CHANGE OF VARIABLES FOR A_{∞} WEIGHTS BY MEANS OF QUASICONFORMAL MAPPINGS: SHARP RESULTS

Fernando Farroni and Raffaella Giova

Università degli Studi di Napoli Federico II Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Via Cintia, 80126 Napoli, Italy; fernando.farroni@unina.it

Università degli Studi di Napoli "Parthenope"

Dipartimento di Statistica e Matematica per la Ricerca Economica Palazzo Pakanowsky, Via Generale Parisi 13, 80132 Napoli, Italy; raffaella.giova@uniparthenope.it

Abstract. Let $f: \mathbf{R}^n \to \mathbf{R}^n$ be a quasiconformal mapping whose Jacobian is denoted by J_f and let A_{∞} be the Muckenhoupt class of weights w satisfying

$$\left(\oint_B w \, dx \right) \left(\exp \oint_B \log \frac{1}{w} \, dx \right) \le A$$

for every ball $B \subset \mathbf{R}^n$ and for some positive constant $A \geq 1$ independent of B. We consider two characteristic constants $\tilde{A}_{\infty}(w)$ and $\tilde{G}_1(w)$ which are simultaneously finite for every $w \in A_{\infty}$. We study the behaviour of the \tilde{A}_{∞} -constant under the operator already considered by Johnson and Neugebauer [18]

$$w \in A_{\infty} \mapsto (w \circ f) J_f \in A_{\infty},$$

and establish the equivalence of the two constants $\tilde{G}_1(J_f)$ and $\tilde{A}_{\infty}(J_{f^{-1}})$. Our quantitative estimates are sharp.

1. Introduction

Let Ω be an open subset of \mathbf{R}^n with $n \geq 2$. A homeomorphism $f: \Omega \to \mathbf{R}^n$ is a *K*-quasiconformal mapping for a constant $K \geq 1$ if $f \in W^{1,n}_{\text{loc}}(\Omega, \mathbf{R}^n)$ and

(1.1)
$$|Df(x)|^n \le KJ_f(x)$$
 for a.e. $x \in \Omega$.

Here Df(x) stands for the differential matrix of f and $J_f(x) = \det Df(x)$ denotes the Jacobian determinant of f. The norm |Df(x)| of Df(x) in (1.1) is defined as $|Df(x)| = \sup \{|Df(x)\xi| : \xi \in \mathbf{R}^n, |\xi| = 1\}.$

Let $H \ge 1$ be a constant. A homeomorphism $f: \Omega \to \mathbb{R}^n$ is called *weakly* H-quasisymmetric if for every $x, y, z \in \Omega$ we have

$$|x - y| \le |x - z|$$
 implies $|f(x) - f(y)| \le H|f(x) - f(z)|$.

As proved in [30] and [33] the notions of weak quasisymmetry and quasiconformality are equivalent in dimension $n \ge 2$ when $\Omega = \mathbf{R}^n$.

Let us recall the definition of the *Muckenhoupt class* A_{∞} (see [24]). Here and in the rest of the paper, we say that a measurable function $w \colon \mathbf{R}^n \to \mathbf{R}$ is a *weight* if w

doi:10.5186/aasfm.2013.3852

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25, 46E30, 47B33.

Key words: Muckenhoupt weights, composition operators, sharp estimates.

is positive a.e. and locally integrable in \mathbb{R}^n . A weight w belongs to the Muckenhoupt class A_{∞} if

(1.2)
$$A_{\infty}(w) = \sup_{B} \left(f_{B} w \, dx \right) \left(\exp f_{B} \log \frac{1}{w} \, dx \right) < \infty.$$

The supremum in (1.2) is taken over all balls $B \subset \mathbf{R}^n$. We call $A_{\infty}(w)$ the A_{∞} constant of the weight w. The class A_{∞} may be characterized in several ways. We mention here (see [5]) that $w \in A_{\infty}$ if and only if for every ball $B \subset \mathbf{R}^n$ and every measurable set $E \subset B$ it holds

(1.3)
$$\frac{|E|}{|B|} \le M \left(\frac{\int_E w(x) \, dx}{\int_B w(x) \, dx}\right)^{\alpha},$$

for some $0 < \alpha \leq 1 \leq M$ independent of E and B.

Another characterization of A_{∞} is given in [25] where it is proved that

$$A_{\infty} = \bigcup_{1$$

For the definition of the Muckenhoupt class A_p for $1 \le p < \infty$, see Section 2.2 below.

One of the issues addressed in [18] by Johnson and Neugebauer concerns the composition problem for Muckenhoupt weights. It is proved (see Theorem 3.4 in [18]) that, if $f: \mathbf{R}^n \to \mathbf{R}^n$ is a quasiconformal mapping, then the condition

(1.4)
$$w \in A_{\infty}$$
 implies $w \circ f \in A_{\infty}$,

holds if and only if the Jacobian of f satisfies

$$(1.5) J_f \in \bigcap_{1$$

It is easily seen by means of examples that not every quasiconformal mapping satisfies (1.5). From a celebrated result of Gehring [13], suitably extended to quasiregular maps in [15, 20, 22], one can only deduce that $J_f \in A_{p_0}$ for some $p_0 > 1$. Therefore, (1.4) does not hold for an arbitrary quasiconformal mapping. In dimension $n \ge 2$, the equivalence of the notions of weak quasisymmetry and quasiconformality implies that each weakly quasisymmetric homeomorphism belongs to $W_{\text{loc}}^{1,s}(\Omega, \mathbb{R}^n)$ for some s > n (see [13] and [1] for some sharp regularity result in the planar case).

We draw our attention to a similar issue started in [31]. Let $f \colon \mathbf{R}^n \to \mathbf{R}^n$ be a given quasiconformal mapping. Then

(1.6)
$$w \in A_{\infty}$$
 implies $(w \circ f)J_f \in A_{\infty}$.

Actually (1.6) follows from a result in [31] of Uchiyama, where it is proved that if μ is a A_{∞} -measure then its pull back $f^*\mu$ is A_{∞} -measure as well. We recall that a positive Borel measure μ on \mathbf{R}^n belongs to A_{∞} if $d\mu = w \, dx$ for some $w \in A_{\infty}$ and the pull back $f^*\mu$ is the measure defined by

 $(f^*\mu)(E) = \mu(f(E))$ for every Borel set $E \subset \mathbf{R}^n$.

Indeed, (1.6) follows from the change of variables formula for quasiconformal mappings (see Section 2.1 below) which gives that $(w \circ f)J_f$ is the Radon–Nikodym derivative of the A_{∞} -measure $f^*\mu$ with respect to the Lebesgue measure and hence belongs to A_{∞} by Uchiyama's result. Our aim is to give a quantitative version of the statement in (1.6) and hence of Uchiyama's result by means of the auxiliary constant

(1.7)
$$\tilde{A}_{\infty}(w) = \inf\left\{\frac{M}{\alpha} : 0 < \alpha \le 1 \le M \text{ and } (1.3) \text{ holds}\right\}$$

We briefly refer to $\tilde{A}_{\infty}(w)$ as the \tilde{A}_{∞} -constant of w. The interest in studying the behaviour of the constant $\tilde{A}_{\infty}(w)$ goes back to Gotoh's paper [16], where the composition problem for functions of bounded mean oscillation is taken into account (see also the seminal paper [27] and [7, 8] for sharp estimates involving the distances to L^{∞} introduced in [4, 10, 12]).

We are in a position to state our results. The weak quasisymmetry property of a quasiconformal mapping will play a crucial role in the estimates we are going to show, especially for what concerns the optimality of such estimates. For this reason, we introduce the *weakly quasisymmetric constant* H_f of the quasiconformal mapping f, namely

(1.8)
$$H_f = \sup\left\{\frac{|f(x) - f(y)|}{|f(x) - f(z)|} \colon x, y, z \in \Omega, \ x \neq z, \ \frac{|x - y|}{|x - z|} \le 1\right\}.$$

Our first result reads as follows.

Theorem 1.1. Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a quasiconformal mapping with $n \ge 2$. Let $w \in A_{\infty}$. Then the following estimates hold

(1.9)
$$\frac{1}{H_{f^{-1}}^{n}\tilde{A}_{\infty}\left(J_{f^{-1}}\right)}\tilde{A}_{\infty}\left(w\right) \leq \tilde{A}_{\infty}\left[\left(w\circ f\right)J_{f}\right] \leq H_{f}^{n}\tilde{A}_{\infty}\left(J_{f}\right)\tilde{A}_{\infty}\left(w\right).$$

Another important class of weights is furnished by the *Gehring class* G_1 . A weight v belongs to the Gehring G_1 class if

(1.10)
$$G_1(v) = \sup_B \left(\exp \oint_B \frac{v}{v_B} \log \frac{v}{v_B} dx \right) < \infty.$$

The supremum in (1.10) is taken over all balls $B \subset \mathbf{R}^n$. The link between Muckenhoupt and Gehring classes is given in [9, 23] where it is proved that $A_{\infty} = G_1$. We mention here (see again [5]) that $v \in G_1$ if and only if for every ball $B \subset \mathbf{R}^n$ and every measurable set $F \subset B$ it holds

(1.11)
$$\frac{\int_{F} v(x) \, dx}{\int_{B} v(x) \, dx} \le L \left(\frac{|F|}{|B|}\right)^{\beta},$$

for some $0 < \beta \leq 1 \leq L$ independent of F and B.

As was done above related to Muckenhoupt classes, we define an auxiliary constant for the Gehring classes

$$\tilde{G}_1(v) = \inf\left\{\frac{L}{\beta}: 0 < \beta \le 1 \le L \text{ and } (1.11) \text{ holds}\right\}.$$

Let us recall here some results which are valid in dimension n = 1. Let $h: \mathbf{R} \to \mathbf{R}$ be an increasing homeomorphism which is locally absolutely continuous with its inverse. It is well known (see e.g. [5]) that the derivative h' belongs to A_{∞} if and only if $(h^{-1})'$ belongs to A_{∞} and hence to G_1 . Quantitative versions of this result may be found in [18] and [26], where the two identities

(1.12)
$$A_{\infty}\left((h^{-1})'\right) = G_1(h'),$$

and

(1.13)
$$\tilde{A}_{\infty}\left((h^{-1})'\right) = \tilde{G}_{1}(h'),$$

are respectively proved. Note that in general one has

(1.14)
$$A_p((h^{-1})') = G_q(h'), \quad \frac{1}{p} + \frac{1}{q} = 1,$$

as proved in [18, Lemma 2.5]. Thus the identity (1.12) follows taking the limit as $p \to \infty$ and using the relations

(1.15)
$$A_{\infty}(w) = \lim_{p \to \infty} A_p(w),$$

(1.16)
$$G_1(v) = \lim_{q \to 1^+} G_q(v)$$

proved in [29] and [23] respectively. Identities like (1.12), (1.13) and (1.14) are related to the study of the one-dimensional Dirichlet energy

$$\mathcal{D}_p: u \in W^{1,p}(a,b) \mapsto \int_a^b |u'|^p dt, \quad p > 1.$$

In [21] it is proved that the inverse of a quasiminimizer of \mathcal{D}_p is a quasiminimizer of \mathcal{D}_s for suitable values of s and the optimal range of such exponents s is explicitly computed using (1.14) among other facts.

Inspired by these one-dimensional results, our next goal is to establish the equivalence of the two constants $\tilde{A}_{\infty}(J_{f^{-1}})$ and $\tilde{G}_1(J_f)$ whenever $f: \mathbf{R}^n \to \mathbf{R}^n$ is a quasiconformal mapping in higher dimension $n \geq 2$.

Our second result reads as follows.

Theorem 1.2. Let $f \colon \mathbf{R}^n \to \mathbf{R}^n$ be a quasiconformal mapping with $n \geq 2$. Then

(1.17)
$$\frac{1}{H_{f^{-1}}^n}\tilde{A}_{\infty}(J_{f^{-1}}) \leq \tilde{G}_1(J_f) \leq H_f^n\tilde{A}_{\infty}(J_{f^{-1}}).$$

We point out that the estimates above are sharp. Indeed, equalities hold in (1.9) and in (1.17) if we let f be the identity map $\mathrm{Id}(x) = x$; this follows by observing that $\tilde{A}_{\infty}(u) = 1$ if and only if u is a constant weight (see Proposition 2.1 in [26]) and that $H_{\mathrm{Id}} = 1$.

It is worth pointing out that condition (1.5) is also equivalent to requiring that if $1 < p_0 < \infty$ then $w \in A_{p_0}$ implies $(w \circ f)J_f^{\lambda} \in A_{p_0}$ for each $\lambda \in [0, 1]$ (see Theorem 2.10 in [18]). One may wonder if the condition

$$w \in A_{\infty}$$
 implies $(w \circ f)J_f^{\lambda} \in A_{\infty}$ for each $\lambda \in [0, 1)$,

holds without the further assumption (1.5). In Section 4 we will prove that this is not the case, by means of some counterexample (see Proposition 1 below).

2. Preliminaries

2.1. Quasiconformal and quasisymmetric mappings. We need to recall here some well known facts about quasiconformal mappings and quasisymmetric mappings. Our main sources here will be [2, 32].

Let $\eta: [0, \infty) \to [0, \infty)$ be an increasing homeomorphism. A homeomorphism $f: \Omega \to \mathbf{R}^n$ is called η -quasisymmetric if for every $x, y, z \in \Omega$ we have

$$\frac{|f(x) - f(y)|}{|f(x) - f(z)|} \le \eta \left(\frac{|x - y|}{|x - z|}\right).$$

The notions of quasiconformality, quasisymmetry and weak quasisymmetry coincide for mappings in dimension $n \ge 2$ (see e.g. [30] and [33]).

We recall that the change of variables formula holds for a quasiconformal mapping $f: \Omega \to \Omega'$. More precisely, if $\varphi \in L^1_{loc}(\Omega')$ then $(\varphi \circ f) J_f \in L^1_{loc}(\Omega)$ and

$$\int_E \varphi(f(x)) J_f(x) \, dx = \int_{f(E)} \varphi(y) \, dy,$$

for every $E \subset \subset \Omega$.

2.2. A_p and G_q classes. We recall here the definition of the *Muckenhoupt* class A_p (see [24]) for $1 \le p < \infty$. A weight w belongs to the Muckenhoupt class A_p for 1 if

(2.1)
$$A_p(w) = \sup_B \left(\oint_B w \, dx \right) \left(\oint_B w^{-\frac{1}{p-1}} \, dx \right)^{p-1} < \infty.$$

As a natural extention of the above definition, one can consider the Muckenhoupt classes A_1 which cover the limit case p = 1. A weight w belongs to the Muckenhoupt class A_1 if

(2.2)
$$A_1(w) = \sup_B \frac{\int_B w \, dx}{\operatorname{ess\,inf}_{x \in B} w(x)} < \infty.$$

The suprema in (2.1) and (2.2) are taken over all balls $B \subset \mathbb{R}^n$. For each $1 \leq p < \infty$ we call $A_p(w)$ the A_p -constant of the weight w.

We recall here the definition of the *Gehring class* G_q for $1 < q \le \infty$. A weight v belongs to the Gehring class G_q for $1 < q < \infty$ if

(2.3)
$$G_q(v) = \sup_B \left[\frac{\left(\oint_B v^q \, dx \right)^{\frac{1}{q}}}{\int_B v \, dx} \right]^{\frac{q}{q-1}} < \infty.$$

As a natural extention of the above definition, one can consider the G_{∞} which cover the limit case $q = \infty$. A weight v belongs to the Gehring class G_{∞} if

(2.4)
$$G_{\infty}(v) = \sup_{B} \frac{\operatorname{ess\,sup} v(x)}{\int_{B} v \, dx} < \infty.$$

The suprema in (2.3) and (2.4) are taken over all balls $B \subset \mathbb{R}^n$. For each $1 < q \le \infty$ we call $G_q(v)$ the G_q -constant of the weight v.

Each weight in the G_q class satisfies a reverse Hölder inequality. This is a key fact in order to study the regularity of the Jacobian of quasiconformal mappings (see [13]). More generally, we refer for instance to [14, 17] for the study of the self-improving property and the regularity of the Jacobian of a mapping of finite distortion.

For more details related to the Muckenhoupt and Gehring classes we refer to [3, 6, 11, 19, 23, 28, 29].

3. Proofs

Proof of Theorem 1.1. Let $H = H_f$ where H_f is given by (1.8). We fix some $\varepsilon > 0$. We appeal to the definition (1.7) of the \tilde{A}_{∞} -constant of w and we find some constants M, α with

$$0 < \alpha \le 1 \le M,$$

and

(3.1)
$$\frac{M}{\alpha} < \tilde{A}_{\infty}(w) + \varepsilon$$

such that, for every ball $B' \subset \mathbf{R}^n$ and for every measurable $E' \subset B'$ we have

(3.2)
$$\frac{|E'|}{|B'|} \le M \left(\frac{\int_{E'} w(y) \, dy}{\int_{B'} w(y) \, dy}\right)^{\alpha}$$

We recall that $J_f \in A_{\infty}$. Therefore, appealing to the definition of the \tilde{A}_{∞} -constant of J_f , we find some constants M', γ with

$$0 < \gamma \le 1 \le M',$$

and

(3.3)
$$\frac{M'}{\gamma} < \tilde{A}_{\infty} \left(J_f \right) + \varepsilon,$$

such that, for every ball $B \subset \mathbf{R}^n$ and for every measurable set $E \subset B$ we have

(3.4)
$$\frac{|E|}{|B|} \le M' \left(\frac{|f(E)|}{|f(B)|}\right)^{\gamma}.$$

Let $B = B_r(x_0)$ and let $E \subset B$ be measurable. Define

(3.5)
$$R = \max\{|f(x') - f(x_0)| \colon |x' - x_0| = r\}.$$

The following inclusions hold

$$(3.6) B_{\frac{R}{H}}(f(x_0)) \subset f(B) \subset B_R(f(x_0))$$

Indeed, the second inclusion in (3.6) follows directly from the definition of R in (3.5); on the other hand, the quasisymmetry of f shows that

$$H|f(x) - f(x_0)| < |f(x') - f(x_0)|$$
 implies $|x - x_0| < |x' - x_0|$,

and this proves the first inclusion in (3.6). We deduce from (3.4) and (3.6) that

$$\frac{|E|}{|B|} \le M' \left(\frac{|f(E)|}{\left| B_{\frac{R}{H}}(f(x_0)) \right|} \right)^{\gamma} = H^{n\gamma} M' \left(\frac{|f(E)|}{\left| B_R(f(x_0)) \right|} \right)^{\gamma}.$$

Let us remark that $H \ge 1$ and $0 < \gamma \le 1$ implies

$$H^{n\gamma} \le H^n.$$

Therefore

(3.7)
$$\frac{|E|}{|B|} \le H^n M' \left(\frac{|f(E)|}{|B_R(f(x_0))|} \right)^{\gamma}.$$

It follows from (3.6) that $f(E) \subset B_R(f(x_0))$. Hence, in (3.7) we apply (3.2) with E' = f(E) and $B' = B_R(f(x_0))$ and from (3.6) we deduce

(3.8)

$$\frac{|E|}{|B|} \leq H^n M' \left[M \left(\frac{\int_{f(E)} w(y) \, dy}{\int_{B_R(f(x_0))} w(y) \, dy} \right)^{\alpha} \right]^{\gamma} \\
= H^n M' M^{\gamma} \left(\frac{\int_{f(E)} w(y) \, dy}{\int_{B_R(f(x_0))} w(y) \, dy} \right)^{\gamma \alpha} \\
\leq H^n M' M^{\gamma} \left(\frac{\int_{f(E)} w(y) \, dy}{\int_{f(B)} w(y) \, dy} \right)^{\gamma \alpha}.$$

Let us remark that $M \ge 1$ and $0 < \gamma \le 1$ implies

$$(3.9) M^{\gamma} \le M.$$

Hence, (3.8), (3.9) and the change of variable formula imply

$$\frac{|E|}{|B|} \le H^n M' M \left(\frac{\int_E (w \circ f) J_f \, dx}{\int_B (w \circ f) J_f \, dx} \right)^{\gamma \alpha}.$$

It follows that

$$\tilde{A}_{\infty}\left[(w \circ f)J_f\right] \le H^n \frac{M'}{\gamma} \frac{M}{\alpha}.$$

We use (3.1) and (3.3) and we have

$$\tilde{A}_{\infty}\left[(w \circ f)J_{f}\right] \leq H^{n}\left[\tilde{A}_{\infty}\left(J_{f}\right) + \varepsilon\right]\left[\tilde{A}_{\infty}\left(w\right) + \varepsilon\right].$$

Therefore, taking the limit as $\varepsilon \to 0$ we obtain

(3.10)
$$\tilde{A}_{\infty}\left[(w \circ f)J_f\right] \le H_f^n \tilde{A}_{\infty}\left(J_f\right) \tilde{A}_{\infty}\left(w\right).$$

It remains to prove the validity of the first inequality in (1.9). In (3.10) we may always replace f by f^{-1} and w by $(w \circ f)J_f$. We let

$$v = (w \circ f) J_f.$$

It is clear from the first part of our proof that $v \in A_{\infty}$. We recall (see e.g. [32]) that the Jacobians J_f and $J_{f^{-1}}$ are both positive a.e. and they are related by

$$J_{f^{-1}}(y) = \frac{1}{J_f(f^{-1}(y))},$$

so we have

$$(v \circ f^{-1}) J_{f^{-1}} = w(J_f \circ f^{-1}) J_{f^{-1}} = w$$

Therefore

$$\tilde{A}_{\infty}(w) = \tilde{A}\left[\left(v \circ f^{-1}\right) J_{f^{-1}}\right] \leq H_{f^{-1}}^{n} \tilde{A}_{\infty}\left(J_{f^{-1}}\right) \tilde{A}_{\infty}(v)$$
$$= H_{f^{-1}}^{n} \tilde{A}_{\infty}\left(J_{f^{-1}}\right) \tilde{A}\left[\left(w \circ f\right) J_{f}\right].$$

This completes the proof.

Proof of Theorem 1.2. Let $H = H_f$ where H_f is given by (1.8). We start by observing that, since both f and f^{-1} are quasiconformal, the following identities follow directly by the change of variable formula

$$|f(F)| = \int_{F} J_{f}(x) dx \quad \text{for every measurable set } F \subset \mathbf{R}^{n},$$
$$|f^{-1}(E)| = \int_{E} J_{f^{-1}}(y) dy \quad \text{for every measurable set } E \subset \mathbf{R}^{n}.$$

Hence, the constant $A_{\infty}(J_{f^{-1}})$ is the infimum of all quotients M/α where $0 < \alpha \leq 1 \leq M$ and the following estimate holds

(3.11)
$$\frac{|E|}{|B|} \le M \left(\frac{|f^{-1}(E)|}{|f^{-1}(B)|}\right)^{\alpha},$$

for every ball $B \subset \mathbf{R}^n$ and for every measurable $E \subset B$. Similarly, the constant $\tilde{G}_1(J_f)$ is the infimum of all quotients L/β where $0 < \beta \leq 1 \leq L$ and the following estimate holds

(3.12)
$$\frac{|f(F)|}{|f(B)|} \le L\left(\frac{|F|}{|B|}\right)^{\beta},$$

for every ball $B \subset \mathbf{R}^n$ and for every measurable $F \subset B$.

Our aim is to prove that

(3.13)
$$\tilde{G}_1(J_f) \le H^n \tilde{A}_{\infty}(J_{f^{-1}}).$$

Let $B = B_r(x_0)$ be a ball of \mathbb{R}^n and let $F \subset B$ be a measurable set. We fix $\varepsilon > 0$ and we find some constants M, α with $0 < \alpha \le 1 \le M$ for which (3.11) holds and

(3.14)
$$\frac{M}{\alpha} < \tilde{A}_{\infty}(J_{f^{-1}}) + \varepsilon.$$

Arguing as in the proof of Theorem 1.1 we find a radius R > 0 for which the following inclusions holds

$$(3.15) B_{\frac{R}{H}}(f(x_0)) \subset f(B) \subset B_R(f(x_0))$$

In particular, we see that

(3.16)
$$B \subset f^{-1}(B_R(f(x_0))).$$

We set

$$E := f(F).$$

From (3.15) we deduce that

$$\frac{|f(F)|}{|f(B)|} \le \frac{|E|}{\left|B_{\frac{R}{H}}(f(x_0))\right|} = H^n \frac{|E|}{|B_R(f(x_0))|}.$$

Appealing to (3.11) and (3.16)

$$\frac{|f(F)|}{|f(B)|} \le H^n M\left(\frac{|f^{-1}(E)|}{|f^{-1}(B_R(f(x_0)))|}\right)^{\alpha} \le H^n M\left(\frac{|F|}{|B|}\right)^{\alpha}$$

It follows directly from the definition of $\tilde{G}_1(J_f)$ and from (3.14) that

$$\tilde{G}_1(J_f) \le H^n \frac{M}{\alpha} < H^n \left(\tilde{A}_{\infty}(J_{f^{-1}}) + \varepsilon \right).$$

We take the limit as $\varepsilon \to 0$ and we obtain (3.13).

It remains to prove the validity of the first inequality in (1.17). We set

(3.17)
$$H' = H_{f^{-1}}.$$

If we replace f by f^{-1} in the argument which proves the validity of (3.15) we see that, if $B \subset \mathbf{R}^n$ is a ball, then

(3.18)
$$B_{\frac{R'}{H'}}\left(f^{-1}(y_0)\right) \subset f^{-1}(B) \subset B_{R'}\left(f^{-1}(y_0)\right),$$

where

$$R' = \max\{|f^{-1}(y) - f^{-1}(y_0)| \colon |y - y_0| = r'\}.$$

We fix $\theta>0$ and we find some constants L,β with $0<\beta\leq 1\leq L$ for which (3.12) holds and

(3.19)
$$\frac{L}{\beta} < \tilde{G}_1(J_f) + \theta$$

We fix $E \subset B$ and we set

$$F := f^{-1}(E).$$

From (3.12) and (3.18) we deduce that

(3.20)
$$\frac{|E|}{|B|} = \frac{|f(F)|}{|f(f^{-1}(B)|)} \le L\left(\frac{|F|}{|f^{-1}(B)|}\right)^{\beta} \le L\left(\frac{|F|}{\left|B_{\frac{R'}{H'}}(f^{-1}(y_0))\right|}\right)^{\beta}$$

Therefore we have

$$\frac{|E|}{|B|} \le (H')^{n\beta} L\left(\frac{|F|}{|B_{R'}(f^{-1}(y_0))|}\right)^{\beta}.$$

Since $H' \ge 1$, from $0 < \beta \le 1$ immediately follows $(H')^{n\beta} \le (H')^n$; moreover, again from (3.18), we get

$$\frac{|E|}{|B|} \le (H')^n L\left(\frac{|f^{-1}(E)|}{|f^{-1}(B)|}\right)^{\beta}.$$

It follows directly from the definition of $\tilde{A}_{\infty}(J_{f^{-1}})$ and from (3.19) that

$$\tilde{A}_{\infty}(J_{f^{-1}}) \leq (H')^n \frac{L}{\beta} < (H')^n \left(\tilde{G}_1(J_f) + \theta \right).$$

Recalling the definition of H' as in (3.17), we take the limit as $\theta \to 0$ and we obtain

$$\tilde{A}_{\infty}(J_{f^{-1}}) \le H_{f^{-1}}^n \tilde{G}_1(J_f).$$

This completes the proof.

4. Final remarks

In this section we prove a result announced in the Introduction. We recall that the Jacobian of the radial stretching

$$f(x) = \rho(|x|)\frac{x}{|x|},$$

satisfies

$$J_f(x) \sim \dot{\rho}(|x|) \left(\frac{\rho(|x|)}{|x|}\right)^{n-1}$$

Here $\rho(\cdot)$ is a smooth increasing function such that $\rho(0) = 0$ and $\dot{\rho}(\cdot)$ is its derivative. Moreover, we use the notation

$$\varphi(x) \sim \psi(x)$$

to mean that the couple of weights φ and ψ satisfies

$$\varphi(x) = c\psi(x)$$

for some constant c > 0.

Proposition 1. For each $\lambda \in [0,1)$ there exists a weight $w \in A_{\infty}$ and a quasiconformal mapping $f : \mathbf{R}^n \to \mathbf{R}^n$ such that

$$(w \circ f)J_f^\lambda \not\in A_\infty.$$

Proof. Before we start the proof of the claimed result, we recall that

(4.1)
$$|x|^{\theta} \in A_{\infty}$$
 if and only if $-n < \theta < \infty$.

We consider quasiconformal mapping $f : \mathbf{R}^n \to \mathbf{R}^n$ given by

$$f(x) = |x|^{\gamma} \frac{x}{|x|},$$

and the weight

$$w(x) = |x|^{\theta},$$

with the special choices

$$-n < \theta < -n\lambda,$$
$$\frac{n(\lambda - 1)}{\theta + n\lambda} \le \gamma < \infty.$$

Thus $w \in A_{\infty}$ (observe that $-n < \theta \leq 0$ in this case) and $\gamma > 1$. We compute the Jacobian of f and we get

$$J_f(x) \sim |x|^{n(\gamma-1)}.$$

The function

$$u(x) = w(f(x))J_f(x)^{\lambda},$$

satisfies the property

 $u(x) \sim |x|^{\theta\gamma + n\lambda(\gamma-1)}.$

Observing that

 $\theta\gamma + n\lambda(\gamma - 1) \le -n,$

from (4.1) we conclude that $u \notin A_{\infty}$ as desired.

Acnowledgements. The research of the first author was supported by the 2008 ERC Advanced Grant 226234 "Analytic Techniques for Geometric and Functional Inequalities".

References

- [1] ASTALA, K.: Area distortion of quasiconformal mappings. Acta Math. 173:1, 1994, 37–60.
- [2] ASTALA, K., T. IWANIEC, and G. MARTIN: Elliptic partial differential equations and quasiconformal mappings in the plane. - Princeton Math. Ser. 48, Princeton Univ. Press, Princeton, NJ, 2009.
- [3] BOJARSKI, B., C. SBORDONE, and I. WIK: The Muckenhoupt class $A_1(\mathbf{R})$. Studia Math. 101:2, 1992, 155–163.
- [4] CAROZZA, M., and C. SBORDONE: The distance to L[∞] in some function spaces and applications. - Differential Integral Equations 10:4, 1997, 599–607.
- [5] COIFMAN, R. R., and C. FEFFERMAN: Weighted norm inequalities for maximal functions and singular integrals. - Studia Math. 51, 1974, 241–250.
- [6] D'APUZZO, L., and C. SBORDONE: Reverse Hölder inequalities: a sharp result. Rend. Mat. Appl. (7) 10:2, 1990, 357–366.
- [7] FARRONI, F., and R. GIOVA: Quasiconformal mappings and exponentially integrable functions.
 Studia Math. 203:2, 2011, 195–203.
- [8] FARRONI, F., and R. GIOVA: Quasiconformal mappings and sharp estimates for the distance to L[∞] in some function spaces. - J. Math. Anal. Appl. 395:2, 2012, 694–704.
- [9] FEFFERMAN, R.: A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator. - J. Amer. Math. Soc. 2, 1989, 127–135.
- FUSCO, N., P. L. LIONS, and C. SBORDONE: Sobolev imbedding theorems in borderline cases.
 Proc. Amer. Math. Soc. 124:2, 1996, 561–565.
- [11] GARCÍA-CUERVA, J., and J. L. RUBIO DE FRANCIA: Weighted norm inequalities and related topics. - North-Holland Mathematics Studies 116, North-Holland Publishing Co., Amsterdam, 1985.
- [12] GARNETT, J. B., and P. W. JONES: The distance in BMO to L^{∞} . Ann. of Math. (2) 108:2, 1978, 373–393.
- [13] GEHRING, F. W.: The L^p-integrability of the partial derivatives of a quasiconformal mapping.
 Acta Math. 130, 1973, 265–277.
- [14] GIANNETTI, F., L. GRECO, and A. PASSARELLI DI NAPOLI: The self-improving property of the Jacobian determinant in Orlicz spaces. - Indiana Univ. Math. J. 59:1, 2010, 91–114.
- [15] GIAQUINTA, M. and G. MODICA: Regularity results for some classes of higher order nonlinear elliptic systems. - J. Reine Angew. Math. 311/312, 1979, 145–169.
- [16] GOTOH, Y.: On composition operators which preserve BMO. Pacific J. Math. 201, 2001, 289–307.
- [17] HENCL, S., P. KOSKELA, and X. ZHONG: Mappings of finite distortion: reverse inequalities for the Jacobian. - J. Geom. Anal. 17:2, 2007, 253–273.
- [18] JOHNSON, R., and C. J. NEUGEBAUER: Homeomorphisms preserving A_p . Rev. Mat. Iberoamericana 3:2, 1987, 249–273.
- [19] KOREY, M. B.: Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. - J. Fourier Anal. Appl. 4:4-5, 1998, 491–519.
- [20] MARTIO, O.: On the integrability of the derivative of a quasiregular mapping. Math. Scand. 35, 1974, 43–48.
- [21] MARTIO, O., and C. SBORDONE: Quasiminimizers in one dimension: integrability of the derivative, inverse function and obstacle problems. - Ann. Mat. Pura Appl. (4) 186:4, 2007, 579–590.

- [22] MEYERS, N. G., and A. ELCRAT: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. - Duke Math. J. 42, 1975, 121–136.
- [23] MOSCARIELLO, G., and C. SBORDONE: A_{∞} as a limit case of reverse-Hölder inequalities when the exponent tends to 1. Ricerche Mat. 44:1, 1995, 131–144.
- [24] MUCKENHOUPT, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 1972, 207–226.
- [25] MUCKENHOUPT, B.: The equivalence of two conditions for weight functions. Studia Math. 49, 1973/74, 101–106.
- [26] RADICE, T.: New bounds for A_{∞} weights. Ann. Acad. Sci. Fenn. Math. 33:1, 2008, 111–119.
- [27] REIMANN, H. M.: Functions of bounded mean oscillation and quasiconformal mappings. -Comment. Math. Helv. 49, 1974, 260–276.
- [28] SBORDONE, C.: Sharp embeddings for classes of weights and applications. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29:1, 2005, 339–354.
- [29] SBORDONE, C., and I. WIK: Maximal functions and related weight classes. Publ. Mat. 38:1, 1994, 127–155.
- [30] TUKIA, P., and J. VÄISÄLÄ: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5:1, 1980, 97–114.
- [31] UCHIYAMA, A.: Weight functions of the class (A_{∞}) and quasi-conformal mappings. Proc. Japan Acad. 51, suppl., 1975, 811–814.
- [32] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math. 229, Springer-Verlag, Berlin-New York, 1971.
- [33] VÄISÄLÄ, J.: Quasisymmetric embeddings in Euclidean spaces. Trans. Amer. Math. Soc. 264:1, 1981, 191–204.

Received 23 November 2012 • Accepted 6 May 2013