Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 231-258

GENERALIZED HILBERT OPERATORS

Petros Galanopoulos, Daniel Girela, José Ángel Peláez and Aristomenis G. Siskakis

Aristotle University of Thessaloniki, Department of Mathematics
54124, Thessaloniki, Greece; galanopoulos_petros 'at' yahoo.gr

Universidad de Málaga, Departamento de Análisis Matemático
Campus de Teatinos, 29071 Málaga, Spain; girela 'at' uma.es

Universidad de Málaga, Departamento de Análisis Matemático
Campus de Teatinos, 29071 Málaga, Spain; japelaez 'at' uma.es

Aristotle University of Thessaloniki, Department of Mathematics
54124, Thessaloniki, Greece; siskakis 'at' math.auth.gr

Abstract. If g is an analytic function in the unit disc D, we consider the generalized Hilbert operator Hg defined by

Hg(f)(z) = \int_0^1 f(t)g'(tz) dt.

We study these operators acting on classical spaces of analytic functions in D. More precisely, we address the question of characterizing the functions g for which the operator Hg is bounded (compact) on the Hardy spaces Hp, on the weighted Bergman spaces Ap\alpha or on the spaces of Dirichlet type Dp\alpha.

2010 Mathematics Subject Classification: Primary 47B35; Secondary 30H10.

Key words: Generalized Hilbert operators, Hardy spaces, Dirichlet spaces, Bergman spaces.

Reference to this article: P. Galanopoulos, D. Girela, J.Á. Peláez and A.G. Siskakis: Generalized Hilbert operators. Ann. Acad. Sci. Fenn. Math. 39 (2014), 231-258.

Full document as PDF file

doi:10.5186/aasfm.2014.3912

Copyright © 2014 by Academia Scientiarum Fennica