Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 389-416
Hiroshima Institute of Technology,
Department of Mechanical Systems Engineering
2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan;
y.mizuta.5x 'at' it-hiroshima.ac.jp
Oita University, Faculty of Education and Welfare Science
Dannoharu Oita-city 870-1192, Japan; t-ohno 'at' oita-u.ac.jp
Abstract. In this paper, we consider the Herz-Morrey space H{x_0}p(\cdot),q,\omega(G) of variable exponent consisting of all measurable functions f on a bounded open set G \subset Rn satisfying
||f||H{x_0}p(\cdot),q,\omega(G) = (\int_0^{2dG} (\omega(x0,r) ||f||L^{p(\cdot)}(B(x0,r) \setminus B(x0,r/2)))qdr/r)1/q < \infty,
and set Hp(\cdot),q,\omega(G) = \bigcapx_0 \in G H{x_0}p(\cdot),q,\omega(G). Our first aim in this paper is to give the boundedness of the maximal and Riesz potential operators in Hp(\cdot),q,\omega(G) when q = \infty. In connection with H{x_0}p(\cdot),q,\omega(G) and Hp(\cdot),q,\omega(G), let us consider the families \underlineH{x_0}p(\cdot),q,\omega(G), \underlineHp(\cdot),q,\omega(G), \overlineH{x_0}p(\cdot),q,\omega(G) and \tildeH{x_0}p(\cdot),q,\omega(G). Following Fiorenza-Rakotoson [18], Di Fratta-Fiorenza [17] and Gogatishvili-Mustafayev [19], we next discuss the duality properties among these Herz-Morrey spaces.
2010 Mathematics Subject Classification: Primary 31B15, 46E35.
Key words: Herz-Morrey spaces of variable exponent, maximal functions, Riesz potentials, Sobolev's inequality, Trudinger's inequality, duality.
Reference to this article: Y. Mizuta and T. Ohno: Sobolev's theorem and duality for Herz-Morrey spaces of variable exponent. Ann. Acad. Sci. Fenn. Math. 39 (2014), 389-416.
doi:10.5186/aasfm.2014.3913
Copyright © 2014 by Academia Scientiarum Fennica