Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 39, 2014, 73-82
National Academy of Sciences of Ukraine, Institute of Applied
Mathematics and Mechanics
Roza Luxemburg str. 74, Donetsk 83114, Ukraine;
biletvictoriya 'at' mail.ru
National Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics
Roza Luxemburg str. 74, Donetsk 83114, Ukraine; aleksdov 'at' mail.ru
Abstract. Let (X,d,p) be a metric space with a metric d and a marked point p. We define the set of w-strongly porous at 0 subsets of [0,\infty) and prove that the distance set {d(x,p): x \in X} is w-strongly porous at 0 if and only if every pretangent space to X at p is bounded.
2010 Mathematics Subject Classification: Primary 54E35, 28A10.
Key words: Metric spaces, infinitesimal boundedness in metric spaces, distance set, local strong porosity.
Reference to this article: V. Bilet and O. Dovgoshey: Boundedness of pretangent spaces to general metric spaces. Ann. Acad. Sci. Fenn. Math. 39 (2014), 73-82.
doi:10.5186/aasfm.2014.3902
Copyright © 2014 by Academia Scientiarum Fennica