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Abstract. In this note we calculate the norm of the Bergman projection from the space of
essentially bounded functions to the Bloch space. We complement author’s earlier results in [6] and
their generalizations in [5].

1. Introduction

Bergman projection is no doubt a central object in the study of analytic function
spaces. In the setting of the unit disk D, it arises as the following integral operator

Pf(z) =

ˆ
D

f(w) dA(w)

(1− zw̄)2
.

For 0 < p < ∞ we denote by Ap the Bergman spaces, consisting of Lp-integrable ana-
lytic functions on D with respect to the normalized area measure dA(z) = π−1 dx dy
for z = x+ iy. By H∞ we mean the space of bounded analytic functions on the disk.

When p = 2, P is an orthogonal projection, and it is obvious that the norm of
P : L2 → A2 is one. However, this projection is also bounded Lp → Ap for 1 < p < ∞,
but unbounded for p = 1 and p = ∞.

There is a natural space, onto which P maps L∞ boundedly. This is the Bloch
space B, which consists of analytic functions f such that

∥f∥∗ = sup
z∈D

(1− |z|2)|f ′(z)| < ∞

holds true. In [6] the author showed that

∥Pf∥∗ ≤ (8/π)∥f∥∞,

where the constant 8/π is the best possible.
Note that the quantity ∥ · ∥∗ defined above is only a semi-norm. It clearly fails

to distinguish constant functions, so it cannot be a norm. The most common way to
overcome this inconvenience is to set

∥f∥ = ∥f∥∗ + |f(0)|

to be the norm on B.
In this note, we complement the result of [6]. We prove that

∥Pf∥ ≤ (1 + 8/π)∥f∥∞,
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where the constant in the inequality is the best possible. The reader is referred to
[8] for more information about analytic Bergman and Bloch spaces. It is fairly easy
to see that the presented method works also for the more general setting in [5]; this
will be commented in the last section.

We remark that calculating the exact norm of P on Lp spaces is a long-standing
problem and only partial results are known, see [1] and [7]. Similar questions have
been solved in the setting of Hardy and Segal–Bargmann spaces in the papers [3] and
[2], respectively. Also, the paper [4] deals with a related question for the Beurling
transform.

2. The result

Denote by ∥P∥ the operator norm of P : L∞ → B, that is, the optimal constant
C in the inequality

∥Pf∥ ≤ C∥f∥∞.

We will show that ∥P∥ = 1 + 8/π. We will begin with simple lemma, which was
actually proven in the recent paper by Kalaj and Markovic [5].

Lemma 2.1. The norm of the projection P satisfies ∥P∥ ≤ 1 + 8/π.

Proof. Just note that |Pf(0)| = |
´
D
f(z) dA(z)| ≤ ∥f∥∞. �

In view of this lemma, it is enough to prove ∥P∥ ≥ 1 + 8/π. The problem is
then, whether the quantities ∥Pf∥∗ and |Pf(0)| can be maximized simultaneously.
We will answer this problem in the affirmative.

The method in [6] uses functions

gz(w) =
w|1− zw̄|3

|w|(1− z̄w)3
,

which can be applied to maximize ∥Pf∥∗. Here, these do not seem to work, because
|Pgz(0)| < 1 for all z. The next proposition is proven in [6], but we sketch the proof
for the reader’s convenience.

Proposition 2.2. The optimal constant C for

∥Pf∥∗ ≤ C∥f∥∞
is 8/π. Moreover, it is obtained as the limit of

(1− |z|2)|(Pgz)
′(z)| =

ˆ
D

2(1− |z|2)|w| dA(w)
|1− zw̄|3

= F (z)

as |z| → 1−.

Proof. Given z ∈ D, the quantity (1−|z|2)|(Pg)′(z)| over ∥g∥∞ ≤ 1 is maximized
by gz. This is transparent from the integral formula

|(Pg)′(z)| =
∣∣∣∣ˆ

D

2w̄g(w) dA(w)

(1− zw̄)3

∣∣∣∣ ,
which is obtained by differentiating inside the integral.

Denote by φz(w) = (z − w)/(1 − z̄w) the usual Möbius transformation of the
disk. By applying a change of variables w 7→ φz(w), one getsˆ

D

2(1− |z|2)|w| dA(w)
|1− zw̄|3

=

ˆ
D

2|z − w| dA(w)
|1− zw̄|2

.
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From this, one sees that F (z) is subharmonic. Since it is easy to verify that F (z) is
also radial, the maximum of F (z) is obtained as |z| → 1−. But

F (1) =

ˆ
D

2dA(w)

|1− w|
= 8/π,

and the proof is complete. �
The key to the proof of our result is noting that only the behaviour of gz near

the boundary matters. Define new test functions grz with ∥grz∥∞ ≤ 1 as follows:

grz(w) =

{
gz(w) if |w| ≥ r,

1 if |w| ≤ r2.

Finally, define grz on {r2 < |w| < r} so that grz is continuous on D.

Lemma 2.3. For every r ∈ (0, 1), we have

(1− |z|2)(Pgrz)
′(z) → 8/π

as |z| → 1−.

Proof. Because |gz(w)− grz(w)| ≤ 2 on D and |gz(w)− grz(w)| = 0 when |w| > r,
we can estimate

(1− |z|2)|(P (gz − grz))
′(z)| ≤

ˆ
B(0,r)

4(1− |z|2)|w|dA(w)
|1− zw̄|3

.

The right hand side goes to 0 as |z| → 1−. Therefore, one can conclude that

(1− |z|2)(Pgrz)
′(z) → 8/π

as |z| → 1−. �
We have now collected sufficient amount of information to prove our main result

without much trouble.

Theorem 2.4. The operator norm of P : L∞ → B is 1 + 8/π.

Proof. For every z ∈ D, we have

|Pgrz(0)| ≥ r4 −
ˆ
D\B(0,r2)

dA(w) = 2r4 − 1 → 1

as r → 1. Given ϵ > 0, we may pick r > 0 such that |Pgrz(0)| > 1 − ϵ/2 for every
z ∈ D. Fix such r. According to the previous lemma, one can pick z ∈ D such that

(1− |z|2)(Pgrz)
′(z) > 8/π − ϵ/2.

But, one then ends up with a function grz such that

∥P∥ ≥ ∥Pgrz∥ ≥ |Pgrz(0)|+ (1− |z|2)|(Pgrz)
′(z)| > 1 + 8/π − ϵ.

Therefore ∥P∥ ≥ 1 + 8/π, which together with Lemma 2.1 proves the claim. �
Denote by B0 the little Bloch space consisting of f ∈ B such that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

We equip B0 also with the norm ∥ · ∥ used for the Bloch space. It is known that
P : C(D) → B0 is bounded and onto, where C(D) stands for the functions continuous
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on D. Note that grz ∈ C(D), by definition. This shows that the operator norm of
P : C(D) → B0 is likewise 1 + 8/π.

3. Several dimensions

In their recent paper [5], Kalaj and Markovic prove a generalization of [6]. This
paper can currently be found in arXiv. Denote by Bn the unit ball of Cn, and let
α > −1. On Bn we use the following measure

dVα = cα(1− |z|2)αdV (z).

Here dV is the normalized 2n-dimensional Lebesgue measure on Bn, and cα is a
constant such that dVα is a probability measure.

The Bloch space Bn on Bn the set of those holomorphic functions f on such that

∥f∥∗,n = sup
z∈Bn

(1− |z|2)|∇f(z)| < ∞,

where ∇ = (∂z1 , ∂z2 , . . . , ∂zn) is the usual complex gradient. The little Bloch space
B0,n is defined analogously to the case n = 1. The Bergman projection Pn,α is defined
as

Pn,αf(z) =

ˆ
Bn

f(w) dVα(w)

(1− ⟨z, w⟩)1+n+α
.

Here

⟨z, w⟩ =
n∑

i=1

ziw̄i

is the inner product of Cn. Denote by Γ the Euler Gamma function. According to
[5], the optimal constant C(α, n) in

∥Pn,α∥∗,n ≤ C(α, n)∥f∥∞
satisfies

C(α, n) =
Γ(2 + n+ α)

Γ2((2 + n+ α)/2)
,

which equals 8/π if α = 0 and n = 1, so it generalizes the main result of [6].
Of course Bn can be equipped with the norm

∥f∥n = ∥f∥∗,n + |f(0)|,
so we can discuss the operator norm of Pn,α, which we denote by ∥P∥n,α.

Like in [6], the authors of [5] use functions

gz(w) =
w1

|w1|
|1− ⟨z, w⟩|n+2+α

(1− ⟨w, z⟩)n+2+α

to obtain C(α, n) as the limit of

(1− |z|2)|∇(Pgz)(z)|
when z → e1 = (1, 0, . . . , 0). By defining the functions grz analogously to the previous
section, one obtains

Corollary 3.1. The operator norm of Pn,α from L∞(Bn) onto Bn equals C(α, n)+
1. The same is true about Pn,α : C(Bn) → B0,n.

The details of the proof are left as exercise for the reader. The proof is completely
analogous to the case n = 1 and α = 0.
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