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Abstract. Let (X, d, p) be a metric space with a metric d and a marked point p. We define

the set of w-strongly porous at 0 subsets of [0,∞) and prove that the distance set {d(x, p) : x ∈ X}

is w-strongly porous at 0 if and only if every pretangent space to X at p is bounded.

1. Introduction

Recent achievements in the metric space theory are closely related to some gen-
eralizations of the differentiation. A possible but not the only one initial point to
develop the theory of a differentiation in metric spaces is the fact that every separa-
ble metric space admits an isometric embedding into the dual space of a separable
Banach space. It provides a linear structure, and so a differentiation. This approach
leads to a rather complete theory of rectifiable sets and currents on metric spaces
[4, 5]. The concept of the upper gradient [13, 14, 16], Cheeger’s notion of differen-
tiability for Rademacher’s theorem in certain metric measure spaces [7], the metric
derivative in the studies of metric space valued functions of bounded variation [3, 6]
and the Lipschitz type approach in [12] are the important examples of such gener-
alizations. The generalizations of the differentiability mentioned above give usually
nontrivial results only for the assumption that metric spaces have “sufficiently many”
rectifiable curves.

A new intrinsic notion of differentiability for the mapping between the general
metric spaces was produced in [10] (see also [11]). A basic technical tool in [10] is
a pretangent and tangent spaces to an arbitrary metric space X at a point p. The
development of this theory requires the understanding of interrelations between the
infinitesimal properties of initial metric space and geometry of pretangent spaces to
this initial. The main purpose of the present paper is to search the conditions under
which all pretangent spaces to X at a point p ∈ X are bounded.

For convenience we recall some terminology and results related to pretangent
spaces to general metric spaces.

Let (X, d, p) be a pointed metric space with a metric d and a marked point p. Fix
a sequence r̃ of positive real numbers rn tending to zero. In what follows r̃ will be
called a normalizing sequence. Let us denote by X̃ the set of all sequences of points
from X and by N the set of positive integer (= natural) numbers.
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Definition 1.1. Two sequences x̃ = {xn}n∈N and ỹ = {yn}n∈N, x̃, ỹ ∈ X̃, are
mutually stable with respect to r̃ = {rn}n∈N if there is a finite limit

(1.1) lim
n→∞

d(xn, yn)

rn
:= d̃r̃(x̃, ỹ) = d̃(x̃, ỹ).

We shall say that a family F̃ ⊆ X̃ is self-stable (w.r.t. r̃) if every two x̃, ỹ ∈ F̃ are
mutually stable. A family F̃ ⊆ X̃ is maximal self-stable if F̃ is self-stable and for an
arbitrary z̃ ∈ X̃ either z̃ ∈ F̃ or there is x̃ ∈ F̃ such that x̃ and z̃ are not mutually
stable.

The standart application of Zorn’s lemma leads to the following

Proposition 1.2. Let (X, d, p) be a pointed metric space. Then for every nor-

malizing sequence r̃ = {rn}n∈N there exists a maximal self-stable family X̃p,r̃ such

that p̃ := {p, p, . . .} ∈ X̃p,r̃.

Note that the condition p̃ ∈ X̃p,r̃ implies the equality

lim
n→∞

d(xn, p) = 0

for every x̃ = {xn}n∈N ∈ X̃p,r̃.

Consider a function d̃ : X̃p,r̃ × X̃p,r̃ → R where d̃(x̃, ỹ) = d̃r̃(x̃, ỹ) is defined by

(1.1). Obviously, d̃ is symmetric and nonnegative. Moreover, the triangle inequality
for d implies

d̃(x̃, ỹ) ≤ d̃(x̃, z̃) + d̃(z̃, ỹ)

for all x̃, ỹ, z̃ ∈ X̃p,r̃. Hence (X̃p,r̃, d̃) is a pseudometric space.

Definition 1.3. The pretangent space to the space X (at the point p w.r.t. r̃)

is the metric identification of the pseudometric space (X̃p,r̃, d̃).

Since the notion of pretangent space is important for the paper, we remind this
metric identification construction.

Define the relation ∼ on X̃p,r̃ by x̃ ∼ ỹ if and only if d̃(x̃, ỹ) = 0. Then ∼ is

an equivalence relation. Let us denote by ΩX
p,r̃ the set of equivalence classes in X̃p,r̃

under the equivalence relation ∼. It follows from general properties of pseudometric
spaces (see, for example, [15]), that if ρ is defined on ΩX

p,r̃ by

ρ(α, β) := d̃(x̃, ỹ)

for x̃ ∈ α and ỹ ∈ β, then ρ is a well-defined metric on ΩX
p,r̃. The metric identification

of (X̃p,r̃, d̃) is the metric space (ΩX
p,r̃, ρ).

It should be observed that ΩX
p,r̃ 6= ∅ because the constant sequence p̃ belongs

to X̃p,r̃. Thus every pretangent space ΩX
p,r̃ is a pointed metric space with natural

distinguished point π(p̃), (see diagram (1.3) below).
Let {nk}k∈N be an infinite strictly increasing sequence of natural numbers. Let

us denote by r̃′ the subsequence {rnk
}k∈N of the normalizing sequence r̃ = {rn}n∈N

and let x̃′ := {xnk
}k∈N for every x̃ = {xn}n∈N ∈ X̃. It is clear that if x̃ and ỹ are

mutually stable w.r.t. r̃, then x̃′ and ỹ′ are mutually stable w.r.t. r̃′ and

(1.2) d̃r̃(x̃, ỹ) = d̃r̃′(x̃
′, ỹ′).
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If X̃p,r̃ is a maximal self-stable (w.r.t. r̃) family, then, by Zorn’s Lemma, there exists

a maximal self-stable (w.r.t. r̃′) family X̃p,r̃′ such that

{x̃′ : x̃ ∈ X̃p,r̃} ⊆ X̃p,r̃′.

Denote by inr̃′ the map from X̃p,r̃ to X̃p,r̃′ with inr̃′(x̃) = x̃′ for all x̃ ∈ X̃p,r̃. It follows
from (1.2) that after metric identifications inr̃′ passes to an isometric embedding
em′ : ΩX

p,r̃ → ΩX
p,r̃′ under which the diagram

(1.3)

X̃p,r̃

in r̃′−−−−−→ X̃p,r̃′

π









y









y

π′

ΩX
p,r̃

em ′

−−−−−→ ΩX
p,r̃′

is commutative. Here π and π′ are the natural projections, π(x̃) := {ỹ ∈ X̃p,r̃ : d̃r̃(x̃, ỹ) =

0} and π′(x̃) := {ỹ ∈ X̃p,r̃′ : d̃r̃′(x̃, ỹ) = 0}.
Let X and Y be metric spaces. Recall that a map f : X → Y is called an isometry

if f is distance-preserving and onto.

Definition 1.4. A pretangent ΩX
p,r̃ is tangent if em′ : ΩX

p,r̃ → ΩX
p,r̃′ is an isometry

for every ΩX
p,r̃′.

The following lemma is a direct corollary of Lemma 5 from [1].

Lemma 1.5. Let (X, d, p) be a pointed metric space, B a countable subfamily

of X̃ and let r̃ = {rn}n∈N be a normalizing sequence. Suppose that b̃ and p̃ are

mutually stable for every b̃ = {bn}n∈N ∈ B. Then there is an infinite subsequence

r̃′ = {rnk
}k∈N of r̃ such that the family

B
′ := {b̃′ = {bnk

}k∈N : b̃ ∈ B}

is self-stable w.r.t. r̃′.

2. Boundedness of pretangent spaces and local strong right porosity

Let us recall the definition of the right porosity. This definition and an useful
collection of facts related to the notion of porosity can be found in [17]. Let E be a
subset of R+ = [0,∞).

Definition 2.1. The local right porosity of E at 0 is the quantity

p+(E, 0) := lim sup
h→0+

λ(E, 0, h)

h

where λ(E, 0, h) is the length of the largest open subinterval of (0, h) that contains
no point of E. The set E is strongly porous on the right at 0 if p+(E, 0) = 1.

It was proved in [1] that a bounded tangent space to X at p exists if and only if
the distance set

Sp(X) := {d(x, p) : x ∈ X}

is strongly porous on the right at 0.

• It is therefore reasonable to ask for which pointed metric spaces (X, d, p) all
pretangent spaces ΩX

p,r̃ are bounded?
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• Is there a modification of the local strong porosity describing the boundedness
of all pretangent spaces ΩX

p,r̃?

Our first goal is to introduce a desired modification of porosity.
Let τ̃ = {τn}n∈N be a sequence of real numbers. We shall say that τ̃ is almost

decreasing if the inequality τn+1 ≤ τn holds for sufficiently large n. Write Ẽd
0 for the

set of almost decreasing sequences τ̃ with lim
n→∞

τn = 0 and having τn ∈ E \ {0} for

n ∈ N.
Define ĨE to be the set of sequences {(an, bn)}n∈N of open intervals (an, bn) ⊆ R

+

meeting the following conditions:

• each (an, bn) is a connected component of the set ExtE = Int(R+ \ E), i.e.,
(an, bn) ∩ E = ∅ but for every (a, b) ⊇ (an, bn) we have

((a, b) 6= (an, bn)) ⇒ ((a, b) ∩ E 6= ∅).

• lim
n→∞

an = 0 and lim
n→∞

bn−an
bn

= 1.

Define also the weak equivalence ≍ on the set of sequences of strictly positive
numbers as follows. Let ã = {an}n∈N and γ̃ = {γn}n∈N. Then ã ≍ γ̃ if there are
constants c1, c2 > 0 such that

c1an < γn < c2an, n ∈ N.

Definition 2.2. Let 0 be an accumulation point of a set E ⊆ R
+ and let τ̃ ∈ Ẽd

0 .
The set E is τ̃ -strongly porous at 0 if there is a sequence {(an, bn)}n∈N ∈ ĨE such
that

τ̃ ≍ ã,

where ã = {an}n∈N.

Let E be a subset of R+ and let 0 ∈ E.

Definition 2.3. The set E is w-strongly porous at 0 if for every sequence τ̃ =
{τn}n∈N ∈ Ẽd

0 there is a subsequence τ̃
′

= {τnk
}k∈N ∈ Ẽd

0 for which the set E is
τ̃

′

-strongly porous at 0.

Remark 2.4. It is clear that E ⊆ R
+ is w-strongly porous at 0 if 0 is an isolated

point of E and, on the other hand, if E is w-strongly porous at 0 then E is strongly
porous at 0.

The following theorem gives a boundedness criterion for pretangent spaces.

Theorem 2.5. Let (X, d, p) be a pointed metric space. All pretangent spaces to

X at p are bounded if and only if the set Sp(X) is w-strongly porous at 0.

The proof of Theorem 2.5 is based on several auxiliary results. In the following
proposition we consider the distance set Sp(X) as a pointed metric space with the
standard metric induced from R and the marked point 0.

Proposition 2.6. Let (X, d, p) be a pointed metric space with the distance set

Sp(X). The following statements are equivalent.

(i) All pretangent spaces to X at p are bounded.

(ii) All pretangent spaces to Sp(X) at 0 are bounded.

Proof. (ii) ⇒ (i) Write Ω
Sp(X)
0,r̃ and S̃0,r̃(X) for pretangent spaces to Sp(X) at 0

and, respectively, for the corresponding maximal self-stable families. Suppose that
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the inequality

diamΩ
Sp(X)
0,r̃ < ∞

holds for every Ω
Sp(X)
0,r̃ . Let ΩX

p,r̃ be an arbitrary pretangent space to X with the

corresponding maximal self-stable family X̃p,r̃. Let x̃, ỹ ∈ X̃p,r̃. The membership

relations x̃, ỹ ∈ X̃p,r̃ imply the existence of the finite limits

lim
n→∞

d(xn, p)

rn
and lim

n→∞

d(yn, p)

rn
.

As it was shown in [2, Proposition 2.2] the statement “If ã and 0̃ are mutually stable

and b̃ and 0̃ are mutually stable, then ã and b̃ are mutually stable” holds for every
normalizing sequence r̃ and every subspace E of the metric space R

+ with 0 ∈ E

and ã, b̃ ∈ Ẽ.
Consequently, we obtain that {d(xn, p)}n∈N, {d(yn, p)}n∈N ∈ S̃0,r̃(X). Using the

triangle inequality, we obtain

d̃r̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn
≤ lim

n→∞

d(xn, p)

rn
+ lim

n→∞

d(yn, p)

rn

≤ 2 sup
z̃∈S̃0,r̃(X)

d̃r̃(0̃, z̃) ≤ 2 diamΩ
Sp(X)
0,r̃ .

Hence

diamΩX
p,r̃ = sup

x̃,ỹ∈X̃p,r̃

d̃r̃(x̃, ỹ) ≤ 2 diamΩ
Sp(X)
0,r̃ .

The boundedness of ΩX
p,r̃ follows.

(i) ⇒ (ii) Suppose that all ΩX
p,r̃ are bounded but there is an unbounded Ω

Sp(X)
0,r̃ .

Let S̃0,r̃(X) be the maximal self-stable family corresponding to Ω
Sp(X)
0,r̃ . Since Ω

Sp(X)
0,r̃ is

unbounded we can find a countable family of the sequences {d(p, bjn)}n∈N ∈ S̃0,r̃(X),
j ∈ N, such that

(2.1) ∞ > lim
n→∞

d(p, bjn)

rn
≥ j

for every j ∈ N. By Lemma 1.5 there is a subsequence r̃′ = {rnk
}k∈N such that

the family of sequences {bjnk
}k∈N, j ∈ N, is self-stable w.r.t. r̃′. Applying the Zorn

Lemma we find a maximal self-stable family X̃p,r̃′ such that {bjnk
}k∈N ∈ X̃p,r̃′ for

every j. Inequalities (2.1) imply that the pretangent space corresponding to X̃p,r̃′ is
unbounded, contrary to the supposition. �

The next lemma was proved in [9, Corollary 2.4].

Lemma 2.7. Let E ⊆ R
+ and let τ̃ = {τn}n∈N ∈ Ẽd

0 . The set E is τ̃ -strongly

porous if and only if there exists a sequence {(an, bn)}n∈N ∈ ĨE such that lim sup
n→∞

an
τn

<

∞ and τn ≤ an for sufficiently large n.

Proposition 2.8. Let E ⊆ R
+ and let τ̃ = {τn}n∈N ∈ Ẽd

0 . The following

statements are equivalent.

(i) E is τ̃ -strongly porous at 0.
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(ii) There is a constant k ∈ (1,∞) such that for every K ∈ (k,∞) there exists

N1(K) ∈ N such that

(2.2) (kτn, Kτn) ∩ E = ∅

for n ≥ N1(K).

Proof. (i) ⇒ (ii) Suppose that E is τ̃ -strongly porous at 0. By Lemma 2.7, there
is a sequence

(2.3) {(an, bn)}n∈N ∈ ĨE

such that lim sup
n→∞

an
τn

< ∞ and τn ≤ an for sufficiently large n. Write

k = 1 + lim sup
n→∞

an

τn
,

then k ≥ 2 and there is N0 ∈ N such that

(2.4) τn ≤ an < kτn

for n ≥ N0. Let K ∈ (k,∞). Membership (2.3) implies the equality lim
n→∞

bn
an

= ∞.

The last equality and (2.4) show that there is N1 ≥ N0 such that

an < kτn < Kτn ≤ bn

if n ≥ N1. Hence the inclusion

(2.5) (kτn, Kτn) ⊆ (an, bn)

holds for n ≥ N1. Since

(2.6) E ∩ (an, bn) = ∅,

(2.5) and (2.6) imply (2.2). Thus (ii) follows from (i).
(ii) ⇒ (i) Assume that statement (ii) holds. Then for K = 2k there is N0 ∈ N

such that

(kτn, 2kτn) ∩ E = ∅

for n ≥ N0. Consequently, for every n ≥ N0, we can find a connected component
(an, bn) of ExtE meeting the inclusion

(kτn, 2kτn) ⊆ (an, bn).

Define (an, bn) := (aN0 , bN0) for n < N0. Since, for n ≥ N0, we have

τn ∈ E, τn < kτn and (an, kτn) ∩ E = ∅,

the double inequality τn ≤ an < kτn holds. Hence {τn}n∈N ≍ {an}n∈N, i.e., to prove
(i) it is sufficient to show that

(2.7) {(an, bn)}n∈N ∈ ĨE .

All (an, bn) are connected components of ExtE, so that (2.7) holds if and only if

(2.8) lim
n→∞

bn

an
= ∞.

Let K be an arbitrary point of (k,∞). Applying (2.2) we can find N1(K) ∈ N such
that

(kτn, Kτn) ⊆ (an, bn)
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for n ≥ N1(K). Consequently, for such n, we have

bn

an
≥

Kτn

kτn
=

K

k
.

Letting K → ∞ we see that (2.8) follows. �

Proof of Theorem 2.5. The theorem is trivial if p is an isolated point of X.
Suppose that p is an accumulation point of X. Taking into account Proposition 2.6,
we can also assume that X ⊆ R

+ and p = 0.
Let X be w-strongly porous at 0 and let ΩX

0,r̃ be an arbitrary pretangent space

to X at 0 with the corresponding maximal self-stable family X̃0,r̃. To prove that ΩX
0,r̃

is bounded it suffices to show that

(2.9) sup
β∈ΩX

0,r̃

β 6=α

ρ(α, β) < ∞,

where α = π(0̃) (see (1.3)). This inequality is vacuously true if ΩX
0,r̃ is one-point. In

the case of cardΩX
0,r̃ ≥ 2 we can find c ∈ (0,∞) and τ̃ = {τn}n∈N ∈ X̃0,r̃ such that

(2.10) ρ(π(τ̃ ), α) = lim
n→∞

τn

rn
= c.

Let Ni be the set of all infinite subsets of N. Since X is w-strongly porous at 0, there
is A ∈ N

i such that τ̃ ′ = {τn}n∈A is almost decreasing and X is τ̃ ′-strongly porous

at 0. Note that the equivalence x̃ ≍ τ̃ holds for x̃ ∈ X̃0,r̃ if and only if π(x̃) 6= α.
Using (2.10) we can write (2.9) in the equivalent form

(2.11) sup
x̃∈X̃0,r̃

x̃≍τ̃

inf
B⊆A
B∈Ni

lim sup
n→∞
n∈B

xn

τn
< ∞.

Let x̃ = {xn}n∈N be an arbitrary element of X̃0,r̃ for which π(x̃) 6= α. Then x̃ ≍ τ̃

holds. Moreover, it is easy to find B ⊆ A, B ∈ N
i, such that {xn}n∈B is almost

decreasing. Since X is τ̃ ′-strongly porous at 0 and x̃ ≍ τ̃ , the set X is also {xn}n∈B-
strongly porous at 0. Let {(an, bn)}n∈B ∈ ĨX be a sequence such that {τn}n∈B ≍
{an}n∈B ≍ {xn}n∈B. Lemma 2.7 implies that

xn ≤ an

for sufficiently large n ∈ B and that

lim sup
n→∞
n∈A

an

τn
< ∞.

Thus

lim sup
n→∞
n∈B

xn

τn
≤ lim sup

n→∞
n∈B

an

τn
≤ lim sup

n→∞
n∈A

an

τn
< ∞.

Inequality 2.11 follows.
Suppose now that all pretangent spaces to X at 0 are bounded but the set X

is not w-strongly porous at 0. By Definition 2.3, there exists a decreasing sequence
τ̃ = {τn}n∈N such that τn ∈ X \ {0} for every n ∈ N, lim

n→∞
τn = 0 and X is not

τ̃ ′-strongly porous at 0 for every subsequence τ̃ ′ of the sequence τ̃ . Since X is not
τ̃ -strongly porous, by Proposition 2.8 for every k1 > 1 there is K1 ∈ (k1,∞) such
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that (k1τn, K1τn) ∩ E 6= ∅ for all n belonging to an infinite set A1 ⊆ N. Using this
fact we can find a convergent subsequence

x̃(1)

τ̃ (1)
:=

{

x
(1)
i

τi

}

i∈A1

such that k1 <
x
(1)
i

τi
< K1, i ∈ A1,

τ̃ (1) := {τi}i∈A1, x̃(1) := {x
(1)
i }i∈A1, x

(1)
i ∈ X \ {0}. Let k2 > K1 ∨ 2. Since X

is not τ̃ ′-strongly porous, there are K2 > k2 and an infinite A2 ⊆ A1 such that
(k2τn, K2τn) ∩E 6= ∅ for n ∈ N, so that we can construct a convergent subsequence

x̃(2)

τ̃ (2)
:=

{

x
(2)
i

τi

}

i∈A2

such that k2 <
x
(2)
i

τi
< K2, x

(2)
i ∈ X \ {0}, i ∈ A2,

where τ̃ (2) = {τ
(2)
i }i∈A2 is a subsequence of τ̃ (1) and x̃(2) := {x

(2)
i }i∈A2 . Repeating

this procedure we see that, for every j ∈ N, there are some sequences x̃(j+1) =

{x
(j+1)
i }i∈Aj+1

, x
j+1
i ∈ X \ {0} and τ̃ (j+1) = {τi}i∈Aj+1

, Aj+1 is infinite subset of
Aj ⊆ N, such that

kj ∨ kj+1 <
x
(j+1)
i

τi
< Kj+1,

for i ∈ Aj+1 and

x̃(j+1)

τ̃ (i+1)
:=

{

x
(j+1)
i

τi

}

i∈Aj+1

is convergent. To complete the proof, it suffices to make use of Cantor’s diagonal
argument.

Let B := {n1, . . . , nj, . . .} be an infinite subset of N such that nj ∈ Aj for every

j ∈ N. Let us define the subsequences ỹ(j) = {yjk}k∈B by the rule

y
(j)
k :=

{

0 if k ∈ Aj \B,

x
(j)
k if k ∈ A ∩ Aj.

Then the sequence

{

y
(j)
k

τk

}

k∈B

is convergent and

(2.12) j ≤ lim
k→∞
k∈B

y
(j)
k

τk

for every j ∈ N. Since all {y
(j)
k }k∈B are mutually stable w.r.t. the normalizing

sequence τ̃ ′ = {τk}k∈B, there is a maximal self-stable X̃0,r̃′ such that {y
(j)
k }k∈B ∈ X̃0,r̃′

for j ∈ N. Inequality (2.12) shows that the corresponding pretangent space ΩX
0,r̃′ is

unbounded, contrary to the supposition. �

Corollary 2.9. Let (X, d, p) be a pointed metric space. If all pretangent spaces

ΩX
p,r̃ are bounded, then at least one from these pretangent spaces is tangent.

Proof. Suppose that all ΩX
p,r̃ are bounded, then, by Theorem 2.5, the set Sp(X)

is w-strongly porous at 0. Consequently Sp(X) is strongly porous on the right at 0
(see Remark 2.4). As was noted above, Sp(X) is strongly porous on the right at 0 if
and only if there is a bounded tangent space ΩX

p,r̃. �
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We shall say that a set E ⊆ R
+ is completely strongly porous at 0 if E is τ̃ -strongly

porous at 0 for every τ̃ ∈ Ẽd
0 . Some properties of completely strongly porous sets

E ⊆ R
+ are described in [9].

The following example shows that there exist w-strongly porous at 0 subsets of
R

+ which are not completely strongly porous at 0.

Example 2.10. Let τ1 = 1 and τn+1 = 2−n2
τn for every n ∈ N. Let N1,N2, . . . ,

Nk, . . . be an infinite partition of N,
∞
⋃

k=1

Nk = N, Ni ∩Nj = ∅ for i 6= j,

such that
ν(1) < ν(2) < . . . < ν(k) < . . .

where
ν(k) := min

n∈Nk

n.

For every n ∈ N define τ ∗n as 2−ν(m(n))τn where m(n) is the index for which n ∈ Nm(n).
Write E1 := {τn : n ∈ N}, E∗

1 := {τ ∗n : n ∈ N} and

E := E1 ∪ E∗
1 ∪ {0},

here E1 and E∗
1 are the ranges of the sequences {τn}n∈N and {τ ∗n}n∈N respectively.

Using Lemma 2.7 we can show that E is not τ̃ -strongly porous with τ̃ = {τn}n∈N
define as above, so that E is not completely strongly porous.

Let us show that E is w-strongly porous at 0. Note that, for every ỹ = {yn}n∈N ∈

Ẽd
0 , there are three possibilities:

(i) yn ∈ E1 holds for an infinite number of subscripts n;
(ii) there is k ∈ N such that

card({yn : n ∈ N} ∩ {τ ∗n : n ∈ Nk}) = ∞;

(iii) there is an infinite strictly increasing sequence {ki}i∈N such that

{yn : n ∈ N} ∩ {τ ∗n : n ∈ Nki} 6= ∅.

It follows directly from the definitions that

(2.13) n ≥ ν(k) ≥ k

for every k ∈ N and every n ∈ Nk. This double inequality implies that n ≥ ν(m(n)).
Using the last inequality and definitions of τn and τ ∗n we obtain

(2.14) τn+1 = 2−n2

τn ≤ 2−nτn ≤ 2−ν(m(n))τn = τ ∗n < τn.

In particular, (2.14) implies that τ ∗n = τn is possible only for n = 1 and that

τ ∗n+1 < τn+1 < τ ∗n < τn

holds for every n ≥ 2. Moreover we obtain from (2.14) that

(2.15) lim
n→∞

τn+1

τ ∗n
≤ lim

n→∞

2−n2

2−n
= 0.

Consequently {(τn+1, τ
∗
n)}n∈N ∈ ĨE. Using the last membership we can show that

for ỹ satisfying (i), there is ỹ′ such that E is ỹ′-strongly porous at 0. If ỹ meets
condition (ii), then using (2.15) and the equality τ ∗n = 2−ν(k)τn, n ∈ Nk, we can also
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find the desired ỹ′. Finally, if (iii) holds, then ỹ′ can be constructed with the use of
the relation

lim
k→∞

2−ν(k) = 0,

wich follows from the second inequality in (2.13). We leave the details of the con-
structions of ỹ′ to the reader.

Remark 2.11. Considering E from Example 2.10 as a pointed metric space with
a marked point 0 we can show that the inequality card(ΩE

0,r̃) ≤ 3 holds for every ΩE
0,r̃.

On the other hand, if (X, d, p) is a pointed metric space such that card(ΩE
p,r̃) ≤ 2

holds for every ΩE
p,r̃, then the distance set {d(x, p) : x ∈ X} is completely strongly

porous at 0.
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