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Abstract. Two theorems are proved concerning non-real zeros of derivatives of the reciprocal
of a real entire function with real zeros. A further result treats the frequency of non-real poles for
real meromorphic functions which together with their first three derivatives have only real zeros.

1. Introduction

This paper concerns non-real zeros of derivatives of real meromorphic functions
in the plane, that is, meromorphic functions mapping R into R ∪ {∞}. Extensive
research into the non-real zeros of derivatives of real entire functions [2, 3, 4, 5, 7,
16, 17, 23, 24, 25, 35, 38] arose largely from the conjecture of Wiman (now proved in
[3, 35, 38]) that if f is a real entire function such that f and f ′′ have only real zeros,
then f belongs to the Laguerre–Pólya class consisting of locally uniform limits of real
polynomials with real zeros, as well as from related conjectures of Pólya [36]. The
starting point of the present paper is the analogous problem where f , rather than
being entire, is the reciprocal of a real entire function with real zeros. The following
theorem [31, 32] represents a strengthening of results of Hellerstein and Williamson
[18] and Rossi [37]. Here NNR(r, g) denotes the Nevanlinna counting function [12] of
the non-real poles of a meromorphic function g in the plane, and this notation will
be used throughout the paper.

Theorem 1.1. [31, 32] Let f be a real meromorphic function in the plane, with
finitely many zeros and non-real poles, but not of the form
(1) f = SeP , with S a rational function and P a polynomial.
Then f ′′ has infinitely many non-real zeros. If, in addition, f has finite lower order,
then NNR(r, 1/f

′′) ̸= o(T (r, f ′/f)) as r → ∞.

The author conjectures that if f is as in the hypotheses of Theorem 1.1 then
f (k) has infinitely many non-real zeros for every k ≥ 2. The proof of Theorem 1.1
was accomplished in two stages, using different methods, depending on the growth
of f . For the case where f is a real meromorphic function of finite lower order in the
plane, with finitely many zeros and non-real poles, the key step was to show that f ′′

has finitely many real zeros [31], a result which is not true for infinite lower order
as the example f(z) = exp(sin z) immediately shows. The assertion of Theorem 1.1
for the case of finite lower order was then proved in [31] by applying a theorem of
Eremenko [8]. The main result of the present paper will again treat the case where f
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has finite lower order, to give a counterpart of Theorem 1.1 for the third and fourth
derivatives, as well as to strengthen the previous result for the second derivative.

Theorem 1.2. Let f be a real meromorphic function of finite lower order in
the plane, with finitely many zeros and non-real poles, not of the form (1). Then f
satisfies, as r → ∞ in a set of logarithmic density 1,

(2) T (r, f ′/f) ∼ 1

2
NNR(r, 1/f

′′) ∼ 1

2
NNR

(
r, 1/f (3)

)
∼ 1

4
NNR

(
r, 1/f (4)

)
.

Thus, under the hypotheses of Theorem 1.2, each of f ′′, f (3) and f (4) has infinitely
many non-real zeros. On the other hand, Lemma 5.3 below shows that most of these
zeros lie relatively close to the real axis. The strategy for proving Theorem 1.2 is
to demonstrate (see Proposition 5.1 below) that if f is as in the hypotheses then
f (4)(x)/f(x) is positive or infinite for all real x with |x| sufficiently large, as was
already proved for f ′′(x)/f(x) in [31]. Indeed, it seems reasonable to conjecture that
the same would be true for f (n)(x)/f(x), for any even positive integer n, but this
appears to be difficult to prove.

For functions of infinite order the following theorem provides a partial resolution
of the conjecture raised following Theorem 1.1. The case m = 0 is already contained
in Theorem 1.1, but the present proof is somewhat simpler than that in [32].

Theorem 1.3. Let f be a real meromorphic function of infinite order in the
plane, with finitely many zeros and non-real poles. Let m be a non-negative integer.
Then at least one of f (m) and f (m+2) has infinitely many non-real zeros.

The final result is linked to the investigations of [28, 30, 31, 32, 33], which in
turn followed on from earlier work [18, 19, 20, 21, 22, 37] concerning the existence of
non-real zeros of derivatives of real meromorphic functions in general. It seems likely
that if k ≥ 2 and f is a real meromorphic function in the plane, such that f and f (k)

have finitely many non-real zeros, then f has in some sense relatively few distinct
non-real poles. A partial result in this spirit holds if in addition the non-real poles of
f have bounded multiplicities, in which case there exists B > 0 such that if z0 and
z1 are distinct non-real poles of f then |z1 − z0| > B| Im z0| (see [33, Lemma 4.3]).
The following theorem from [33] showed that if k = 2 and f ′/f has finite lower order,
this additional hypothesis on the multiplicities of non-real poles is not required.

Theorem 1.4. [33] Let f be a real meromorphic function in the plane such that
f ′/f has finite lower order and f and f ′′ have finitely many non-real zeros. If z0 is a
non-real pole of f and |z0| is sufficiently large then f has no poles in the set

(3)
{
z ∈ C : 0 < |z − z0| <

|Im z0|
16

}
.

In the next result the assumption that the logarithmic derivative has finite lower
order is dispensed with, at the cost of considering more derivatives.

Theorem 1.5. Let n and m be non-negative integers with n ̸∈ {m,m+1,m+2}.
Let g be a real meromorphic function in the plane such that g(n), g(m), g(m+1) and
g(m+2) all have finitely many non-real zeros. If z0 is a non-real pole of g and |z0| is
sufficiently large then g has no poles in the set (3).

Theorems 1.4 and 1.5 imply that if 0 < β < π/2 then the number of distinct
poles with |z| ≤ r, β ≤ | arg z| ≤ π−β is O(log r) as r → ∞. In particular this holds
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for a real meromorphic function f such that f , f ′, f ′′ and f ′′′ have finitely many
non-real zeros, with no assumption on the growth of f or the multiplicities of poles.
However, this seems unlikely to be sharp.

2. Direct singularities and the Tsuji characteristic

Let a ∈ C be an asymptotic value of a transcendental meromorphic function
F in the plane, so that F (z) → a as z → ∞ along a path γ. Then the inverse
function F−1 is said to have a transcendental singularity over a [1]. For each ε > 0
there then exists a component C = C(a, ε, F ) of the set {z ∈ C : |F (z) − a| < ε}
such that C contains an unbounded subpath of γ. Two asymptotic paths γ, γ′ on
which F (z) → a determine distinct singularities if the corresponding components
C(a, ε, F ), C ′(a, ε, F ) are disjoint for some ε > 0.

The singularity of F−1 corresponding to γ is called indirect [1] if C(a, ε, F ),
for every ε > 0, contains infinitely many zeros of F − a, and direct otherwise. A
direct singularity will be referred to as lying in the open upper half-plane H = {z ∈
C : Im z > 0} if C(a, ε, F ) ⊆ H for sufficiently small positive ε. Transcendental
singularities over ∞ are defined and classified analogously.

The following lemma from [29] established a link between the number of direct
singularities lying in the open upper half-plane H and the growth of the Tsuji char-
acteristic T(r,G) [39], which is defined for functions G which are meromorphic in the
closed upper half-plane H = {z ∈ C : Im z ≥ 0} (see also [11]).

Lemma 2.1. [29] Let G be a meromorphic function in the plane such that
T(r,G) = O(log r) as r → ∞. Then there is at most one direct singularity of
G−1 lying in H.

Lemma 2.2. Let L ̸≡ 0 be a real meromorphic function in the plane such that
T(r, L) = O(log r) as r → ∞, and define F by F (z) = z − 1/L(z). Assume that at
least one of L and 1/L has finitely many non-real poles. Then there exist finitely
many α ∈ C such that F (z) or L(z) tends to α as z tends to infinity along a path in
C \R.

Proof. Suppose first that 1/L has finitely many non-real poles: then so has F .
Assuming that the assertion of the lemma is false leads to the following, in which G
is F or 1/L and so satisfies T(r,G) = O(log r) as r → ∞. There exist, in view of
the fact that G is real, pairwise distinct α1, α2, α3 in C such that G(z) tends to αp

as z → ∞ on a path γp in H. But this gives at least two direct singularities of G−1

over ∞, lying in H, contradicting Lemma 2.1.
Now assume that L has finitely many non-real poles. Then the above argument

delivers the conclusion of the lemma for both L and the function M defined as in [3]
by

M(z) = z2L(z)− z =
zF (z)

z − F (z)
.

Following [3], if F (z) tends to α ∈ C as z tends to infinity along a path, then so does
M(z), and this completes the proof. �
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3. Tools from the Wiman–Valiron theory

Lemma 3.1. [14] Let the function P be transcendental and meromorphic with
finitely many poles in the plane, and let q ∈ N. Then there exists a set E1 of finite
logarithmic measure such that, if r ∈ [1,∞) \ E1 and |z1| = r, |P (z1)| ∼ M(r, P ) =
max{|P (z)| : |z| = r} then

P (z) ∼ P (z1)

(
z

z1

)N(r)

and
P (j)(z)

P (z)
∼ N(r)j

zj
for

∣∣∣∣log z

z1

∣∣∣∣ ≤ N(r)−7/12

and j = 1, . . . , q. Here N(r) tends to infinity with

(4) N(r) = O (logM(r, P ))2 for r ∈ E1.

Proof. When P is entire these are standard facts from the Wiman–Valiron theory
[14], with N = N(r) the central index of P . In the general case let w1, . . . , wm be
the poles of P , repeated according to multiplicity. Then the assertions of the lemma
follow from Leibnitz’ rule and the corresponding estimates for the entire function
P1(z) = P (z)

∏
1≤k≤m(z − wk). With a slight abuse of notation, N(r) may still be

referred to as the central index of P . �

4. Further lemmas required for Theorems 1.2 and 1.3

Lemma 4.1. There exists a positive real number ε with the following property.
There do not exist positive real numbers A,B,C,D,E satisfying

(5) E4A4 + 6E3A2B + 3E2B2 + ED < (4 + ε)E2AC and C2 <
3BD

4
.

Proof. Assume that ε is small and positive and that positive real numbers
A,B,C,D,E satisfy both inequalities in (5), so that in particular

D < (4 + ε)EAC < (4 + ε)EA

√
3BD

4
,

√
D < (4 + ε)EA

√
3B

4
.

On substitution into (5) this yields

E4A4 + 6E3A2B + 3E2B2 + ED < (4 + ε)E2A

√
3B

4
· (4 + ε)EA

√
3B

4

=
3

4
(4 + ε)2E3A2B.

(6)

On the other hand (5) also leads to

6E3A2B < (4 + ε)E2AC < (4 + ε)E2A

√
3BD

4
, 6EA

√
B < (4 + ε)

√
3D

4
,

from which it follows that

ED > 48(4 + ε)−2E3A2B.

Combining this with (6) then delivers

(7) (E2A2)2 + γ(E2A2)(EB) + 3(EB)2 < 0, γ = 6 + 48(4 + ε)−2 − 3

4
(4 + ε)2.

If ε is small enough then γ2 < 12, which renders the inequality in (7) impossible. �
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Lemma 4.2. Let Ak ∈ R \ {0} for each k ∈ T , where T is an infinite subset of
Z, and assume that lim|k|→+∞,k∈T |Ak| = +∞ and

(8) M(z) = Cz +R(z) +
∑
k∈T

Dk

(
1

Ak − z
− 1

Ak

)
,

∑
k∈T

Dk

A2
k

<∞,

where C ≥ 0, Dk > 0 and R is a real rational function with R(∞) ∈ C. Assume
further that if

∑
k∈T Dk <∞ then R is constant. Then there exists d1 > 0 such that,

as x→ +∞ with x real,

(9) M ′(x) ≥ d1
x2
, M ′′′(x) > 0, |M ′′(x)| ≤ (1 + o(1))

√
2

3
M ′(x)M ′′′(x).

Furthermore, M satisfies M(iy) = Ciy + o(|y|) as |y| → +∞ with y real.

Proof. Let x be real and tend to +∞, and drop the subscript in the summation.
Then

M ′(x) = C +R′(x) +
∑ Dk

(Ak − x)2
≥ R′(x) +

∑
|Ak|≤x

Dk

(Ak − x)2
≥ R′(x) +

∑
|Ak|≤x

Dk

4x2
.

This yields the first inequality of (9), whether or not
∑
Dk < ∞ (in which case R′

vanishes identically). Moreover, M ′ satisfies

(10) M ′(x) ≥ (1 + o(1))
∑ Dk

(Ak − x)2
, R′(x) = o(M ′(x)).

Similar considerations reveal that

M ′′′(x) = R′′′(x) +
∑ 6Dk

(Ak − x)4
≥ R′′′(x) +

∑
|Ak|≤x

3Dk

8x4

and so

(11) M ′′′(x) ≥ (1 + o(1))
∑ 6Dk

(Ak − x)4
> 0, R′′′(x) = o(M ′′′(x)).

It is easy to see from the Laurent series expansion that R′′(x)2 = O(|R′(x)R′′′(x)|),
and so combining (10) and (11) with an application of the Cauchy–Schwarz inequality
leads to

|M ′′(x)| ≤ |R′′(x)|+
∑ 2Dk

|Ak − x|3

≤ O
(√

|R′(x)R′′′(x)|
)
+ 2

∑( √
Dk

|Ak − x|
·

√
Dk

|Ak − x|2

)
≤ o

(√
M ′(x)M ′′′(x)

)
+

√
2

3

∑ Dk

(Ak − x)2
·
∑ 6Dk

(Ak − x)4

≤ (1 + o(1))

√
2

3
M ′(x)M ′′′(x),

and so (9) is proved in full.
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To prove the last assertion, let Q be large and positive. Then as |y| → +∞ with
y real,∣∣∣∣∣∑
k∈T

Dk

(
1

Ak − iy
− 1

Ak

)∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

|Ak|>Q

Dkiy

Ak(Ak − iy)

∣∣∣∣∣∣+O(1) ≤ |y|

 ∑
|Ak|>Q

Dk

A2
k

+ o(1)

 .

�
The next lemma essentially follows the local analysis of [25, Lemma 14.1].

Lemma 4.3. Let the function L be non-constant and meromorphic in the plane
and define F by F (z) = z − 1/L(z). Let a ∈ C be a zero of L of multiplicity q ∈ N,
and let 0 < ε < π/16 and π/4 < θ < 3π/4. Then the following assertions hold for all
sufficiently small positive ρ.

There exist pairwise disjoint arcs λj, j = 1, . . . , q, each mapped by w = L(z)
onto the arc

(12) Ωθ,ρ = {teiθ : 0 < t < ρ}

and satisfying z → a as L(z) → 0 on λj. Moreover, there are q pairwise disjoint
components Ej of the set

(13) E =

{
z ∈ C :

1

2ρ
< |F (z)| <∞, ε < argF (z) < π − ε

}
which satisfy a ∈ ∂Ej, and these may be labelled so that λj ⊆ Ej.

Proof. There exists b ∈ C \ {0} with

L(z) ∼
(
z − a

b

)q

, F (z) ∼ − 1

L(z)
∼ −

(
b

z − a

)q

as z → a. The existence for sufficiently small positive ρ of q pairwise disjoint arcs λj
as in the lemma, as well as of q pairwise disjoint components Fk of the set E, with
a ∈ ∂Fk, is standard. Since argF (z) = π − θ + o(1) as L(z) → 0 with argL(z) = θ
it follows that if ρ is small enough then each λj lies in one of the Fk and the λj are
separated by the q rays z = a+ btei2πp/q, t ≥ 0, p = 0, . . . , q−1, as are the Fk. Hence
for ρ small the Fk may be re-labelled to give λj ⊆ Ej. �

The last two lemmas of this section are well known.

Lemma 4.4. [6] Let 1 < r < R < ∞ and let the function g be meromorphic in
|z| ≤ R. Let I(r) be a subset of [0, 2π] of Lebesgue measure µ(r). Then

1

2π

ˆ
I(r)

log+ |g(reiθ)| dθ ≤ 11Rµ(r)

R− r

(
1 + log+

1

µ(r)

)
T (R, g).

Lemma 4.5. [13] Let S(r) be an unbounded positive non-decreasing function on
[1,∞), and continuous from the right. Let A > 1, B > 1 and G = {r ≥ 1: S(Ar) ≥
BS(r)}. Then

logdensG = lim sup
r→∞

(
1

log r

ˆ
[1,r]∩G

1

t
dt

)
≤

(
logA

logB

)
lim sup
r→∞

log+ S(r)

log r
.
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5. Proof of Theorem 1.2: first steps

Throughout this section let the function f be as in the hypotheses of Theorem 1.2.
Then L = f ′/f is transcendental and, since f has finite lower order and finitely many
zeros, f must have infinitely many poles, all but finitely many of which are real. Thus
L has a Levin–Ostrovskii factorisation [34, 35]

(14) L =
f ′

f
= Pψ,

in which P and ψ are real meromorphic functions, such that P has finitely many
poles and ψ is constructed as follows. Denote by αp the distinct real poles of f ,
ordered so that αp < αp+1. For |p| ≥ p0, where p0 is large, αp and αp+1 are of the
same sign, and there is a zero βp of f ′ in the interval (αp, αp+1). Thus the product

ψ(z) =
∏

|p|≥p0

1− z/βp
1− z/αp

converges by the alternating series test, and satisfies

0 <
∑
|p|≥p0

arg
1− z/βp
1− z/αp

=
∑
|p|≥p0

arg
βp − z

αp − z
< π for z ∈ H = {z ∈ C : Im z > 0},

so that ψ(H) ⊆ H and [34, Ch. I.6, Thm 8′]

(15)
1

5
|ψ(i)|sin θ

r
< |ψ(reiθ)| < 5|ψ(i)| r

sin θ
for r ≥ 1, θ ∈ (0, π).

Lemma 5.1. P is a rational function and f has finite order.

Proof. This is standard. The first assertion follows from (15) and the inequality

T (r, P ) ≤ N(r, P ) +m(r, f ′/f) +m(r, 1/ψ) ≤ m(r, f ′/f) +O(log r)

as r → +∞, while the second is proved by applying the argument of [3, Lemma 5.1]
to 1/f . �

Since the image of H under logψ contains no disc of radius greater than π/2,
Bloch’s theorem implies that

(16)
∣∣∣∣ψ′(reiθ)

ψ(reiθ)

∣∣∣∣ ≤ c0
r sin θ

for r ≥ 1, θ ∈ (0, π),

with c0 a positive absolute constant. Furthermore, ψ has a representation [34]

ψ(z) = C1z + C2 +
∑

Bk

(
1

Ak − z
− 1

Ak

)
,

∑ Bk

A2
k

<∞,

Bk = −Res (ψ,Ak) > 0,

(17)

where C1 ≥ 0, C2 ∈ R and the Ak are the poles of ψ (all of which lie in R \ {0} and
are poles of f by the construction of ψ).

Lemma 5.2. If P (∞) ∈ C then the hypotheses of Lemma 4.2 are satisfied with
M = L = f ′/f and each Dk a positive integer.

Proof. Each Ak in the sum in (17) is a real pole of f , and the residue of L at Ak

is −BkP (Ak), which must therefore be a negative integer. In particular if P (∞) ̸= 0
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then P (∞) is real and positive. Thus (17) and the lemma of the logarithmic derivative
lead to

L(z) = T (z) +
∑

mk

(
1

Ak − z
− 1

Ak

)
,

∑ mk

A2
k

< +∞,

mk = −Res (L,Ak) ∈ N,

(18)

where T has finitely many poles and so is a real rational function. Now (17) and (18)
show that the last assertion of Lemma 4.2 holds for both M = ψ and M = L − T ,
which yields

T (iy) = L(iy) + o(|y|) = P (iy)(C1iy + o(|y|)) + o(|y|) = C3iy + o(|y|),
C3 = C1P (∞) ≥ 0,

as |y| → +∞ with y real. Since T is a real rational function, (18) now takes the form
(8), with

∑
Dk =

∑
mk = ∞. �

Proposition 5.1. Still assuming that f is as in the hypotheses of Theorem 1.2,
there exists R1 ∈ (0,+∞) such that f ′′(x)/f(x) and f (4)(x)/f(x) are both positive
or infinite for every real x with |x| ≥ R1.

Proof. Let f be as in the hypotheses. Because f(z) may be replaced by f(−z)
it suffices to consider large x on the positive real axis R+. The assertion concerning
f ′′/f was already proved in [31, Section 3], and that for f (4)(x)/f(x) will now be
established by dividing into cases.

Case I. Suppose that P (∞) ∈ C. Let x be real, large and positive, and assume
that

(19)
f (4)(x)

f(x)
= L(x)4 + 6L(x)2L′(x) + 4L(x)L′′(x) + 3L′(x)2 + L′′′(x)

is finite and non-positive. Now Lemma 5.2 shows that the hypotheses of Lemma 4.2
are satisfied with M = L, so write

A = |L(x)|, B = L′(x) > 0, C = |L′′(x)|, D = L′′′(x) > 0.

It then follows using Lemma 4.2 that

A4 + 6A2B + 3B2 +D ≤ |4L(x)L′′(x)| = 4AC, AC > 0, C <

√
3

4
BD.

Applying Lemma 4.1 with E = 1 yields a contradiction and disposes of this case.

Case II. Suppose that P (∞) = ∞ and f has infinitely many poles on R+. Again
let x be real, large and positive. Since the residue of L = Pψ at a pole Ak of ψ is
−BkP (Ak) by (17), it follows that P (x) and P ′(x) are positive. Moreover, P satisfies

(20)
P (j)(x)

P (x)
= O(x−j) for j = 1, 2, 3.

Assuming that f (4)(x)/f(x) is finite and non-positive, the representation (19) yields,
at x,

F = P 4ψ4 + 6P 3ψ2ψ′ + (4PP ′′ + 3(P ′)2)ψ2 + 3P 2(ψ′)2 + Pψ′′′

≤ 6P 2P ′|ψ|3 + 4P 2|ψψ′′|+ 14PP ′|ψψ′|+ 3P ′|ψ′′|+ 3|P ′′|ψ′ + |P ′′′ψ|.
(21)
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Now (17) shows that Lemma 4.2 holds with M = ψ and R constant, which makes it
possible to write

(22) A = |ψ(x)|, B = ψ′(x) ≥ d1
x2
, C = |ψ′′(x)|, D = ψ′′′(x) > 0, C2 <

3BD

4
.

Since 4P (x)P ′′(x) + 3P ′(x)2 is positive, whether or not P ′(∞) is finite, (21) now
implies that

0 < G = P 4A4 + 6P 3A2B + 3P 2B2 + PD

≤ J = 4P 2AC + 6P 2P ′A3 + 14PP ′AB + 3P ′C + 3|P ′′|B + |P ′′′|A,
(23)

in which the variable x has been suppressed for convenience. The key to this case
lies in showing that (23) implies that only the first term in J is significant. To this
end let δ be a small positive constant and recall that x is large and positive.

Suppose first that P 2P ′A3 > δJ , in which case

P 4A4 + P 3A2B = O(P 2P ′A3).

Since P (∞) = ∞ and P satisfies (20) this leads to

(24) A = O(P ′/P 2) and B = O(P ′A/P ) = O((P ′)2/P 3), B = O(x−3),

contradicting the lower bound for B in (22). Similarly, if PP ′AB > δJ then

P 3A2B + P 2B2 = O(PP ′AB),

which again forces (24) and yields a contradiction.
Next, if P ′C > δJ then PD + P 2B2 = O(P ′C), and this implies that

D = O(P ′C/P ), B2 = O(P ′C/P 2).

But in this case (22) yields

C4 = O(B2D2) = O((P ′)3C3/P 4), C = O((P ′)3/P 4), B2 = O((P ′)4/P 6),

which by (20) gives B2 = O(x−6) and again contradicts (22).
The next case is simpler: if |P ′′|B > δJ then P 2B2 = O(|P ′′|B), and so B =

O(|P ′′|/P 2) which contradicts (22) again, using (20).
Finally, suppose that |P ′′′|A > δJ . Then P 4A4 + P 2B2 = O(|P ′′′|A) and

A3 = O(|P ′′′|/P 4), B2 = O(|P ′′′|A/P 2), B6 = O(|P ′′′|4/P 10),

which, in view of (20), yields B6 = O(x−18) and contradicts (22).
It now follows that (23) may be written in the form

P 4A4 + 6P 3A2B + 3P 2B2 + PD < (4 + ε)P 2AC,

in which A,B,C,D, P must all be positive and ε may be chosen arbitrarily small and
positive, provided x is large enough. Using (22) and Lemma 4.1 with E = P then
yields a contradiction and completes the discussion of this case.

Case III. Suppose that P (∞) = ∞ and f has finitely many poles on R+. In this
case let ε be small and positive. Then the function h(z) = 1/(zψ(z)) is bounded
on the rays arg z = ±ε, by (15). But ψ has finitely many positive poles, and hence
finitely many positive zeros, by construction. Since ψ = L/P has finite order it
follows using the Phragmén–Lindelöf principle that h(z) is bounded as z → ∞ with
| arg z| ≤ ε. Similar considerations, starting from (16), show that zψ′(z)/ψ(z) is
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also bounded as z → ∞ with | arg z| ≤ ε. On recalling (20) it now follows that, as
x→ +∞, the term |L(x)| has a positive lower bound, while

L(j)(x)

L(x)
→ 0 for j = 1, 2, 3.

This implies in view of (19) that f (4)(x)/f(x) ∼ L(x)4 is positive for large x > 0.
The proof of Proposition 5.1 is complete. �
The remaining two lemmas still assume that f is as in the hypotheses of Theo-

rem 1.2.

Lemma 5.3. Let Kε = {z ∈ C : |z| ≥ 1, ε ≤ | arg z| ≤ π − ε}, where ε is small
and positive. Then f satisfies

(25) zL(z) → ∞ and Qm(z) =
f (m)(z)

f(z)
= L(z)m(1 + o(1))

as z → ∞ in Kε, for each m ∈ N.

Proof. The first assertion is standard, and may be deduced from [26, Proof
of Lemma 3] applied to 1/f : see also [7, Lemma 3.15]. Indeed, if P (∞) = ∞ in
(14) then (15) implies immediately that zL(z) → ∞ in Kε. On the other hand, if
P (∞) ∈ C then Lemma 5.2 shows that (8) holds, with M = L and each Dk ∈ N,
which yields, for z ∈ Kε,

ImL(z) ≥
∑ Dk Im z

|Ak − z|2
−O

(
1

|z|

)
≥

(
sin ε

4

) ∑
|Ak|≤|z|

Dk

|z|
−O

(
1

|z|

)
.

The second assertion will now be proved by induction on m, and is obviously true
for m = 1. Assume now that m ∈ N and that the lemma has been proved for m.
Since P is a rational function, (14) and (16) lead to

zL′(z)

L(z)
= O(1)

as z → ∞ in Kε. It may be assumed by the induction hypothesis that the estimate
for Qm(z) in (25) holds on Kε/2, and so Cauchy’s integral formula yields

Q′
m(z) = mL(z)m−1L′(z)(1 + o(1)) + L(z)m · o(1)

|z|
= o(|L(z)|m+1),

as z → ∞ in Kε, using the fact that zL(z) → ∞. Applying the formula Qm+1 =
Q′

m +QmL then completes the induction. �

Lemma 5.4. Let m ∈ N and let Qm = f (m)/f . Then f and L = f ′/f = Q1

satisfy

(26) mT (r, L) ∼ mN(r, f) ∼ T (r,Qm) ∼ N(r, 1/Qm)

as r → ∞ in a set of logarithmic density 1.

Proof. The first two asymptotic equalities follow from the lemma of the loga-
rithmic derivative and the fact that each pole of f is a pole of Qm of multiplicity
m, while f has finite order by Lemma 5.1 and finitely many zeros. To prove the
last asymptotic equality let δ, σ and ε be small positive real numbers, and write
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hm = 1/Qm. Since hm has finite order, Lemma 4.5 gives a positive constant C1 such
that

(27) T (2r, hm) ≤ C1T (r, hm)

for all r in a set F1 ⊆ [1,∞) having lower logarithmic density at least 1 − δ. Now
applying Lemma 4.4 with R = 2r, in combination with (25) and (27), shows that

T (r, hm) ≤ N(r, hm) +O(log r) + 88ε

(
1 + log

1

4ε

)
C1T (r, hm) for r ∈ F1.

Since ε may be chosen arbitrarily small this yields, for large r ∈ F1,

N(r, 1/Qm) ≤ T (r, hm) ≤ (1 + σ)N(r, hm) = (1 + σ)N(r, 1/Qm).

But δ and σ may also be chosen arbitrarily small, and a standard argument (see for
example [27, Lemma 6]) completes the proof of (26). �

6. Completion of the proof of Theorem 1.2

Let the function f be as in the hypotheses. Applying Proposition 5.1 shows
that f ′′ and f (4) have finitely many real zeros and so the transcendental functions
Qm = f (m)/f satisfy

(28) NR(r, 1/Qm) = O(log r)

as r → ∞, for m = 2 and m = 4. Here NR(r, g) denotes the integrated counting
function of the real poles of a meromorphic function g in the plane, and nR(r, g) will
denote the corresponding unintegrated counting function. Next, because f (4) has
finitely many real zeros, elementary considerations show that if γp and γp+1 are large
in modulus and are real poles of f , such that γp < γp+1 and f has no poles in the
interval Ip = (γp, γp+1), then f (3)/f has precisely one zero in Ip. This implies that

(29) nR(r, 1/Q3) = n(r, f) +O(1), NR(r, 1/Q3) = N(r, f) +O(log r)

as r → ∞. Combining (26) with (28) and (29) leads at once to (2), and completes
the proof of Theorem 1.2.

7. Proof of Theorem 1.3

Let the function f be as in the hypotheses of Theorem 1.3, and assume that f (m)

and f (m+2) both have finitely many non-real zeros, for some integer m ≥ 0.

Lemma 7.1. Define Lm and F by

(30) Lm(z) =
f (m+1)(z)

f (m)(z)
, F (z) = z − 1

Lm(z)
, F ′(z) =

f (m)(z)f (m+2)(z)

f (m+1)(z)2
.

Then Lm and F are transcendental, but their Tsuji characteristics satisfy

(31) T(r, Lm) + T(r, F ) = O(log r)

as r → ∞. Moreover, there exist finitely many α ∈ C such that F (z) or Lm(z) tends
to α as z tends to infinity along a path in C \R.

For real K > 0 and H = {z ∈ C : Im z > 0} let

(32) HK = {z ∈ H : |z| > K}, WK = {z ∈ H : F (z) ∈ HK}.
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Then there exists a large positive real number K such that the inverse function F−1

has no singular values in HK , and F maps each component of WK conformally onto
HK .

Proof. Observe first that Lm and F are transcendental since otherwise f (m)

has finite order and so has f . Since Lm has finitely many non-real poles, while
f (m) and f (m+2) have finitely many non-real zeros, the functions Q = 1/Lm and
Q′ − 1 = −F ′ have finitely many non-real zeros. Hence a standard application of
Hayman’s alternative to Q as in [3], with the Nevanlinna characteristic replaced
by that of Tsuji, shows that Lm and F satisfy (31). This now implies in view of
Lemma 2.2 the existence of finitely many α ∈ C such that F (z) or Lm(z) tends to
α as z tends to infinity along a path in C \R. In particular, the real meromorphic
function F has finitely many non-real asymptotic values, while F ′ has finitely many
non-real zeros. This ensures the existence of K as in the lemma. �

Lemma 7.2. There exist θ ∈ (π/4, 3π/4) and N0 ∈ N with the following prop-
erties. First, the inverse function L−1

m has no singular values in R+ = {reiθ : 0 < r <
∞}, nor in R− = {re−iθ : 0 < r <∞}. Next, define x by x sin θ = K, where the real
number K is as chosen in Lemma 7.1. Then there exist at most N0 points z which
satisfy Lm(z) ∈ R+ and lie on the circle S(0, 2x) of centre 0 and radius 2x.

Proof. Both assertions follow from Lemma 7.1 and the fact that Lm is transcen-
dental. �

Lemma 7.3. Let D be a component of the set WK , and let a ∈ ∂D be a zero of
Lm. Then a is unique, and for all sufficiently small positive ρ there exists at most one
path lying in D and tending to a which is mapped by Lm onto the arc Ωθ,ρ defined
by (12).

Proof. Choose ε with 0 < ε < π/16 and let ρ be small and positive. Then D
contains precisely one component E ′ of the set E as defined by (13), since F maps
D conformally onto HK , and a ∈ ∂E ′. This implies that a is unique, and the second
assertion follows from Lemma 4.3. �

The next lemma is a refinement of [33, Lemma 3.1].

Lemma 7.4. There exists a positive integer N1 with the following property. Let
D be a component of WK . Then there exist at most N1 components Γ of ∂D with
Γ ⊆ H.

Proof. Let Γ ⊆ H be a component of ∂D. If Γ contains a Jordan curve Γ1

then as z describes Γ1 the image F (z) must describe the whole extended boundary
∂∞HK = ∂HK ∪{∞}, since F is univalent on D; but this gives ∂D = Γ1, from which
the assertion of the lemma trivially follows. Assume henceforth that Γ contains no
Jordan curve; then Γ is a simple curve which goes to infinity in both directions. As
z tends to infinity in either direction along Γ, the image F (z) travels monotonely
along ∂∞HK and is forced to tend to an asymptotic value α of F . Since Γ lies in
H, Lemma 7.1 implies that there are at most M0 ∈ N possible values α, where M0

is independent of D. Because F is univalent on ∂D, there are no more than 2M0

possible components Γ. �
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The transcendental function L = f ′/f again has a Levin–Ostrovskii factorisation
(14), in which P and ψ are real meromorphic functions and P has finitely many
poles [34, 35]. In this setting, if f has finitely many poles then ψ = 1, while if f has
infinitely many poles then ψ is an infinite product constructed exactly as in Section 5.
In either case ψ satisfies (15) and (16).

Lemma 7.5. The function P is transcendental.

Proof. This follows from the argument of [3, Lemma 5.1] applied to 1/f . �

Lemma 7.6. Let the central index N(r) of P and the set E1 be as in Lemma 3.1.
Then for large r ∈ [1,∞) \ E1 there exists z0 with |z0| = r and with the following
property. Let

Qr =

{
z ∈ C :

∣∣∣∣log z

z0

∣∣∣∣ ≤ N(r)−3/4

}
.

Then Lm(z) is large for all z ∈ Qr and satisfies there

(33) Lm(z) ∼ L(z) ∼ ψ(z0)P (z0)

(
z

z0

)N(r)

.

Furthermore, z0 may be chosen so that the set Qr is contained in a component D of
WK .

Proof. Apply Lemma 3.1 to the transcendental function P : since P is real it may
be assumed that Im z1 ≥ 0 in Lemma 3.1. This makes it possible to choose z0 with

(34) |z0| = r, N(r)−2/3 ≤ arg z0 ≤ π −N(r)−2/3,

such that |P (z0)| ∼M(r, P ) and

(35) P (z) ∼ P (z0)

(
z

z0

)N(r)

and
P (j)(z)

P (z)
∼ N(r)j

zj

for j = 1, . . . ,m+ 1 and all z ∈ Qr. In view of (16) this yields, for z ∈ Qr,

(36) L(z) ∼ ψ(z0)P (z0)

(
z

z0

)N(r)

and (4) implies, with cj denoting positive constants which are independent of r and
z0, that

(37) |L(z)| ≥ c1M(r, P )

rN(r)2/3 exp(N(r)1/4)
≥M(r, P )1/2 exp(N(r)1/4).

Now for j = 1, . . . ,m+ 1 a standard formula gives

(38)
f (j)

f
= Lj + Pj[L],

in which Pj[L] is a polynomial in L,L′, . . . , L(j−1) of total degree at most j−1. Thus
(16), (34), (35), (37), (38), Cauchy’s estimate for derivatives and Leibnitz’ rule yield

ψ(j)(z)

ψ(z)
= O

(
N(r)2j/3

)
,

L(j)(z)

L(z)
= O

(
N(r)j

)
and

f (j)(z)

f(z)
∼ L(z)j

for z ∈ Qr and j = 1, . . . ,m+1, which on combination with (30) and (36) establishes
(33).
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It remains to show that Qr is contained in a component D of the set WK . But
this follows from the fact that on Qr both z and Lm(z) are large while Im z ≥
c2rN(r)−2/3 > |1/Lm(z)|. �

Lemma 7.7. Let N2 be a large positive integer. Then there exist S > 0 and
pairwise distinct points wj, for j = 1, . . . , 4N2, each of large modulus and satisfying
Lm(wj) = Seiθ, and all lying in the same component D of the set WK .

Proof. Apply Lemma 7.6 with r ∈ E1 large. On Qr write

ζ = log
z

z0
, g(ζ) = logLm(z) = N(r)ζ + log(ψ(z0)P (z0)) + o(1),

using (33). The image of Qr under ζ contains the open disc V of centre 0 and radius
N(r)−3/4. Thus g′(0) ∼ N(r) and Bloch’s theorem implies that g(V ) contains a disc of
radius N(r)1/8. This gives 4N2 distinct points wj ∈ Qr, all satisfying Lm(wj) = Seiθ

for some large positive S. �
The proof of Theorem 1.3 will now be completed using a combination of ideas

from [32, 33].

Lemma 7.8. For j = 1, . . . , 4N2 choose a component σj of L−1
m (R+) with wj ∈

σj, where R+ is as in Lemma 7.2. Then the σj are pairwise disjoint and each is
mapped univalently onto R+ by Lm. Moreover at least 2N2 of the σj are such that
σj lies in H2x ∩ D and has the following property: as w → 0 on R+ the pre-image
z = L−1

m (w) ∈ σj tends to infinity in D.

Proof. The first two assertions follow from the fact that L−1
m has no singular

values on R+, by the choice of θ. Since the wj and N2 are large, it follows from
Lemma 7.2 that at least 3N2 of the σj are contained in H2x as defined by (32): let
z lie on one of these σj. Then F (z) ∈ H by (30), since Lm(z) ∈ H. Moreover if
|Lm(z)| ≥ 1/x then

|F (z)| > 2x− x = x > K,

while if |Lm(z)| = r < 1/x then

|F (z)| ≥ ImF (z) ≥ sin θ

r
> x sin θ = K.

Thus, in either case, z remains in D for all z on at least 3N2 of the σj, and these
have the property that, as Lm(z) → 0 on σj, the pre-image z tends either to infinity
or to a zero a of Lm on ∂D; applying Lemma 7.3 now shows that z must tend to
infinity for all but one of these j. �

After re-labelling if necessary it may be assumed that σj satisfies the conclusions
of Lemma 7.8 for j = 1, . . . , 2N2. For these j let σ′

j be the maximal subpath of σj
on which |Lm(z)| ≤ S. These paths σ′

j can then be extended to simple paths τj in
D which are pairwise disjoint apart from a common starting point z∗ ∈ D. Since N2

is large, applying Lemma 7.4 gives at least N2 pairwise disjoint domains Ωk, each
bounded by two of the τj, and so by two of the σ′

j and a bounded simple path λk ⊆ D,
such that Ωk ⊆ D and the closure of Ωk does not meet ∂D. Because F has no poles
in D, there exists a small rk > 0 such that |Lm(z)| ≥ rk on λk.

For each Ωk apply Lemma 7.1 to determine Pk ∈ (0, rk) such that the circle
S(0, Pk) contains no critical values of Lm and no α ∈ C such that Lm(z) tends to
α as z to infinity along a path in D. Choose uk ∈ ∂Ωk with L(uk) = Pke

iθ; here uk
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can be chosen to lie on one of the σ′
j. Now continue z = L−1

m (w) along S(0, Pk) in
the direction which takes z into Ωk. By the choice of Pk and the fact that Ωk ⊆ D
this brings z to vk ∈ Ωk with Lm(vk) = Pke

−iθ. The choice of θ in Lemma 7.2 then
makes it possible to continue L−1

m (w) along the half-ray w = te−iθ, in the direction
of decreasing real t, so that z = L−1

m (w) starts at vk and stays in Ωk ⊆ D. Since
Lm(z) ̸= 0 on D this gives a path tending to infinity in Ωk on which Lm(z) tends to
0 with argLm(z) = −θ. Thus there exists an unbounded component Vk of the set
{z ∈ C : Im (1/Lm(z)) > 2/Pk}, with Vk ∪ ∂Vk ⊆ Ωk ⊆ D. Writing

uk(z) = Im
1

Lm(z)
(z ∈ Vk), uk(z) =

2

Pk

(z ̸∈ Vk),

then makes uk non-constant and subharmonic in the plane, because Lm(z) ̸= 0 on D.
Since there are at least N2 of these components Vk, with disjoint closures, and since
N2 is large, applying the Phragmén–Lindelöf principle [15] gives a large z in one of
the Vk, and so in D, with

Im
1

Lm(z)
> |z|2,

and hence ImF (z) < 0 by (30), which is plainly a contradiction. �

8. Proof of Theorem 1.5

To prove Theorem 1.5, let g be as in the hypotheses, and write

f = g(m), L =
f ′

f
, F (z) = z − 1

L(z)
, F ′ =

ff ′′

(f ′)2
.

It may be assumed that L and F are transcendental. Let k = min{n,m} and h = g(k).
Then max{n,m+2} ≥ k+3 and there exists j ≥ 3 such that h and h(j) have finitely
many non-real zeros. Thus Frank’s method [9] (see also [10]), using Tsuji functionals
in place of the standard Nevanlinna functionals, yields T(r, h′/h) = O(log r) as r →
∞. Since m ≥ k it then follows that T(r, L) = O(log r) as r → ∞, by standard
properties of the Tsuji characteristic. Because F and 1/L have finitely many poles in
the open upper half-plane H, Lemma 2.2 shows that there exist finitely many α ∈ C
such that F (z) or L(z) tends to α as z tends to infinity along a path in C \R. This
implies at once that F and L satisfy the conclusions of Lemmas 2.1 and 3.2 of [33].
Since those two lemmas were the only steps in the proof of Theorem 1.4 in [33] which
required the hypothesis that f ′/f has finite lower order (see [33, Remark 3.3, p. 247]
for an explicit confirmation of this observation), and since f and f ′′ have finitely
many non-real zeros, the remainder of the proof of Theorem 1.5 now follows exactly
that of Theorem 1.4. �
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