

A

|f | log2
(
e +

|f |
(f)A

)
dx ≤ c(q)

(
ˆ

A

|f |q dx
) 1

q

,

which holds for all f ∈ Lq(A), A ⊂ Rn, |A| > 0 and for all q > 1. Integrating (5.31)
over S1 and dividing by |BR| we get

1

|BR|

ˆ

S1

Vq(Dw) dx ≤ 8(A+B),

where we define

A :=

ˆ

BR

(
s + |Dw|

)p2+ω(4R)
log2

[
e +

(s+ |Dw|)p2+ω(4R)

(
(s+ |Dw|)p2+ω(4R)

)
BR

]
dx

and

B :=

ˆ

BR

(
s+ |Dw|

)p2+ω(4R)
log2

[
e+

(
(s+ |Dw|)p2+ω(4R)

)
BR

]
dx.

The first integral A is estimated using the logarithmic bound (5.32) with exponent
q(n, L/ν, γ1, γ2) ≡ (4 + 2δo)/(4 + δo) and f ≡ (s + |Dw|)p2+ω(4R), Theorem 4.4 with
q replaced by q(p2 + ω(4R)) to replace |Dw| on the right-hand side by |Dv| and
subsequently (5.22) with the choices σ := q(p2 + ω(4R)) and p̃ := p2 + ω(4R) (note
that q(p2+ω(4R)) ≤ p2q(1+δo/4) = p2(1+δo/2), since ω(4R) ≤ δo/4). We therefore
achieve

A ≤ c

[
ˆ

BR

(
s+ |Dw|

)q(p2+ω(4R))
dx

] 1
q

≤ c

[
ˆ

BR

(
s+ |Dv|

)q(p2+ω(4R))
dx

] 1
q

(5.33)

≤ c

ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+ cRp2+ω(4R),

for a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), ω(·)). We note that the constant in
the first line depends also on p2(1 + δo/2), but by Remark 4.3 and with δo ≡
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δo(n, L/ν, γ1, γ2) it can be replaced by c ≡ c(n, L/ν, γ1, γ2). To estimate the inte-

gral B we use Theorem 4.4 in order to pass over from the energy of Dw to the
one of Dv, thereafter the higher integrability (5.22) for Dv together with the energy
estimate of Remark 5.6. In particular we estimate as follows:

ˆ

BR

(
s+ |Dw|

)p2+ω(4R)
dx ≤

ˆ

BR

(
s+ |Dv|

)p2+ω(4R)
dx(5.34)

≤ c

ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+ cR2(p2+ω(4R))

≤ c

ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+ cR2po ≤ cR−c(n,γ2),

with c = c(n, L/ν, γ1, γ2,M, |µ|(Ω), ω(·)). Here we used moreover that R2(p2+ω(4R)) ≤
R2po ≤ R−c(n,γ2). Now, using twice the last estimate we easily deduce

B ≤ c log2
(
e +R−c(n,γ2)

)[ ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+ cR2po

]

≤ c log2
(
1
R

)[ ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+ cR2po

]
,(5.35)

for a constant depending on n, L/ν, γ1, γ2,M, |µ|(Ω), ω(·). Notice that we can suppose
R2 ≤ 1/e in the last step.

Estimate on S2: We first observe the point-wise estimate
∣∣log(s+ |Dw|)

∣∣ ≤ 2ñ log
(
1
R

)
since R2ñ ≤ |Dw|+ s < 1 on S2.

Moreover, again keeping in mind R2 ≤ e−1, we obtain

1 +
∣∣log(s+ |Dw|)

∣∣ ≤ (1 + 2ñ) log
(
1
R

)
,

for R ≤ R2. On the other hand, noting that (|Dw| + s)q−p(x) ≤ 1 if q ≥ p(x) and
(|Dw|+s)q−p(x) ≤ R−2ñ(p(x)−q) ≤ R−2ñ(p(x)+ω(4R)−p1) ≤ c(ω(·)) if q < p(x) we conclude

Vq(Dw) ≤ c(n, ω(·)) log2
(
1
R

)(
s+ |Dw|

)p(x)
.

Integrating the previous inequality over S2 directly gives, using (5.22) and (3.8)

(5.36)
1

|BR|

ˆ

S2

Vq(Dw) dx ≤ c log2
(
1
R

)[ˆ

B3R/2

(
s+ |Dv|

)p(x)
dx+R2po

]
,

with the constant depending on n, ν, L, γ1, γ2,M, |µ|(Ω), ω(·).
Estimate on S3: Since s + |Dw| < R2ñ, we have by elementary calculus (s +

|Dw|)1/2 log2(s+ |Dw|) ≤ 16e−2, so we can estimate pointwise

Vq(Dw) ≤ c |Dw|q log2(s+ |Dw|) ≤ c
(
s+ |Dw|

)q− 1
2 ;

note that 1 + | log(s + |Dw|)| ≤ 5| log(s + |Dw|)| since s + |Dw| ≤ R2ñ
2 ≤ e−4 and

moreover

q − 1

2
≥ p1 − ω(4R)− 1

2
≥ p1 − 1 ≥ p1

ñ
≥ p2

2ñ
≥ po

2ñ
.
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In the previous chain of inequalities we used the lower bound of the exponent function
p(·) > 2− 1

n
together with the definition of ñ and (3.7). Combining the previous two

estimates we arrive at

Vq(Dw) ≤ cR2ñ po
2ñ = cRpo,

which holds point-wise on S3. Integrating this over S3 therefore gives

(5.37)
1

|BR|

ˆ

S3

Vq(Dw) ≤ cRpo.

Finally we combine the estimates (5.33), (5.35), (5.36) and (5.37) to arrive at
ˆ

BR

(
Vpo(Dw) + V2p(x)−po(Dw)

)
dx

≤ c log2
(
1
R

)ˆ

B3R/2

(
s + |Dv|

)p(x)
dx+ cRpo,(5.38)

where the constant c depends on n, ν, L, γ1, γ2,M, |µ|(Ω), ω(·). It finally remains to
estimate the integrals of Vpo(Dv) and V2p(x)−po(Dv), where—in contrary to (5.38)—
the function w is replaced by v. However, this case is even easier to see, since we can
argue directly on the energy of Dv and omit the pass-over from Dw to Dv on the
right-hand side, as for example done in (5.34). Indeed, we can repeat the point-wise
argumentation above, replacing w by v (also in the definition of the sets S1 to S3).
Then we integrate over BR and obtain finally

ˆ

BR

(
Vpo(Dv) + V2p(x)−po(Dv)

)
dx

≤ c log2
(
1
R

)ˆ

B3R/2

(
s + |Dv|

)p(x)
dx+ cRpo,(5.39)

for a constant with the same dependencies as the one in (5.38). Combining the
estimates (5.38) and (5.39) with (5.29) and (5.30) and merging this with (5.28) we
conclude

I ≤ c L2
1ω

2(R) log2
(
1
R

)[ˆ

B3R/2

(
s + |Dv|

)p(x)
dx+Rpo

]
.

The constant here depends on n, ν, γ1, γ2, M , |µ|(Ω) and ω(·). In a second step
we consider the expression II in (5.27). By the growth condition (2.1)2 and Young’s
inequality we have in a first step

|II| ≤
√
L

ˆ

BR

∣∣γ(x)− (γ)xo,R

∣∣(s2 + |Dv|2) po−1
2 |Dw −Dv| dx

≤ ε

ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po−2
2 |Dv −Dw|2 dx

+ c(ε)L

ˆ

BR

∣∣γ(x)− (γ)xo,R

∣∣2(s2 + |Dv|2 + |Dw|2
)po

2 dx =: II1 + II2.

II1 can be absorbed into the left-hand side of (5.27) by choosing ε := 1
2

ν
c(γ2)

. The

term II2 can be handled by (2.4), (2.5), the higher integrability result for Dv in
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terms of the Lemma 5.2 and the Calderón–Zygmund type estimate for Dw in terms
of Theorem 4.4 as follows:

II2 ≤ c

[
ˆ

BR

∣∣γ(x)− (γ)xo,R

∣∣2(1+ 4
δo

)
dx

] δo
4+δo

[
ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po
2
(1+ δo

4
)
dx

] 4
4+δo

≤ cL
8+δo
4+δo

[
ˆ

BR

∣∣γ(x)− (γ)xo,R

∣∣ dx
] δo

4+δo
[
ˆ

BR

(
s2 + |Dv|2

) po
2
(1+ δo

4
)
dx

] 4
4+δo

≤ cv(R)
δo

4+δo

[
ˆ

B3R/2

(
s2 + |Dv|2

)p(x)
2 dx+ cR2po

]
.

Here we have used in the last step the estimate (5.22) with the choices σ = po(1+δo/4)
and p̃ = po. Thus, combining the estimates for I and II we arrive at

ˆ

BR

(
|Dv|2 + |Dw|2 + s2

) po−2
2 |Dv −Dw|2 dx

≤ c
[
L2
1

(
ω(R) log 1

R

)2
+ v(R)

δo
4+δo

][ ˆ

B3R/2

(s+ |Dv|)p(x) dx+ cRpo

]
.(5.40)

Notice that the previous lines apply also to the case po ≥ 2 with minor changes
and give the missing estimate of [7] we need. In a very last step, we consider the
second term on the right-hand side of (5.26). Here we proceed analogously to (5.34):
We first use the Calderón–Zygmund type estimate for Dw in terms of Theorem 4.4
and thereafter the higher integrability estimate (5.22) (with σ = p̃ = po) to conclude

III :=

ˆ

BR

(
s2 + |Dv|2 + |Dw|2

) po
2 dx ≤ c

ˆ

BR

(
s2 + |Dv|2

) po
2 dx

≤ c

[
ˆ

B3R/2

(
s+ |Dv|)p(x) dx+R2po

]
,

for a constant c which depends on n, ν, L, γ1, γ2, M and |µ|(Ω). Combining this
estimate with (5.40) and (5.26) proves the comparison estimate (5.25) in the case
po < 2; taking into account that the case po ≥ 2 is Lemma 3.4 in [7], the proof is
complete. �

Combining the two comparison results Lemma 5.1 and Lemma 5.8 in terms of
Corollary 5.4, using Hölder’s inequality together with the fact that (2.8) and v(̺) ≤
c(L) hold, leads to the following Lemma, which will show to be useful when assuming
conditions (2.9) and (2.10) holding true.

Lemma 5.9. Under the assumptions of Lemma 5.8, let B2R ≡ B2R(x0) ⊂ Ω,

po ≡ p(xo), u the solution to (1.1) and w the solution to (5.2) on BR. Then

there exists a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)) and a radius R2 ≡
R2(n, ν, L, γ1, γ2, ω(·)) ≤ 1 such that whenever 0 < R ≤ R2 the following estimate

holds:
ˆ

BR

|Du−Dw| dx ≤ c

[ |µ|(B2R)

Rn−1

] 1
po−1

+ c χ{po<2}

[ |µ|(B2R)

Rn−1

](
ˆ

B2R

(
|Du|+ s

)
dx

)2−po

+ c
[
L1ω(R) log

(
1
R

)
+
[
v(R)

]σh

] p∗
po

[
ˆ

B2R

(
|Du|+ s

)
dx+R

]
. �
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The further immediate consequences of the comparison estimates we gained for
solutions to homogeneous equations with p(x)-growth and measurable coefficients
and for homogeneous equations with constant po growth are the following reference
estimates for the initial solution u. For the convenience of the reader we recall
that the exponent αm ∈ (0, 1) denotes the maximal Hölder exponent available by
Theorem 4.1 or Lemma 5.7, for solutions to homogeneous equations (4.1) with p(x)-
growth structure.

Lemma 5.10. Let u ∈ W 1,p(·)(Ω) be a weak solution to equation (1.1) un-

der the conditions (2.1) to (2.4) and the logarithmic continuity condition (2.8)
on ω(·). Then there exists c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)) and a radius

R1 ≡ R1(n, ν, L, γ1, γ2, ω(·)) ≤ 1 such that for all concentric balls B̺ ⊂ BR ⊂ Ω
with radius R ≤ R1 there holds

ˆ

B̺

(|Du|+ s) dx ≤ c
( ̺
R

)−1+αm
ˆ

BR

(|Du|+ s) dx+ c
(R
̺

)n
[ |µ|(BR)

Rn−1

] 1
po−1

+ c χ{po<2}

(R
̺

)n
[ |µ|(BR)

Rn−1

][
ˆ

BR

(|Du|+ s) dx

]2−po

+ cR
(R
̺

)n

+ c ̺αm−1.

Proof. The proof is done via comparison. We take the estimate of Lemma 5.7
for the solution v to the homogeneous equation and apply twice the comparison
Lemma 5.1 to transfer this estimate to the solution u; from Lemma 5.7 we inherit
the restriction on the radii. Indeed we have the chain of estimates
ˆ

B̺

(|Du|+ s) dx ≤
ˆ

B̺

(|Dv|+ s) dx+ c
(R
̺

)n
ˆ

BR

|Du−Dv| dx

≤ c
( ̺
R

)−1+αm
ˆ

BR

(|Dv|+ s) dx+ c ̺αm−1 + c
(R
̺

)n
ˆ

BR

|Du−Dv| dx

≤ c
( ̺
R

)−1+αm
ˆ

BR

(|Du|+ s) dx+ c ̺αm−1+ c

[(R
̺

)n

+
( ̺
R

)−1+αm
]
ˆ

BR

|Du−Dv| dx.

The statement now follows by applying Lemma 5.1 to estimate the last integral in
the preceding estimate. �

Lemma 5.11. Let u ∈ C1(Ω) be a weak solution to (1.1) under the structure

conditions (2.1) to (2.4) and (2.8). Then there exists a constant c ≥ 1 depending at

most on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), such that for all concentric balls B̺(x0) ⊂
B2R(x0) ⊂ Ω with radius R ≤ R2—denoting by R2 ≡ R2(n, ν, L, γ1, γ2, ω(·)) the

maximal radius appearing in Lemma 5.9—the following estimate holds:

ˆ

B̺

(|Du|+ s) dx ≤ c

ˆ

B2R

(|Du|+ s) dx+ c
(R
̺

)n
[ |µ|(BR)

Rn−1

] 1
po−1

+ c χ{po<2}

(R
̺

)n
[ |µ|(BR)

Rn−1

][
ˆ

BR

(|Du|+ s) dx

]2−po

+ cR
(R
̺

)n

+ c
[
L1ω(R) log

1
R
+
[
v(R)

]σh

] p∗
po
(R
̺

)n
ˆ

BR

(|Du|+ s) dx.

Here we have po := p(x0) and p∗ := min{2, po}.
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Proof. The proofs work exactly as the one of Lemma 5.10 via comparison: for
̺ ≤ R this time we involve as “reference estimates” (4.5) and comparison Lemma 5.9,
while the case ̺ ∈ (R, 2R] is trivial. �

Again for the convenience of the reader we recall that the exponent βm ∈ (0, 1)
denotes the maximal Hölder exponent due to Theorem 4.2 for the gradient of solutions
to homogeneous frozen equations (4.3) with constant growth po. At this point also
the following Lemma follows plainly:

Lemma 5.12. Let u ∈ W 1,p(·)(Ω) be a weak solution to (1.1) under the structure

conditions (2.1) to (2.4) and (2.8). Then there exists a constant c ≥ 1 depending on

n, ν, L, γ1, γ2, M, |µ|(Ω), |Ω|, ω(·) such that for all concentric balls B̺(x0) ⊂ BR(x0) ⊂
Ω with radius R ≤ R2, R2 being the radius appearing in Lemma 5.9, the following

estimate holds:

ˆ

B̺

|Du− (Du)̺| dx ≤ c
( ̺
R

)βm
ˆ

BR

|Du− (Du)R| dx+ c
(R
̺

)n
[ |µ|(BR)

Rn−1

] 1
po−1

+ c
[
L1ω(R) log

1
R
+
[
v(R)

]σh

] p∗
po
(R
̺

)n
ˆ

BR

(|Du|+ s) dx+ cR
(R
̺

)n

+ c χ{po<2}

(R
̺

)n
[ |µ|(BR)

Rn−1

][
ˆ

BR

(|Du|+ s) dx

]2−po

.

(5.41)

Proof. The proof is completely similar to that of Lemma 5.11, once using com-
parison estimate of Lemma 5.9 into (4.4). �

6. Proofs of the Theorems

Proof of Theorem 2.7. In the following let R0 > 0 be a “maximal radius”
which will at several stages be restricted to smaller values, in dependence of the
structure conditions, in particular we demand R0 to be, from now on, smaller than
the occurring maximal radii appearing in Lemma 5.2 and Lemma 5.9. Hence we have
R0 ≡ R0(n, L, ν, γ1, γ2, L1, ω(·)). Further restrictions may possibly come up in the
course of the proof. We prove Theorem 2.7, basically following widely the ideas of
[23].

Proof of estimate (2.17). Our aim is to show in a first step the following estimate:

M1−α,R(Du)(x)(6.1)

≤ c
[
Mp(·)−α(p(·)−1),R(µ)(x)

] 1
p(x)−1

+ cR1−α

ˆ

BR

(|Du|+ s+R) dξ;

then (2.17) follows from this estimate via (3.12). We shall first show the estimate for

a sufficiently small radius. Take concentric balls B̺ ⊂ Br/2 ⊂ Br ⊂ BR with center
x and R ≤ R0. Having at hand the identities

(6.2) r1−α
[ |µ|(Br)

rn−1

] 1
p(x)−1

=
[ |µ|(Br)

rn−p(x)+α(p(x)−1)

] 1
p(x)−1

,
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and

r1−α
[ |µ|(Br)

rn−1

][ˆ

Br

(
|Du|+ s

)
dξ

]2−p(x)

(6.3)

=
|µ|(Br)

rn−p(x)+α(p(x)−1)

[
r1−α

ˆ

Br

(
|Du|+ s

)
dξ

]2−p(x)

,

the estimate of Lemma 5.11 with 2R = r multiplied by ̺1−α reads as follows

̺1−α

ˆ

B̺

(|Du|+ s) dξ ≤ c
(̺
r

)1−α

r1−α

ˆ

Br

(|Du|+ s) dξ(6.4)

+ c χ{p(x)<2}

(r
̺

)n−1+α |µ|(Br)

rn−p(x)+α(p(x)−1)

[
r1−α

ˆ

Br

(
|Du|+ s

)
dξ

]2−p(x)

+ c
(r
̺

)n−1+α[ |µ|(Br)

rn−p(x)+α(p(x)−1)

] 1
p(x)−1

+ c
rn+1

̺n+α−1

+ c
(r
̺

)n−1+α[
L1ω(r) log

1
r
+
[
v(r)

]σh

] p∗(x)
p(x)

r1−α

ˆ

Br

(|Du|+ s) dξ,

with a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)) and this estimates holds for
all ̺ ≤ r ≤ R. Recall that p∗(x) = min{2, p(x)}. Now, we choose H > 2 depending
on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·) large enough to have

(6.5) c
( 1

H

)1−α

≤ c
( 1

H

)1−α̃

≤ 1

8
,

and moreover we choose δi ≡ δi(n, ν, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), α̃) < 1/(2L1), i =
1, 2, so small that

(6.6) Hn
[
δ1 + [δ2]

σh
] 2

γ2 ≤ 1

8
,

and finally we decrease R0 ≡ R0(n, ν, L, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), α̃) > 0 taking
use of condition (2.12) in order to have

Hn
[
L1ω(r) log

1
r
+
[
v(r)

]σh

] p∗(x)
p(x) ≤ Hn

[
L1 sup

r∈(0,R0]

ω(r) log 1
r
+
[
v(R0)

]σh

] p∗(x)
p(x)

≤ Hn
[
δ1 + [δ2]

σh
]κ ≤ 1

8
.(6.7)

Choosing in (6.4) ̺ = r/H and exploiting step by step the smallness conditions
above, we finally end up with the estimate

( r
H

)1−α
ˆ

Br/H

(|Du|+ s) dξ ≤ r1−α

8

ˆ

Br

(|Du|+ s) dξ + c
[ |µ|(Br)

rn−p(x)+α(p(x)−1)

] 1
p(x)−1

+ c χ{p(x)<2}
|µ|(Br)

rn−p(x)+α(p(x)−1)

[
r1−α

ˆ

Br

(
|Du|+ s

)
dξ

]2−p(x)

+ c r2−α.

At this point we proceed exactly as the authors in [23]. We take the supremum over
all radii, noting that r ≤ R is still arbitrary, and therefore introduce the maximal
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functions, use Young’s inequality and reabsorb into the left-hand side to arrive at

M1−α,R(|Du|+ s)(x)(6.8)

≤ cR1−α

ˆ

BR

(|Du|+ s) dξ + c
[
Mp(·)+α(p(·)−1),R(µ)(x)

] 1
p(x)−1

+ cR2−α,

for a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·), α̃). All in all, we conclude that
this estimate holds true for all R ≤ R0, smaller than R1, R2 and satisfying (6.7).
Now we remove the smallness condition on R by a standard argumentation (see for
example the proof of (1.35), Step 2 in [23]), which we will sketch for the convenience
of the reader and for the fact that we will use this argumentation at some points
also later in the proofs. Having (6.1) at hand for radii R ≤ R0, we find in the case
R > R0 that

M1−α,R(Du)(x) ≤M1−α,R0(Du)(x) +
( R
R0

)n

R1−α

ˆ

BR

(|Du|+ s) dξ.

On the other hand we trivially have Mp(·)−α(p(·)−1),R0
(µ)(x) ≤Mp(·)−α(p(·)−1),R(µ)(x).

Therefore, starting with the second-last inequality, then exploiting (6.1) with the
radius R = R0 and thereafter using the last inequality, we eventually obtain

M1−α,R(Du)(x) ≤ c
[
Mp(·)−α(p(·)−1),R(µ)(x)

] 1
p(x)−1

+ c
( R
R0

)n
ˆ

BR

(|Du|+ s+R) dξ.

Since R ≤ diam(Ω) and the constant c here depends on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|,
ω(·) and α̃, we conclude the estimate (6.1) for all radii R such that BR ⊂ Ω and with
a constant enlarged by the factor (diam(Ω)/R0)

n.

Proof of estimate (2.18) for small radii. Since the estimate is a point-wise one
valid in the fixed point x, we can follow exactly the argumentation in [23]. For the
convenience of the reader we mention the main steps of the argumentation, but refer
to [23] for a detailed discussion.

Dyadic sequence. We let H > 1 and define the dyadic sequence of balls

Bi := B(x,R/H i) := B(x,Ri), i = 0, 1, 2, . . . .

Moreover, we define

Ai :=

ˆ

Bi

|Du− (Du)Bi
| dξ, ki :=

∣∣(Du)Bi

∣∣.

Choosing now H ≡ H(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)) large enough to have

c
( 1

H

)βm

≤ 1

16
,
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where βm denotes the maximal exponent appearing in Lemma 5.12 and c the constant
therein appearing, and applying (5.41) on the balls B̺ ≡ Bi+1 ⊂ Bi ≡ BR, we achieve

Ai+1 ≤
1

16
Ai + c̃ Hn

[ |µ|(Bi)

Rn−1
i

] 1
p(x)−1

+ c̃ Hn
[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σh

] p∗(x)
p(x)

ˆ

Bi

(|Du|+ s) dξ

+ c̃ χ{p(x)<2}H
n

[ |µ|(Bi)

Rn−1
i

][
ˆ

Bi

(|Du|+ s) dξ

]2−p(x)

+ c̃ HnRi,

for a constant c̃ ≡ c̃(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)). Notice that, in contrary
to (3.16) of [23] this estimate holds true, provided that R ≤ R2 where R2 ≡
R2(n, ν, L, γ1, γ2, ω(·)) denotes the maximal radius determined in Lemma 5.12. Now,
we further restrict the maximal radius by imposing the smallness condition R ≤ R3,
where R3 is chosen in dependence on n, ν, L, L1, γ1, γ2, |µ|(Ω), |Ω| and ω(·), such that

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σh

] p∗(x)
p(x) ≤

[
L1 sup

r≤R3

ω(r) log 1
r
+
[
v(R3)

]σh

]κ

≤ 1

16c̃ Hn
.

This is possible since the Dini conditions (2.9) and (2.10) imply supr≤̺ ω(r) log
1
r
→ 0

and v(̺) → 0 as ̺→ 0. By this fact, the above estimate can be written as

Ai+1 ≤
1

8
Ai + c

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σh

] p∗(x)
p(x)

(ki + s) + c

[ |µ|(Bi)

Rn−1
i

] 1
p(x)−1

(6.9)

+ c χ{p(x)<2}

[ |µ|(Bi)

Rn−1
i

][
ˆ

Bi

(|Du|+ s) dξ

]2−p(x)

+ cRi,

for all i ∈ N0, since
ˆ

Bi

|Du| dξ ≤ Ai + ki.

Now follow line by line the argument in (3.20) to (3.24) of [23]: applying iteratively
the preceding estimate on the dyadic sequence, we get

km+1 ≤ c

ˆ

BR

∣∣Du− (Du)BR

∣∣ dξ + c

ˆ

BR

|Du| dξ + c

m∑

i=0

[ |µ|(Bi)

Rn−1
i

] 1
p(x)−1

+ c χ{p(x)<2}

m∑

i=0

[ |µ|(Bi)

Rn−1
i

][
ˆ

Bi

(
|Du|+ s

)
dξ

]2−p(x)

+ c
m∑

i=0

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σh

] p∗(x)
p(x)

(ki + s) + c
m∑

i=0

Ri.
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Now multiplying the inequality with R1−α
m and rearranging terms, taking also into

account that Rm+1 ≤ Rm ≤ Ri, we find that

R1−α
m+1(km+1 + s) ≤ cR1−α

ˆ

BR

(|Du|+ s) dξ + c

m∑

i=0

[ |µ|(Bi)

R
n−p(x)+α(p(x)−1)
i

] 1
p(x)−1

(6.10)

+ c χ{p(x)<2}

[
M1−α,R(|Du|+ s)(x)

]2−p(x)
m∑

i=0

|µ|(Bi)

R
n−p(·)+α(p(·)−1)
i

+ c
m∑

i=0

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σ
2

] p∗(x)
p(x)

R1−α
i (ki + s) + c

m∑

i=0

R2−α
i .

A uniform upper bound. In a next step we prove

Lemma 6.1. There exists a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·))
and a positive radius R4 ≡ R4(n, ν, L, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)), both indepen-

dent of α, such that

R1−α
m (km+1 + s) ≤ cM,

where the quantity M is defined as

M := R1−α

ˆ

BR

(|Du|+ s) dξ +WIµ1−α(p(·)−1)/p(·),p(·)(x, 2R)

+ χ{p(x)<2}

[
M1−α,R(|Du|+ s)(x)

]2−p(x)
I
|µ|
p(·)−α(p(·)−1)(x, 2R) +R2−α.

Proof. Since the mixed potential appears in the estimate we want to prove, we
have to distinguish the two cases p(x) ≥ 2 and p(x) < 2. In the first case, estimate

(3.10), with θ ≡ 1− α p(x)−1
p(x)

, reads as

∞∑

i=0

[ |µ|(Bi)

R
n−p(x)+α(p(x)−1)
i

] 1
p(x)−1

≤ cWµ
1−α(p(·)−1)/p(·),p(·)(x, 2R);

for the second one we use (3.11) together with the following elementary estimate:

∞∑

i=0

[ |µ|(Bi)

R
n−p(x)+α(p(x)−1)
i

] 1
p(x)−1

≤
[ ∞∑

i=0

|µ|(Bi)

R
n−p(x)+α(p(x)−1)
i

] 1
p(x)−1

≤ c
[
I
|µ|
p(·)−α(p(·)−1)(x, 2R)

] 1
p(x)−1

;

see (6.16) for the use of this estimate. Matching this estimate with (6.10) implies
that

R1−α
m+1(km+1 + s)(6.11)

≤ c4M+ c3

m∑

i=0

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]σh

] p∗(x)
p(x)

R1−α
i (ki + s).

The proof of the lemma follows now by induction. In a first step, also for later use,
we mention that an argumentation analog to the one in [7], estimate (3.32), provides
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the estimate
∞∑

i=0

[
L1ω(Ri) log

1
Ri

+
[
v(Ri)

]ϑ
2

] p∗(x)
p(x) ≤ c

ˆ 2R

0

[
L1ω(̺) log

1
̺
+
[
v(̺)

]σh

]κd̺
̺

≤ c̃ dω(2R) + c̃ d
v
(2R).(6.12)

With this definition, exploiting (2.9) and (2.10), we further restrict the maximal
radius R4 to achieve

(6.13) dω(2R) + d
v
(2R) ≤ dω(2R4) + d

v
(2R4) ≤

1

2c3c̃
, for all R ≤ R4.

Thus we have the dependence R4 ≡ R4(n, ν, L, L1, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)). This
smallness condition, together with (6.11), (6.12) and (6.13) allows to conclude induc-
tively that for every positive integer m ∈ N we have

R1−α
m+1(km+1 + s) ≤ [2c4 +Hn]M,

from which the statement of the lemma follows immediately by noting that R1−α
m ≤

H1−αR1−α
m+1 ≤ HR1−α

m+1. �

Maximal inequality and inclusion. We define the quantities

Cm := R1−α
m Am = R1−α

m

ˆ

Bm

|Du− (Du)Bm| dξ, hm :=

ˆ

Bm

|Du| dξ

and we want to show that

(6.14) R1−α
m hm ≤ cM.

To prove this, we note in a fist step that by Lemma 6.1 we deduce

(6.15) R1−α
m hm ≤ R1−α

m km + Cm ≤ cM+ Cm,

with c ≡ c(n, ν, L, γ1, γ2) and we therefore search for an appropriate bound for Cm.
To find this, we first see that by (3.10) or (3.11) and (6.2) we have

[ |µ|(Bi)

Rn−1
i

] 1
p(x)−1

≤ cRα−1
i WIµ1−α(p(·)−1)/p(·),p(·)(x, 2R) ≤ cRα−1

i M

and similarly by (6.3)
[ |µ|(Bi)

Rn−1
i

][
ˆ

Bi

(|Du|+ s) dξ

]2−p(x)

≤ Rα−1
i

[
M1−α,R(|Du|+ s)(x)

]2−p(x)
I
|µ|
p(·)−α(p(·)−1)(x, 2R) ≤ cRα−1

i M.(6.16)

On the other hand, again Lemma 6.1 gives

km + s ≤ cRα−1
m M,

and combining these two facts, (6.12) and (6.13) with (6.9) and (6.13) we deduce
easily

Cm+1 ≤
1

8
Cm + c5M,

from which in turn follows by induction that

Cm ≤ 2c5M.
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Combining this with (6.15), the asserted estimate (6.14) follows. Having (6.14) at
hand, we see that for r ≤ R, determining the integer i ∈ N0 in such a way that
Ri+1 < r ≤ Ri, we deduce

r1−α

ˆ

Br

|Du| dξ ≤
( Ri

Ri+1

)n

R1−α
i

ˆ

Bi

|Du| dξ ≤ cHnR1−α
i hi ≤ cM,

which means that
M1−α,R(Du)(x) ≤ cM;

at this point using Young’s inequality, in the case p(x) < 2, with conjugate exponents
1/(2− p(x)), 1/(p(x)− 1) as in (6.8) gives (2.18) for radii R ≤ R0.

Finally, in order to remove the conditions R ≤ R0 in the estimate (2.18), we
argue basically as in the proof of estimate (2.17).

6.1. The coefficient case. We remark at this stage that estimate (2.17)
takes a slightly different form in the case analogue to the sole measurability of the
coefficients in the standard growth case. In the case we only suppose the weak
logarithmic continuity (2.8) to hold and that γ(x) is merely supposed to be bounded
(2.4),we have that estimate (2.17) holds not for every α̃ < 1, but only for α̃ < αm.
In particular we have

Proposition 6.2. Let u ∈ C1(Ω) be a weak solution to (1.1) under the assump-

tions (2.1), (2.2) ,(2.4) and (2.8). Let BR ⊂ Ω; then for every α̃ < αm the pointwise

estimate

M ♯
α,R(u)(x) +M1−α,R(Du)(x)(6.17)

≤ c
[
Mp(·)−α(p(·)−1),R(µ)(x)

] 1
p(x)−1 + cR1−α

ˆ

BR

(|Du|+ s) dξ + cRαm−α

holds uniformly in α ∈ [0, α̃], for a constant depending on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|,
diam(Ω), ω(·), α̃.

Proof. The proof of (6.17) is completely similar to the one of (2.17)—and even
simpler. We only sketch the steps which differ. The main difference is that now
we use Lemma 5.10 instead of Lemma 5.11. Hence, going along again the previous
Section, we can forget about the term involving ω(r) log 1

r
+ [v(r)]σh. In estimate

(6.4) we also need to substitute
(
̺
r

)1−α
in the first therm of the right-hand side with(

̺
r

)αm−α
. The last change we need to do is substituting (6.5) with the analogue

c
( 1

H

)αm−α

≤ c
( 1

H

)αm−α̃

=
1

8
,

where we use the fact that α̃ < αm, while (6.6) and (6.7) are no more necessary, but
a term rαm−α appears. Now the proof goes ahead exactly as sketched in the previous
lines. �

Proof of Theorem 2.4. At this point Theorem 2.4 follows plainly from (2.18)
with α = 1, considering the expression of the mixed potential in the case p(xo) < 2.
Notice moreover that carefully checking the proof of (2.18), one can see that we used
the quantity κ in order to have a unitary approach, while the exponent of ω(̺) log 1

̺
,

in the case p(xo) < 2, can be taken as one (see (5.24)).

Proof of Theorem 2.1—De Giorgi type interpolation estimates. The
goal of this section is proving the interpolation estimate of Theorem 2.1. Take a
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ball BR ⊂ Ω with R ≤ R1, where R1 appears in Lemma 5.10, and consider a point
x ∈ BR/8 and a radius r ≤ R/2. In the course of the following argumentation
will occur several limitations of the size of the maximal radius. We now want to
consider a geometric sequence of radii whose spread 4H > 1 will be later chosen as a
function of the parameters of our problem n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·). Consider
the families of shrinking balls

Bi := B(x, r/(4H)i) =: B(x, ri) and B̃i := B(x, ri/2)

for i = 0, 1, . . . and H ≥ 1, so that Bi+1 ⊂ B̃i ⊂ Bi. Moreover, set

Ai :=

ˆ

Bi

|u− (u)Bi
| dξ, ki :=

∣∣(u)Bi

∣∣.

Applying Lemma 5.10 with B̺ ≡ Bi+1 and BR ≡ B̃i and Poincaré inequality, after
some easy manipulations, recalling the definition of Ai just given, we obtain

Ai+1 ≤ c
( 1

2H

)αm

ri

ˆ

B̃i

(
|Du|+ s

)
dξ + cHn

[ |µ|(Bi)

r
n−p(x)
i

] 1
p(x)−1

+ cχ{p(x)<2}(2H)n
[ |µ|(Bi)

r
n−p(x)
i

][
ri

ˆ

B̃i

(|Du|+ s) dξ

]2−p(x)

+ c (2H)n−1r2i + c rαm
i ,(6.18)

for a constant c ≡ c(n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)); this estimate holds if we im-
pose the smallness condition R ≤ R1 ≡ R1(n, ν, L, γ1, γ2, ω(·)). To estimate the
right-hand averaged integrals in terms of Ai we need the following Caccioppoli esti-
mate:

Proposition 6.3. (Caccioppoli’s inequality) Let u ∈ W 1,p(·)(Ω) a weak solu-

tion of equation (1.1) under the only growth and ellipticity assumptions (2.1), with

p(·) > 2 − 1
n
, eventually dropping the hypothesis—and subsequently the associate

growth requirement—of existence of the derivative az with respect to the gradient

variable. Then there exists a radius RC ≡ RC(n, L, ω(·)) ≤ 1 such that the fol-

lowing holds true: For every ς ∈ (0, 1) there exists a constant, depending only on

n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ς, such that

ˆ

BςR

|Du| dξ ≤ c

R

ˆ

BR

|u− k| dξ +
[ |µ|(BR)

Rn−1

] 1
p(x)−1

+ c s,

for any k ∈ R, where BςR ⊂ BR ⊂ Ω are concentric balls with center x and radius

R ≤ RC .

We postpone the proof of this version of Caccioppoli’s inequality to the end of
this section. Combining this estimate, which we apply with the choices k ≡ (u)Bi

,
BR ≡ Bi and ς ≡ 1

2
with (6.18) we arrive at

Ai+1 ≤ c2

[( 1

2H

)αm

+ ε

]
Ai + c3 (H

n +Hn/(p(x)−1) + 1)

[ |µ|(Bi)

r
n−p(x)
i

] 1
p(x)−1

+ cHnrαm
i + c ris,
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for all ε ∈ (0, 1). This ε appears when we estimate (Ai + ris)
2−p(x), in the case

p(x) < 2, with Young’s inequality. In the last estimate the constants c2, c de-
pend on n, ν, L, γ1, γ2, M, |µ|(Ω), |Ω|, ω(·) and c3 on the same quantities and also
on ε. Now, choosing ε small and H big enough to make the coefficient of Ai

smaller than 1
2

(and this gives a dependence of H, ε and subsequently of c3 on
n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·)), we can write

Ai+1 ≤
1

2
Ai + c

[ |µ|(Bi)

r
n−p(x)
i

] 1
p(x)−1

+ c rαm
i + c ris.

Now we can iterate the previous relation in a standard way—see for example the
detailed calculation after (3.18) in [23], for an analogue case—getting

km+1 ≤ cA0 + c k0 + c rα
m−1∑

i=0

[ |µ|(Bi)

r
n−1+α(p(x)−1)
i

] 1
p(x)−1

+ c rs+ c rαm

≤ c

ˆ

Br(x)

(
|u|+ rs

)
dξ + c rαWµ

1−α(p(·)−1)/p(·),p(·)(x,R) + c rαm,

where we used again (3.10) and r ≤ R/2. Letting m→ ∞ now gives

|u(x)| = lim
m→∞

km+1 ≤ c

ˆ

Br(x)

(
|u|+ rs+ rαm

)
dξ + c rαWµ

1−α(p(·)−1)/p(·),p(·)(x,R).

Now we observe that also u− g, whenever g ∈ R, is a solution to (1.1); therefore

|u(x)− g| ≤ c

ˆ

Br(x)

(
|u− g|+ rs+ rαm

)
dξ + c rαWµ

1−α(p(·)−1)/p(·),p(·)(x,R).

Writing the same estimate for y ∈ BR/8 and using the triangle inequality gives

(6.19) |u(x)− u(y)| ≤ c

ˆ

Br(x)

|u− g| dξ + c

ˆ

Br(y)

|u− g| dξ + c rs+ c rαm

+ c rα
[
Wµ

1−α(p(·)−1)/p(·),p(·)(x,R) +Wµ
1−α(p(·)−1)/p(·),p(·)(y, R)

]
.

Now take g = (u)B3r(x)
and r = |x−y|

2
; notice this choice is allowed since |x− y| < R

4
.

Moreover, we have Br(y) ⊂ B3r(x) and we can estimate, using also (6.17),
ˆ

Br(x)

|u− g| dξ +
ˆ

Br(y)

|u− g| dξ ≤ 6n
ˆ

B3r(x)

∣∣u− (u)B3r(x)

∣∣ dξ(6.20)

≤ c rαM ♯
α,R/2(u)(x)

≤ c rα
[
Mp(·)−α(p(·)−1),R/2(µ)(x)

] 1
p(x)−1

+ c
( r
R

)α

R

ˆ

BR/2(x)

(|Du|+ s) dξ + cRαm

( r
R

)α

,

where the constant c depends on n, ν, L, γ1, γ2,M, |µ|(Ω), |Ω|, ω(·) and α̃ < αm; note
that restricting R0 we can avoid the dependence on diam(Ω). To estimate the last
integral we use Proposition 6.3, with an appropriate choice of the radii and of k, and
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Lemma 3.5:

R

ˆ

BR/2(x)

(
|Du|+ s

)
dξ(6.21)

≤ c

ˆ

B2R/3(x)

(
|u|+Rs

)
dξ +Rα

[ |µ|(B2R/3(x))

Rn−p(x)+α(p(x)−1)

] 1
p(x)−1

≤ c

ˆ

BR

(
|u|+Rs

)
dξ + cRα

[
Mp(·)−α(p(·)−1),2R/3(µ)(x)

] 1
p(x)−1

≤ c

ˆ

BR

(
|u|+Rs

)
dξ + cRαWµ

1−α(p(·)−1)/p(·),p(·)(x,R).

We used (6.2) and the fact that B2R/3(x) ⊂ BR since x ∈ BR/8. Finally, using the
facts that rs ≤ (r/R)αRs and rαm ≤ (r/R)αRαm , merging (6.19), (6.20), and (6.21),
we complete the proof of Theorem 2.1, for a radius R ≤ R0 := min{R1, RC} ≡
R0(n, ν, L, γ1, γ2, ω(·)).

It remains here to deliver the proof of Caccioppoli’s inequality in the version of
Proposition 6.3.

Proof of Proposition 6.3. The proof consists in a combination of the chain of
argumentations in [23, Proposition 4.1] and the localization arguments and we will
only sketch the main arguments here. We will frequently have to exchange exponents
and therefore use (3.9) at many stages. Without loss of generality we assume that
(u)BR

= 0. Moreover we denote p1 := infx∈BR
p(x) and p2 := supx∈BR

p(x).

For ςR < r ≤ R we denote by vr ∈ u +W
1,p(·)
0 (Br) the unique solution to the

Dirichlet problem

(6.22)

{
div

[
µ(y) a(y,Dvr)

]
= 0, in Br(x),

vr = u, on ∂Br(x).

For a function φ ∈ C∞
c (Br) with 0 ≤ ψ ≤ 1 we test the weak formulation of (6.22)

with the testing function φp2vr. Exploiting the structure assumptions (2.1), we obtain
in a standard way
ˆ

Br

φp2|Dvr|p(·) dξ ≤ c

ˆ

Br

φp2−1
(
s+ |Dvr|

)p(·)−1|Dφ||vr| dξ + c

ˆ

Br

sp(·)φp2 dξ

≤ 1

2

ˆ

Br

φp2|Dvr|p(·) dξ + c

ˆ

Br

|Dφ|p(·)|vr|p(·) dξ + c

ˆ

Br

sp(·)φp2 dξ.

Here we have used Young’s inequality and we exploited that p(ξ) p2−1
p(y)−1

≥ p2 and

φ ≤ 1 in the last step. Now absorbing the first term on the right-hand side into the
left, we come up with

ˆ

Br

φp2|Dvr|p(·) dξ ≤ c

ˆ

Br

|Dφ|p(·)|vr|p(·) dξ + c

ˆ

Br

sp(·)φp2 dξ,

for a constant c ≡ c(n, ν, L, γ1, γ2). Now, by the estimate (3.9), applied with A =
|Dvr|, σ = p1, ω̃ = p(ξ) − p1 and α = p2/p(ξ) we have |Dvr|p1 ≤ c(Rp2 + |Dvr|p(ξ))
and therefore arrive at

(6.23)

ˆ

Br

φp2|Dvr|p1 dξ ≤ c

ˆ

Br

|Dφ|p(·)|vr|p(·) dξ + c

ˆ

Br

(
sp(·) +Rp2

)
dξ.
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For ̺ and σ with ςR ≤ ̺ < σ < r let now φ ∈ C∞
c (Br) be a cut-off function with

0 ≤ φ ≤ 1, φ ≡ 1 on Bσ and |Dφ| ≤ 4
r−σ

. For such a special function φ, we obtain

with the help of (6.23) and using again (3.9), |vr|p(ξ)|Dφ|p(ξ) ≤ c(Rp2 + |vr|p2|Dφ|p2)
(and the same for s):

(6.24)

ˆ

Bσ

∣∣D(φvr)
∣∣p1 dξ ≤ c

( r
σ

)n
[
ˆ

Br

|Dφ|p2|vr|p2 dξ + sp2 +Rp2

]
.

Exploiting this estimate in combination with the Sobolev-Poincaré inequality which
we apply to the function vr, we eventually arrive at

[
ˆ

Bσ

|vr|ℓ dξ
] 1

ℓ

≤ c
( r
σ

) n
p1

[
1

(r − σ)p2

ˆ

Br

|vr|p2 dξ + sp2 +Rp2

] 1
p1

,

for a constant c ≡ c(n, ν, L, γ1, γ2) and for all ℓ ≤ np1
n−p1

. Since we have r ≤ R and

σ > ςR, we can estimate the expression (r/σ)n/p1 by a constant which depends only
on n and p1 and ς. Imposing in a next step the condition

p2 − p1 ≤ ω(2R) <
1

n
,

which gives a smallness condition on the radius R in the sense of R ≤ RC ≡
RC(n, ω(·)), we have p2 − p1 <

p2p1
n

and therefore np1
n−p1

> p2. This, in turn means
that we have the following reverse Hölder inequality

(6.25)

[
ˆ

Bσ

|vr|ℓ dξ
]p1

ℓ

≤ c

(r − σ)p2

ˆ

Br

|vr|p2 dξ + c
(
sp2 +Rp2

)
.

In a next step we would like to replace the power p1 on the left-hand side of the
preceding inequality by the power p2. However, this can be done by an argument
which is analog to the one in [7, pp. 654–655]. Indeed we have by the localization
(3.8) that

[
ˆ

Bσ

|vr|ℓ dξ
]p2−p1

ℓ

=

[(R
σ

)n

R−n

ˆ

Bσ

|vr|ℓ dξ
]p2−p1

ℓ

≤ c(n, γ1, γ2, ς, ℓ)R
−(p2−p1)

n
ℓ

[
ˆ

Bσ

|vr|ℓ dξ
]p2−p1

ℓ

≤ c(n, γ1, γ2, ς, ℓ, L)

[
ˆ

Bσ

|vr|ℓ dξ
]p2−p1

ℓ

.

The Sobolev–Poincaré inequality and subsequently an argumentation analog to the
one in [7, p. 654] allows now to estimate the last integral appearing in the previous
estimate by an integral involving only the L1-norm of |Dvr| which is in turn again
estimated by a comparison estimate analog to (5.3). Having the energy bound (1.4)
at hand we therefore finally arrive at

(6.26)

[
ˆ

Bσ

|vr|ℓ dξ
]p2−p1

ℓ

≤ c(n, ν, γ1, γ2, |µ|(Ω), |Ω|,M, ω(·), ℓ, σ).

This in turn means that we may replace the exponent p1 on the left-hand side of
(6.25) by an exponent p2 and therefore catch the additional dependencies of the
constant c on the quantities M, |µ|(Ω) and |Ω|. Having arrived at this stage, the
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self-improving property of reverse Hölder inequalities (see the argumentation in [23,
Proof of Proposition 4.1] and [18, Lemma 3.38]) then provides the estimate

(6.27)

[
ˆ

Bσ

|vr|ℓ dξ
] 1

ℓ

≤ c

(r − σ)q

ˆ

Br

|vr| dξ + c (s+R).

for some q = q(n, γ1, γ2) > 1. Now we write (6.23) again, this time with a cut-off
function on the pair of balls (B̺, Bσ), i.e. φ ≡ 1 on B̺, φ ∈ C∞

c (Bσ) ⊂ C∞
c (Br) and

|Dφ| ≤ 4
σ−̺

. This gives (6.24) with r replaced by σ and σ replaced by ̺. Using this

together with Hölder’s inequality and finally combining it with (6.27) we therefore
arrive at

ˆ

B̺

|Dvr| dξ ≤
c

(σ − ̺)p2/p1

[
1

(r − σ)q

ˆ

Br

|vr| dξ
]p2

p1

+ c (s+R)
p2
p1 .

Choosing here σ := ̺+r
2

we eventually obtain

ˆ

B̺

|Dvr| dξ ≤
c

(r − ̺)
p2
p1

(1+q)

[
ˆ

Br

|vr| dξ
]p2

p1

+ c (s+R)
p2
p1 ,

and also here we can replace the power p2/p1 appearing on the right-hand side by a
power one, using again the argumentation as in (6.26). In turn we finally have

ˆ

B̺

|Dvr| dξ ≤
c

(r − ̺)
p2
p1

(1+q)

ˆ

Br

|vr| dξ + c (s+R).

At this point we now argue completely analogously to [23], exploiting the comparison
estimate (5.3), Poincaré’s and Young’s inequality and finally a standard iteration
Lemma to conclude the final form of the desired Caccioppoli inequality. �

6.2. Proof of Theorems 2.2 and 2.3. Once having at hand Theorem 2.1 and
the maximal operator bounds (2.17) and (2.18), the proof is quite simple.

Notice that to prove Theorem 2.2 is sufficient to prove that there exists positive
numbers δ and σ such estimate (2.11) holds uniformly when α runs in (αm/2, α̃] if
(2.12) is satisfied. Notice that Theorem 2.1 does not even require assumption (2.12) to
ensure that (2.11) holds uniformly when α belongs to [0, αm/2]. We recall that αm is
the maximal Hölder exponent, appearing in Theorem 4.1, for the operator associated
to the vector field γ(·)a(·), and it depends on n, ν, L, γ1, γ2. With x, y ∈ BR/8 Lemma
3.6 and inequality (2.17) yields

|u(x)− u(y)| ≤ 2c

αm

[
M ♯

α,R/2(u)(x) +M ♯
α,R/2(u)(y)

]
|x− y|α(6.28)

≤ c

αm

[
Mp(·)−α(p(·)−1),R/2(µ)(x) +Mp(·)−α(p(·)−1),R/2(µ)(y)

] 1
p(x)−1 |x− y|α

+
c

αm

[
R

ˆ

BR/2(x)

(|Du|+ s+R) dξ

+R

ˆ

BR/2(y)

(|Du|+ s+R) dξ
](x− y

R

)α

.
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Now we estimate the maximal functions appearing on the right-hand side with the
Wolff potentials via Lemma 3.5

[
Mp(·)−α(p(·)−1),R/2(µ)(x)

] 1
p(x)−1≤ c(n, γ1, γ2, α)W

µ
1−α(p(·)−1)/p(·),p(·)(x,R),

while the remaining integrals are estimated exactly as in (6.21). This concludes the
proof of Theorem 2.2.

The proof of Theorem 2.3 is similar: this time we can cover uniformly the whole
(αm/2, 1] taking advantage of the improved spatial regularity assumed. Instead of
(2.17) we can exploit (2.18) in estimating the maximal operators appearing in (6.28),
and this estimate is uniform up to 1. Moreover in order to have a compact estimate,
as we already pointed out in Chapter 2, we have to replace the Wolff potential
Wµ

1−α(p(·)−1)/p(·),p(·) with the mixed one WIµ1−α(p(·)−1)/p(·),p(·). That is, in the points x̄

where p(x̄) < 2, replace Wµ
1−α(p(·)−1)/p(·),p(·)(x̄, R) with [I

|µ|
p(·)−α(p(·)−1)(x̄, R)]

1/(p(x̄)−1),

and this is just Remark 3.1.
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