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Abstract. We apply techniques of interpolation of operators acting on cones of measurable

functions to prove new characterizations of Lorentz–Karamata type spaces.

1. Introduction

Lorentz–Karamata spaces is a class of function spaces that comprises Lebesgue
spaces, Lorentz spaces, Lorentz–Zygmund spaces and even generalized Lorentz–Zyg-
mund spaces. This class offers not only a more general and unified insight for these
families of spaces but also provides a framework in which it is easier to appreciate
the central issues of different results. We refer to [10] and [16] for more information
on this topic.

There is a standard way of defining Lorentz–Karamata spaces. However, some
papers that show alternative characterizations of Lorentz and Lorentz–Karamata
spaces by means of equivalent quasi-norms have recently appeared. See [18], [17]
and [11] for Lorentz spaces and [13] for Lorentz–Karamata spaces. In the present
paper we extend those results to a wider class of spaces for which we find equivalent
quasi-norms that characterize them.

The techniques we use to establish these equivalences are rather different to
those that appear in [18], [17], [11] or [13]. We combine interpolation of operators
acting on cones of function spaces with some of the ideas sketched in [13]. Thus, we
achieve more general theorems through simpler proofs that make easier to see the
most relevant aspects of these problems.

In order to be more precise about our results let (Ω, µ) be a σ-finite measure space
with a non-atomic measure. Given a slowly varying function b, see Definition 2.2
below, a real parameter 1 ≤ p ≤ ∞ and a rearrangement invariant space E , the
Lorentz–Karamata type space Lp,E,b consists of all measurable functions on Ω for
which the (quasi-)norm

‖f‖p,E,b = ‖t1/pb(t)f ∗(t)‖Ẽ

is finite. Here f ∗ stands for the decreasing rearrangement of the function f .
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We prove that, given α, β ∈ R with β > 0, a and b slowly varying functions and
E, F rearrangement invariant spaces, the following equivalence

∥∥∥tβb(t)‖uαa(u)f ∗(u)‖F̃ (t,∞)

∥∥∥
Ẽ
∼ ‖tα+βa(t)b(t)f ∗(t)‖Ẽ

holds for any measurable function f on (Ω, µ). For the case β < 0 we establish the
equivalence ∥∥∥tβb(t)‖uαa(u)f ∗(u)‖F̃ (0,t)

∥∥∥
Ẽ
∼ ‖tα+βa(t)b(t)f ∗(t)‖Ẽ

for any measurable function f . Here the spaces Ẽ and F̃ are rearrangement invariant
spaces with respect to the homogeneous measure on (0,∞), dt/t. See § 2.1 below for
a detailed description.

These equivalences are useful in different contexts, for example in the study of
the boundedness of Hardy-type operators Tf(t) = v(t)

´ t

0
u(s)f(s) ds. To illustrate

this we consider the operator

Tf(t) =
v(t)

t1/q+α

ˆ t

0

u(s)f(s) ds

where v is a slowly varying function and 0 < α. Then for 1 ≤ p ≤ q ≤ ∞, the
operator

T : Lp(0,∞) −→ Lq(0,∞)

is bounded if and only if

(1)
∥∥∥t−αv(t)‖s1/p

′

u(s)‖L̃p′(0,t)

∥∥∥
L̃∞(0,∞)

< ∞.

See [10], Thm. 2.2.1 combined with Lemma 2.3 of [15]. Using the above equivalences
we have that for 1 ≤ p ≤ q ≤ ∞ the operator

T : Lp(0,∞) −→ Lq(0,∞)

is bounded if and only if

t1/p
′−αv(t)u(t) ∈ L∞.

The paper is organized as follows. Section 2 contains the basic notions and def-
initions concerning rearrangement invariant spaces, interpolation on function cones,
Marcinkiewicz couples and Lorentz–Karamata type spaces. In Section 3 we can find
the main results of the paper, Theorems 3.6 and 3.7, along with some interesting
properties of slowly varying functions. Section 4 extends the results shown in [13] for
maximal fractional operators and operators of Riesz potential type to the context of
Lorentz–Karamata type spaces.

Through this paper we will use the notation a . b to indicate that a ≤ Cb for
some constant C > 0. Similarly we will write a & b if there exists a constant C > 0
such that a ≥ Cb. When a . b and b . a we will write a ∼ b.

2. Preliminaries

In this section we recall the basic notions and definitions of rearrangement invari-
ant function spaces, real interpolation of operators acting on function cones, slowly
varying functions and Lorentz–Karamata spaces.
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2.1. Rearrangement invariant spaces. A Banach function space E over the
measure space (Ω, µ) with the Fatou property is called rearrangement invariant (r.i.)
if, for any two measurable functions f and g, the conditions

g ∈ E and f ∗(t) ≤ g∗(t) a.e.

imply f ∈ E and ‖f‖E ≤ ‖g‖E. The functions f ∗ and g∗ are the non-decreasing
rearrangement of f and g respectively. See [1] for a more detailed description of r.i.
spaces.

Every r.i. space over a resonant measure space (Ω, µ) can be identified with an
r.i. space over (0,∞) with the Lebesgue measure, its representation space. See [1]
Thm. 4.10. Thus in what follows E (and E0, E1) will stand for an r.i. space over the
measure space (0,∞) with the Lebesgue measure, unless otherwise stated. We will

also work with the homogeneous measure dt
t

on (0,∞) and we will denote by L̃1 and

L̃∞ the Lebesgue spaces defined by the norms

‖f‖L̃1
=

ˆ ∞

0

|f(t)|
dt

t
and ‖f‖L̃∞

= ‖f‖L∞
.

Given any r.i. space E, we define its counterpart Ẽ aided by the spaces L̃1 and

L̃∞ in the following way. As an r.i. space E can be obtained through an exact
interpolation method from the couple (L1, L∞). More precisely, there exists an exact
real interpolation method, F , such that E = F(L1, L∞). See [1] for more information.

We denote by Ẽ the space obtained by applying the same interpolation method F

to the couple (L̃1, L̃∞). Namely

Ẽ = F(L̃1, L̃∞).

It may be worthy to mention that the spaces E and Ẽ are connected by the following
relations:

‖f‖Ẽ(0,1) = ‖f(e−u)‖E(0,∞) and ‖f‖Ẽ(1,∞) = ‖f(eu)‖E(0,∞).

In particular f ∈ Ẽ if and only if f(e−u) and f(eu), u > 0, belong to E. In that case
we have the following equivalence

‖f‖Ẽ ∼ ‖f(e−u)‖E + ‖f(eu)‖E .

2.2. Interpolation on function cones. Interpolation of operators acting on
cones of measurable functions has been a subject of interest in the past years. The
first author using these techniques was Sagher in his paper [20], where Fourier series
with positive coefficients were studied. Later, some other papers on this topic were
published. See, for instance, [8], [6] or [4].

A function cone Q is a subset of non-negative measurable functions on Ω such
that

Q+Q ⊂ Q, and λQ ⊂ Q, for all λ ≥ 0.

One of the most common examples is the cone of the decreasing (i.e. non-negative
and non-increasing) functions on R

+.
If E = (E0, E1) is a couple of Banach function spaces, and Q a function cone

on (Ω, µ), we may consider two different K-functionals relative to E. The classical
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K-functional on E

K(t, f ;E) = inf
{
‖f0‖0 + t‖f1‖1; f = f0 + f1, fi ∈ Ei, i = 0, 1

}
,

and the KQ-functional on E ∩Q = (E0 ∩Q,E1 ∩Q) defined as

KQ(t, f ; E ∩Q) = inf
{
‖f0‖0 + t‖f1‖1; f = f0 + f1, fi ∈ Ei ∩Q, i = 0, 1

}
.

These K-functionals generate both interpolation spaces for the couples E and
E ∩Q. More precisely, if Φ is an admissible Banach lattice (min{1, t}, t > 0 belongs
to Φ) we define the space

(E0, E1)
K
Φ =

{
f ∈ E0 + E1 s.t. K(·, f, E) ∈ Φ

}

with norm

‖f‖KΦ(E) =
∥∥K(·, f, E)

∥∥
Φ
,

and the space

(E0 ∩Q,E1 ∩Q)K
Q

Φ =
{
f ∈ (E0 ∩Q) + (E1 ∩Q) s.t. KQ(·, f, E) ∈ Φ

}

with norm

‖f‖KQ
Φ
(E) =

∥∥KQ(·, f, E)
∥∥
Φ
.

We refer to [3] for a complete description of K-spaces.
Clearly, for any f ∈ (E0 ∩Q) + (E1 ∩Q),

K(t, f ;E) ≤ KQ(t, f ;E ∩Q), t > 0,

and thus
(
E0 ∩ E,E1 ∩ E

)KQ

Φ
⊂ (E0, E1)

K
Φ ∩Q.

Examples showing that the equality

(
E0 ∩Q,E1 ∩Q

)KQ

Φ
= (E0, E1)

K
Φ ∩Q

does not always hold are easy to obtain. We may consider the cone Q of measurable
decreasing functions on (0,∞) and the couple of weighted L1-spaces, (L1, L1(e

−x)).
Then interpolation by the real method yields

(
L1, L1(e

−x)
)
θ,1

∩Q 6=
(
L1 ∩Q,L1(e

−x) ∩Q
)
θ,1
.

See [6]. This motivates the following definition.

Definition 2.1. We say that E = (E0, E1) is a Marcinkiewicz couple for the
function cone Q if the equivalence

‖f‖KΦ(E) ∼ ‖f‖KQ
Φ
(E)

holds for all admissible Banach lattices Φ on (R+, dt/t) and the equivalence constant
does not depend on f ∈ (E0 ∩Q) + (E1 ∩Q). In this case

(E0 ∩Q,E1 ∩Q)K
Q

Φ = (E0, E1)
K
Φ ∩Q.
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A sufficient condition for E to be a Marcikiewicz couple for the cone Q is that

KQ
(
t, f ;E0 ∩Q,E1 ∩Q

)
. K(t, f ;E0, E1)

with inequality constant only depending on E.
Henceforth Q will be the cone of decreasing functions on R

+. The couple
(L1(µ), L∞(µ)) is a Marcinkiewicz couple for Q, see [5], [6] and [7]. Therefore

(
L1(µ) ∩Q,L∞(µ) ∩Q

)KQ

Φ
=

(
L1(µ), L∞(µ)

)K
Φ
∩Q

for any admissible Banach lattice Φ.

2.3. Generalized Lorentz–Karamata spaces. Lorentz–Karamata spaces
were introduced by Edmunds, Pick and Kerman in [14]. This class includes Lebesgue,
Lorentz, Lorentz–Zygmund and generalised Lorentz–Zygmund spaces. A detailed
description of these spaces, as well as examples of their usefulness, can be found in
[16] and [10].

Definition 2.2. We say that a positive Lebesgue measurable function b, 0 6≡
b 6≡ ∞, is slowly varying on (0,∞) if, for each ε > 0, the function tεb(t), t > 0, is
almost increasing on (0,∞) while the function t−εb(t), t > 0, is almost decreasing on
(0,∞).

We refer to [2] for examples and more information on slowly varying functions.
Next we define Lorentz–Karamata type spaces.

Definition 2.3. Let 0 < p ≤ ∞ be a real parameter, b a slowly varying func-
tion and E a r.i. space. The Lorentz–Karamata type space Lp,E,b is the set of all
measurable functions f on (Ω, µ) such that

‖f‖p,E,b := ‖t1/pb(t)f ∗(t)‖Ẽ < ∞.

In case we choose b ≡ 1 and E = Lq, the Lorentz–Karamata space Lp,Lq,b co-
incides with the classical Lorentz space Lp,q. If, on the contrary, we choose b(t) =
ℓα(t) = (1+ | log t|)α, t > 0, and keep E = Lq, the Lorentz–Karamata space Lp,Lq,ℓα(t)

coincides with the Lorentz–Zygmund space Lp,q(logL)α. In general, if we restrict E
to the class of the classical Lebesgue spaces Lq we obtain the collection of Lorentz–
Karamata spaces as defined in [13] or [16].

3. Renorming of Lorentz–Karamata type spaces

In this section we present the main theorems of the paper. Let us begin with
some auxiliary results that show different features of slowly varying functions. The
following lemma can be found in [15].

Lemma 3.1. Let a be a slowly varying function, E an r.i. space on (0,∞) and

α > 0. Then for t > 0

‖sαa(s)‖Ẽ(0,t) ∼ tαa(t) and ‖s−αa(s)‖Ẽ(t,∞) ∼ t−αa(t).

In the same fashion of Lemma 3.1, next results provide useful estimates for the
norm of some families of functions described through slowly varying functions.

Lemma 3.2. Let a be a slowly varying function, and let α ∈ R. Then for t > 0

‖sαa(s)‖Ẽ(t,2t) ∼ tαa(t).
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Proof. We prove the equivalence for α ≥ 0. Using Lemma 3.1

‖sαa(s)‖Ẽ(t,2t) ≤
∥∥sα+1

t
a(s)

∥∥
Ẽ(t,2t)

≤
1

t
‖sα+1a(s)‖Ẽ(0,2t) ∼ tαa(t).

For the reverse inequality we have

‖sαa(s)‖Ẽ(t,2t) ≥
∥∥s

α+1

2t
a(s)

∥∥
Ẽ(t,2t)

&
tα+1

t
a(t)‖χ(t,2t)‖Ẽ

∼ tαa(t)ϕE(ln 2) ∼ tαa(t).

The case α < 0 is proved by using similar arguments. �

Lemma 3.3. Let f ∈ Q, α ∈ R and let a be a slowly varying function. Then

for any r.i. space E and t > 0

‖uαa(u)f(u)‖Ẽ(0,t) .

ˆ t

0

uαa(u)f(u)
du

u
.

Proof. Consider the following restrictions of the identity operator

L̃1

(
uαa(u), (0, t)

)
∩Q

Id
−→ L̃1

(
uαa(u), (0, t)

)
,(2)

L̃1

(
uαa(u), (0, t)

)
∩Q

Id
−→ L̃∞

(
uαa(u), (0, t)

)
,(3)

where L̃1

(
uαa(u), (0, t)

)
and L̃∞

(
uαa(u), (0, t)

)
denote the weighted Lebesgue spaces

defined by the norms

‖f‖
L̃1

(
uαa(u),(0,t)

) =

ˆ t

0

uαa(u)|f(u)|
du

u

and

‖f‖
L̃∞

(
uαa(u),(0,t)

) = sup
t∈(0,t)

uαa(u)|f(u)|.

Restriction (2) is obviously bounded. In order to check boundedness of restriction (3)
we use Lemma 3.1 and the fact that f is a decreasing function. In case α > 0

‖uαa(u)f(u)‖L̃∞(0,t) = sup
0<u<t

uαa(u)f(u) ∼ sup
0<u<t

ˆ u

0

sαa(s)
ds

s
f(u)

≤ sup
0<u<t

ˆ u

0

sαa(s)f(s)
ds

s
= ‖f‖

L̃1

(
uαa(u),(0,t)

).

For α ≤ 0

‖uαa(u)f(u)‖L̃∞(0,t) ∼ sup
0<u<t

ˆ u

0

sa(s)
ds

s

f(u)

u1−α

. sup
0<u<t

ˆ u

0

sαa(s)f(s)
ds

s
= ‖f‖

L̃1

(
uαa(u),(0,t)

).

It is important to mention that the equivalence and inequalities constants in the
previous equation do not depend on t > 0. Then we can interpolate the identity
operator in (2) and (3) to obtain that the restrictions

L̃1

(
uαa(u), (0, t)

)
∩Q

Id
−→ Ẽ

(
uαa(u), (0, t)

)



An application of interpolation theory to renorming of Lorentz–Karamata type spaces 103

are uniformly bounded for t > 0. Therefore

‖uαa(u)f(u)‖Ẽ(0,t) .

ˆ t

0

uαa(u)f(u)
du

u
, t > 0. �

Lemma 3.4. Let a be any slowly varying function, E an r.i. space and let α ∈ R.

Then for any f ∈ Q and t > 0

‖sαa(s)f(s)‖Ẽ(t,∞) .

ˆ ∞

t
2

sαa(s)f(s)
ds

s
.

The inequality constant does not depend on f ∈ Q nor t > 0.

Proof. Consider the following restrictions of the identity operator

L̃1

(
sαa(s), ( t

2
,∞)

)
∩Q

Id
−→ L̃1

(
sαa(s), (t,∞)

)
,(4)

L̃1

(
sαa(s), ( t

2
,∞)

)
∩Q

Id
−→ L̃∞

(
sαa(s), (t,∞)

)
.(5)

We focus on the boundedness of the second restriction. Lemma 3.2 and the mono-
tonicity of f yield

‖f‖
L̃∞

(
sαa(s),(t,∞)

) = sup
t<s<∞

sαa(s)f(s) ∼ sup
t<s<∞

ˆ s

s
2

uαa(u)
du

u
f(s)

≤ sup
t<s<∞

ˆ s

s
2

uαa(u)f(u)
du

u
≤

ˆ ∞

t
2

uαa(u)f(u)
du

u

= ‖f‖
L̃1

(
sαa(s),( t

2
,∞)

).

Now we interpolate in (4) and (5), using the real method that generates the space E
from the couple (L1, L∞), to establish that

L̃1

(
sαa(s), ( t

2
,∞)

)
∩Q

Id
−→ Ẽ

(
sαa(s), (t,∞)

)

is a bounded operator. �

Finally we collect the following lemma from [15] that deals with Hardy-type
inequalities in the context of r.i. spaces.

Lemma 3.5. Let E be an r.i. space on (0,∞), b a slowly varying function and

α > 0. Then for each positive measurable function f on (0,∞)

(6)
∥∥∥t−αb(t)

ˆ t

0

f(s) ds
∥∥∥
Ẽ
. ‖t1−αb(t)f(t)‖Ẽ

and

(7)
∥∥∥tαb(t)

ˆ ∞

t

f(s) ds
∥∥∥
Ẽ
. ‖t1+αb(t)f(t)‖Ẽ .

Now we are in a position to establish the main results of the paper. Their
antecedents can be found in the papers [17] and [13]. Although the basics ideas
behind next theorems are contained in those papers, the proofs we present here use
different techniques and apply to a larger class of spaces.

Theorem 3.6. Let a and b be slowly varying functions, and let E and F be r.i.

spaces. Choose α, β ∈ R with β > 0. Then the equivalence∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (t,∞)

∥∥∥
Ẽ
∼ ‖tα+βa(t)b(t)f(t)‖Ẽ
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holds for any f ∈ Q.

Proof. Using Lemma 3.2 and the monotonicity of f we find that

‖uαa(u)f(u)‖F̃ (t,∞) ≥ ‖uαa(u)f(u)‖F̃ (t,2t) & f(2t)(2t)αa(2t).

Hence
tβb(t)‖uαa(u)f(u)‖F̃ (t,∞) & (2t)α+βa(2t)b(2t)f(2t),

and therefore ∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (t,∞)

∥∥∥
Ẽ
& ‖tα+βa(t)b(t)f(t)‖Ẽ .

Note that we have used that ‖f(t)‖Ẽ = ‖f(2t)‖Ẽ for any f ∈ Ẽ.
Let’s prove the converse inequality. Using Lemma 3.4 and Hardy inequality (7)

we can establish that
∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (t,∞)

∥∥∥
Ẽ
.

∥∥∥( t2)
βb( t

2
)

ˆ ∞

t
2

sαa(s)f(s)
ds

s

∥∥∥
Ẽ

.
∥∥∥( t2)

βb( t
2
)
(
t
2

)α
a
(
t
2

)
f
(
t
2

)∥∥∥
Ẽ

∼ ‖tα+βa(t)b(t)f(t)‖Ẽ .

This completes the proof. �

Next theorem allows the parameter β to be negative. In such a case we work

with the r.i. space F̃ (0, t).

Theorem 3.7. Let a and b be slowly varying functions, and let E and F be r.i.

spaces. Choose α, β ∈ R with β < 0. Then for any f ∈ Q, we have that
∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (0,t)

∥∥∥
Ẽ
∼ ‖tα+βa(t)b(t)f(t)‖Ẽ .

In particular

(8) ‖b(t)f ∗∗(t)‖Ẽ ∼ ‖b(t)f ∗(t)‖Ẽ .

Proof. Hardy inequality (6) and Lemma 3.3 yield
∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (0,t)

∥∥∥
Ẽ
.

∥∥∥tβb(t)
ˆ t

0

uαa(u)f(u)
du

u

∥∥∥
Ẽ

. ‖tα+βb(t)a(t)f(t)‖Ẽ .

In order to prove the converse inequality we claim that

(9)
∥∥uαa(u)f(u)

∥∥
F̃ (0,t)

& tαa(t)f(t), t > 0.

To establish this first let α > 0, then

‖uαa(u)f(u)‖F̃ (0,t) ≥ ‖uαa(u)‖F̃ (0,t)f(t) ∼ tαa(t)f(t).

If, to the contrary, α ≤ 0

‖uαa(u)f(u)‖F̃ (0,t) = ‖uα+βu−βa(u)f(u)‖F̃ (0,t) ≥ tα+βf(t)‖u−βa(u)‖F̃ (0,t)

≃ tα+βf(t)t−βa(t) = tαa(t)f(t).

This proves our claim. Now, using (9)

tβb(t)‖uαa(u)f(u)‖F̃ (0,t) & tα+βa(t)b(t)f(t), t > 0,



An application of interpolation theory to renorming of Lorentz–Karamata type spaces 105

and therefore ∥∥∥tβb(t)‖uαa(u)f(u)‖F̃ (0,t)

∥∥∥
Ẽ
≥ ‖tα+βa(t)b(t)f(t)‖Ẽ .

In order to check (8) choose F = L1, α = 1 and β = −1. This concludes the
proof. �

Remark 3.8. Ultrasymmetric spaces is a large class of r.i. spaces characterized
by Pustylnik in [19] as those spaces whose (quasi)-norm is equivalent to

‖f‖Lϕ,E
= ‖ϕ(t)f ∗(t)‖Ẽ .

Here ϕ is a concave function and Ẽ is an r.i. space with respect to the homogeneous
measure dt/t on (0,∞). If the dilation indices of ϕ satisfy that 0 < πϕ = ρϕ = p < ∞,

then ϕ(t)
tp

, t > 0, is a slowly varying function and Lϕ,E can be seen as the Lorentz–
Karamata type space L

p,E,
ϕ(t)
tp

. In these conditions Theorems 3.6 and 3.7 establish

equivalent norms for the ultrasymmetric space Lϕ,E .

4. Boundedness of maximal fractional operators

and Riesz potential type operators

In this section we generalize some results of [13] to the framework of Lorentz–
Karamata type spaces. We show applications of Theorem 3.6 to the study of the
behaviour of these classical operators. The measure space (Ω, µ) will be R

n with the
Lebesgue measure. If a is any slowly varying function and 1 < p < ∞, we denote by
Mn

p
,a the fractional maximal operator

(Mn
p
,af)(x) = sup

x∈Q

1

|Q|1/p
′

a(|Q|)

ˆ

Q

|f(y)| dy,

where the supremum is taken over all cubes Q in R
n with sides parallel to the

coordinates axes. We may let p = ∞ if a is equivalent to a measurable decreasing
function on (0,∞).

The decreasing rearrangement of Mn
p
,af , for f ∈ M(Rn), is pointwise estimated

by the inequality

(10) (Mn
p
,af)

∗(t) .
∥∥∥u1/p 1

a(u)
f ∗∗(u)

∥∥∥
L̃∞(t,∞)

, t > 0,

where the constant only depends on n, p and a. See [13] for more information. Now
we are in a position to establish the following theorem.

Theorem 4.1. Let n ∈ N, 1 < p < ∞, 1 < r < p and 1
q
= 1

r
− 1

p
. Then for any

r.i. space E and slowly varying functions a and b,

Mn
p
,a : Lr,E,

b
a

−→ Lq,E,b.

Moreover, L
r,E,

b
a

is the largest r.i. space mapped by Mn
p
,a

into Lq,E,b.

Proof. First we prove that Mn
p
,a

is a bounded operator. Let f ∈ L
r,E,

b
a

(Rn),

then



106 Pedro Fernández-Martínez and Teresa M. Signes

‖Mn
p
,a
f‖Lq,E,b(Rn) =

∥∥t1/qb(t)(Mn
p
,a
f)∗(t)

∥∥
Ẽ(0,∞)

.
∥∥t1/qb(t)‖u1/p 1

a(u)
f ∗∗(u)‖L̃∞(t,∞)

∥∥
Ẽ(0,∞)

∼ ‖u1/r b(u)
a(u)

f ∗∗(u)‖Ẽ(0,∞) ∼ ‖u1/r b(u)
a(u)

f ∗(u)‖Ẽ(0,∞).

Here we have used Equation (10) and Theorem 3.6. The last equivalence follows from
Lemma 2.16 of [9].

In order to show that L
r,E,

b
a

is the largest r.i. space mapped by Mn
p
,a into Lq,E,b,

let f ∈ M(Rn) be such that Mn
p
,a
f ∈ Lq,E,b. By Theorem 4.1 of [13], see also [12],

there exists a measurable function h ∈ M(Rn) such that

h∗ = f ∗, and (Mn
p
,ah)

∗ & ‖u1/p 1
a(u)

h∗∗(u)‖L̃∞(t,∞).

Then

‖f‖L
r,E,

b
a

= ‖h‖L
r,E,

b
a

= ‖t1/r b(t)
a(t)

h∗(t)‖Ẽ ∼ ‖t1/r b(t)
a(t)

h∗∗(t)‖Ẽ

∼
∥∥t1/qb(t)‖u1/p 1

a(u)
h∗∗(u)‖L̃∞(t,∞)

∥∥
Ẽ
.

∥∥t1/qb(t)(Mn
p
,a
h)∗

∥∥
Ẽ
< ∞.

This completes the proof. �

Similar results can be established for operators of Riesz potential type. Given
1 < p < n and a slowly varying function a let

(In
p
,af)(x) =

ˆ

Rn

f(y)

|x− y|n/p
′

a(|x− y|)
dy.

It is shown in [13], Theorem 4.3, that for all f ∈ M(Rn) and t > 0

(11) (In
p
,af)

∗(t) .
∥∥∥u1/p 1

a(u1/n)
f ∗∗(u)

∥∥∥
L̃1(t,∞)

.

The inequality constant only depends on n, p and a. Now we can establish the
following result.

Theorem 4.2. Let 1 < p < ∞, 1 < r < p and put 1
q
= 1

r
− 1

p
. Let a and b

be slowly varying functions, and let E be an r.i. space. Then for the slowly varying

function
b(t)

a(t1/n)
, t > 0,

In
p
,a
: L

r,E,
b(t)

a(t1/n)

(Rn) −→ Lq,E,b(R
n).

Moreover, L
r,E,

b(t)

a(t1/n)

(Rn) is the largest r.i. space mapped by In
p
,a into Lq,E,b(R

n).

Proof. Let f ∈ L
r,E,

b(t)

a(t1/n)

(Rn), then

‖In
p
,a
f‖Lq,E,b

= ‖t1/qb(t)(In
p
,a
f)∗(t)‖Ẽ .

∥∥∥t1/qb(t)‖u1/p 1
a(u1/n)

f ∗∗(u)‖L̃1(t,∞)

∥∥∥
Ẽ

∼ ‖t1/r b(t)

a(t1/n)
f ∗∗(t)‖Ẽ ∼ ‖t1/r b(t)

a(t1/n)
f ∗(t)‖Ẽ.

We have used Theorem 3.6 and Equation (11) to establish the above inequality and
the following equivalence. See [9] for the last equivalence.
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Similar arguments to those in Theorem 4.1, and Theorem 4.3 of [13], show that
L
r,E,

b(t)

a(t1/n)

(Rn) is the largest r.i. space mapped by In
p
,a

into Lq,E,b(R
n). �
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