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Abstract. A set E in a space X is called a polar set in X, relative to a kernel k(x, y), if there
is a nonnegative measure σ in X such that the potential Uσ

k (x) = ∞ precisely when x ∈ E. Polar
sets have been characterized in various classical cases as Gδ-sets (countable intersections of open
sets) with capacity zero. We characterize polar sets in a homogeneous space (X, d, µ) for several
classes of kernels k(x, y), among them the Riesz α-kernels and logarithmic Riesz kernels. The later
case seems to be new even in Rn.

1. Introduction

The classical potential theory has its roots in the study of Newtonian potentials
and their connection to the Laplace equation, c.f. Kellogg [15]. The theory was
generalized and put on a firm mathematical ground in Frostman’s thesis [11]. Its
later developments can be found in Landkof [17], Doob [8], Adams and Hedberg
[1], Armitage and Gardiner [2] and the references contained there. More recently,
nonlinear potential theory in a doubling metric space that supports a Poincaré-type
inequality is studied at length by A. Björn and J. Björn in [3].

We will consider potential theory in an abstract setting. Our starting point
is to combine the potential theory in locally compact spaces developed by Fuglede
[10] in the 1960’s with the homogeneous spaces of Coifman and Weiss [5] from the
early 1970’s. A homogeneous space (X, d, µ) consists of a quasimetric space (X, d)
equipped with a nonnegative doubling measure µ (see Section 2 for the details). By a
kernel k(x, y) we mean a nonnegative and lower semicontinous function k : X×X →
[0,∞]. The Ck-capacity of a compact set K is defined by Ck(K)−1 = inf Ik(ν),
where infimum is over all nonnegative measures ν supported in K with total mass
∥ν∥1 = 1 and Ik(ν) denotes the energy integral Ik(ν) =

´ ´
k(x, y) dν(x) dν(y). A

complete homogeneous space is locally compact and we can apply the basic existence
theorem for capacitary measures and capacitary potentials for compact sets in [10,
Theorem 2.4]. The corresponding result for more general sets in a locally compact
space is harder and requires stronger assumptions on the kernel, see [10, Chap. II].
The situation is however better if X is a compact space [10, Theorem 3.4.1]. We
combine the compact case with a locally finite, open covering of X to prove the
existence of a type of capacitary potentials for certain neighbourhoods of sets with
capacity zero (Theorem 2.1). Capacitary theorems for Riesz potentials in Rn are
proved in [17, Ch. II], and for nonlinear Lp-potentials in Rn in [1, Ch. 2].
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A set E is called a polar set (relative to a kernel k(x, y)) if there is a nonnegative
measure ν such that the potential U ν

k (x) is infinite precisely when x ∈ E (see Sec-
tion 5). Polar sets for the Newton kernel were characterized by Deny [7]. The same
proof works for general Riesz kernels, see [17, Ch. III] and the references contained
there. Polar sets for superparabolic functions were studied in [16]. Compact polar
sets and compact sets with capacity zero were characterized in [22], [13] and [20]. We
prove characterizations of polar sets in (X, d, µ) for a number of classes of kernels,
among them the Riesz α-kernels and logarithmic Riesz kernels.

It is the purpose of this paper to find classes of kernels in (X, d, µ), for which we
can characterize polar sets in analogy with the classical cases above. We consider
kernels K ◦ µ(x, y) adopted to the metric/measure structure of (X, d, µ), for which
there exists an equivalent continuous and definite kernel k(x, y). We find a way to
construct such pairs of kernels that, although it follows classical lines, seems to be
new. This result is applied to the Riesz α-kernels and logarithmic Riesz kernels, the
later case seems to be new even in Rn. To achieve this, we develop a potential theory
for the homogeneous spaces (X, d, µ) that includes potentials, energies, capacities,
capacitary potentials and capacity estimates.

Our main results are stated in Section 2 and proved in Section 6. Section 3
contains our preliminaries on homogeneous spaces, while the basic potential theory
in (X, d, µ) is described in Section 4. Section 5 gives an introduction to potentials
with finite energy and contains our construction of the (positive) definite kernels used
to characterize polar sets.

2. Main results

Our first result is a capacitary theorem for certain neighbourhoods of sets with
capacity zero.

Theorem 2.1. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC), let k(x, y) be a continuous and definite kernel and let K ◦
µ(x, y) be a doubling kernel equivalent to k(x, y). Then for every ϵ > 0 and every set
E with Ck(E) = 0 there is an open set V containing E and ν ∈ M+(V ) such that

(2.1) U ν
k (x) ≥ 1, x ∈ V, U ν

k (x) < ∞, x ∈ X,

and ∥ν∥1 < ϵ, Ck(V ) < ϵ.

The next theorem is our principal result, which gives necessary and sufficient
conditions for a set E to be a polar set in the sense of Definition 5.1. The proof of
statement (a) in Theorem 2.2 is fairly simple, while the proof of (b) requires the full
strength of our methods.

Theorem 2.2. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC) and let K ◦ µ be a doubling kernel satisfying (5.6).

(a) If E is a polar set, then E is a Gδ-set with CK(E) = 0.
(b) Let k(x, y) be a continuous and definite kernel equivalent to K ◦ µ and let E

be a Gδ-set with CK(E) = 0. Then there is σ ∈ M+(X) such that Uσ
K(x) = ∞

precisely when x ∈ E.

Combining statements (a) and (b) in Theorem 2.2 gives the following character-
ization of polar sets in a homogeneous space and is our main result.
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Theorem 2.3. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC), let k(x, y) be a continuous and definite kernel and let K ◦ µ
be a doubling kernel equivalent to k(x, y) and satisfying (5.6). Then a set E is a
polar set if only if E is a Gδ-set with CK(E) = 0.

Three special cases of Theorem 2.3 are worth mentioning. The kernel in the first
case is the most general kernel that can be handled with our methods, while in the
second and third cases the kernels are modeled on the Riesz α-kernel in Rn and a
Riesz kernel with a logarithmic factor.

Theorem 2.4. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC) and let K ◦µ(x, y) be a doubling kernel, where

´∞
1

K(t)2 dt <

∞. Define K̃(r) by (5.2) and assume that K̃(r) satisfies (4.1). Then a set E is a
polar set relative to the kernel K̃◦µ(x, y) if and only if E is a Gδ-set with CK̃(E) = 0.

Theorem 2.5. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC) and let Kα ◦ µ(x, y), 0 < α < 1, be the Riesz kernel. Then a
set E is a polar set if and only if E is a Gδ-set with Cα(E) = 0.

Theorem 2.6. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, satisfying (DC) and let Kα,p ◦µ(x, y), where 0 < α < 1 and p is a real number,
be the logarithmic Riesz kernel. Then a set E is a polar set if and only if E is a
Gδ-set with Cα,p(E) = 0.

Remark. By Fubini’s Theorem, K̃(r) satisfies (4.1) iff
´ 1

0
t ·K(t)2 dt < ∞ and

either
´ 1

0
K(t)2 dt = ∞ or K(r) ·

´ r
0
K(t) dt → ∞, as r → 0+.

The class of kernels K ◦ µ(x, y) for which polar sets E in X are characterized as
Gδ-sets with CK(E) = 0, contains the kernels K̃ ◦ µ(x, y) in Theorem 2.4 and the
Riesz α-kernels and the logarithmic Riesz kernel in Theorem 2.5 and Theorem 2.6,
respectively.

3. Preliminaries

We follow [5] and define a homogeneous space as a triple (X, d, µ), where (X, d)
is a quasi-metric space satisfying

(3.1) d(x, y) ≤ K · (d(x, z) + d(z, y)), x, y, z ∈ X,

for some constant K ≥ 1, and µ is a nonnegative and nonatomic measure on the
σ-algebra generated by all balls B(x, r) = {y ∈ X; d(y, x) < r} and satisfies the
doubling condition

(3.2) 0 < µB(x, 2r) ≤ M · µB(x, r), x ∈ X, r > 0,

with doubling constant M . It follows from (3.2) that

(3.3) µB(x, r) ≥ C · ( r
R
)α · µB(x,R), x ∈ X, 0 < r < R,

where the constants C > 0 and α > 0 only depend on M and K. A relation which
holds except in a set of µ-measure zero is said to hold µ-a.e. See [5], [6], [14] and [18]
for more on the basic properties of homogeneous spaces.

We give X the topology induced by the balls B(x, r) = {y ∈ X; d(y, x) < r} and
denote the closure and complement of a set E ⊂ X by E and Ec respectively. Let
B(x, r) = {y ∈ X; d(y, x) ≤ r} and S(x, r) = {y ∈ X; d(y, x) = r}. It follows from
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[5, Theorem 1.2] that bounded sets are totally bounded. If (X, d) is complete then
(X, d) is a locally compact and separable Hausdorff space, see [19, Ch. 4, Sec. 25, The-
orem A]. Every open set is a countable union of balls B(x, r) and thus µ-measurable.
Then µ is a regular Borel measure on X.

We say that (X, d, µ) is of order γ, 0 < γ < 1, if there is a constant C such that

(3.4) |d(x, z)− d(z, y)| ≤ C ·R1−γ · d(x, y)γ,

for all x, y ∈ B(z, R), z ∈ X and R > 0. Every homogeneous space has an equivalent
quasinorm satisfying (3.4), c.f. [18, Theorem 2]. In that case all sets B(x, r) and
{y; d(y, x) > r} are open sets in X. We say that a homogeneous space satisfies a
density condition (DC) if there are constants N ≥ 2 and A > 1 such that

µB(x, r) ≥ A · µB(x, r/N), x ∈ X, r > 0. (DC)

The condition (DC) implies that

(3.5) µB(x, r) ≤ Nβ · (r/R)β · µB(x,R), x ∈ X, 0 < r ≤ R,

where β only depends on A and N , in analogy with (3.3). We will also need the
following continuity property for µ on balls B(x, r).

Lemma 3.1. Let (X, d, µ) be a homogeneous space of order γ, 0 < γ < 1, and
assume that

(3.6) µS(x, r) = µ{y; d(x, y) = r} = 0, x ∈ X, r > 0

Then µB(x, r) and µB(x, d(x, y)) are continuous functions of x ∈ X,r ≥ 0 and
x, y ∈ X, respectively.

Proof. It is enough to treat µB(x, r), since d(x, y) is a continuous function of
x, y ∈ X. Fix any x0 ∈ X and r0 ≥ 0. Then

B(x, r) ⊂ B(x0, r0 + C · d(x, x0)
γ + |r − r0|),

which gives lim supµB(x, r) ≤ µB(x0, r0), as (x, r) → (x0, r0). For r0 > 0, an
analogous inclusion gives µB(x0, r0) ≤ lim inf µB(x, r), as (x, r) → (x0, r0) �

Our notation for measures and integrals are standard. We let M(X) denote the
class of Borel measures ν on a X, with finite mass on bounded sets, and we let
M+(X) be the subclass of positive measures. If E is a Borel set M(E) is the class
of ν ∈ M(X) that are concentrated on E and analogously for M+(E). The closed
support and total variation of a measure ν in M(X) are denoted by supp(ν) and
∥ν∥1, respectively. Various constants, that may vary from one instance to another,
are written C,C1, C2, . . . .

4. Basic potential theory in (X, d, µ)

We define the basic potential theoretical concepts as in [10, Ch. I.2] or [17, Ch. II].
By a kernel k(x, y) we mean a symmetric, nonnegative and lower semicontinuous
function k : X×X → [0,∞]. We define the potential U ν

k (x) (relative to the kernel k)
and the energy Ik(ν) of ν ∈ M+(X) by

U ν
k (x) =

ˆ
k(x, y) dν(y) and Ik(ν) =

¨
k(x, y) dν(x) dν(y),
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respectively. We follow [10] and define a set function wk(E) = inf Ik(ν), where
infimum is over all ν ∈ M+(X), ∥ν∥1 = 1, that are concentrated on E. The inner
capacity Ck(E) and the outer capacity Ck(E) of E are then defined by

Ck(E) = 1/wk(E) and Ck(E) =
(
sup
E⊂G

wk(G)
)−1

,

respectively, where supremum is taken over open sets G. As usual, a set E is called
capacitable if Ck(E) = Ck(E) and this common value is written Ck(E). Open sets
and compact sets are capacitable and

Ck(E) = sup
K⊂E

Ck(K), Ck(E) = inf
E⊂G

Ck(G),

where K and G denote compact and open sets respectively [10]. The basic exis-
tence theorem for capacitary measures and capacitary potentials for compact sets
are proved in [10, Theorem 2.4]. The corresponding results for more general sets
require stronger assumptions on the kernel, c.f. [10, Ch. II].

The potential U ν
k (x) of a signed measure ν = ν+ − ν− in M(X), where ν+, ν− ∈

M+(X), is defined by

U ν
k (x) =

ˆ
k(x, y) dν+(y)−

ˆ
k(x, y) dν−(y),

provided at least one of the two integrals is finite. Analogously, we define the mutual
energy of two measures ν, τ ∈ M(X) by I(ν, τ) =

´
U ν
k (x) dτ(x), whenever the

integral is well defined, and put I(ν) = I(ν, ν). A kernel k(x, y) is called a (positive)
definite kernel if I(ν) ≥ 0 for all ν ∈ M(X) such that I(ν) is defined. Such kernels
are studied at length in [10, Ch. II]. We will return to this case in the next section.

A relation which holds except in a set of Ck-capacity zero is said to hold Ck-quasi
everywhere, written Ck-q.e., and analogously for Ck and Ck. Clearly, Ck(K) > 0 if
and only if there exists a nonzero measure ν ∈ M+(K) with finite energy Ik(ν).

A kernel k(x, y) is continuous if it is finite and continuous for x ̸= y. We say that
k(x, y) is doubling if d(x, z) ≤ 2K · d(x, y) implies that k(x, y) ≤ C · k(x, z), where C
is independent of x, y, z ∈ X. Two kernels k1(x, y) and k2(x, y) are equivalent if C ·
k1(x, y) ≤ k2(x, y) ≤ k1(x, y)/C, for some positive constant C independent of x, y ∈
X. Clearly, equivalent kernels have equivalent potentials, energies and capacities. In
the following we consider kernels adopted to the metric/measure structure of (X, d, µ)
defined by

K ◦ µ(x, y) = K(µB(x, d(x, y)) + µB(y, d(x, y))),

where K : (0,∞) → [0,∞) is nonincreasing and continuous, see [21]. Then K ◦µ has
the properties of a kernel above, provided µ is of order γ for some 0 < γ < 1. If µ
also satisfies (3.6), then K ◦ µ(x, y) is continuous by Lemma 3.1. We also assume
that K(r) satisfies the doubling condition K(r) ≤ B ·K(2r), r > 0, for some B > 1,
then K ◦ µ is doubling in the sense defined above. Moreover, we assume that K(r)
satisfies the standard conditions

(4.1) lim
r→0+

K(r) = ∞ and
ˆ 1

0

K(r) dr < ∞.

Remark. Continuity properties of potentials for kernels K(d(x, y)) depending
on the distance are studied in [12]. As in [21], we can use the doubling measure µ to
define another quasi distance d1 on X by d1(x, y) = inf µ(B), where infimum is over



776 Tord Sjödin

all open balls B containing x and y. Then K ◦ µ(x, y) ∼ K(d1(x, y)), provided K(r)
is doubling, and our case relates to [12].

Potentials, capacities and energies relative to a kernel K ◦ µ are denoted by U ν
K ,

CK and IK , respectively. Then CK({x}) = 0, x ∈ X, since IK(νx) = ∞ for the Dirac
measure νx at x. We want to compare the capacity CK and the measure µ of balls
B(x, r) using the following lemma.

Lemma 4.1. Let (X, d, µ) be a homogeneous space satisfying (DC) and let K ◦µ
be a doubling kernel. Then

(4.2)
ˆ
d(y,x)≤r

K ◦ µ(x, y) dµ(y) ∼
ˆ µB(x,r)

0

K(t) dt, x ∈ X, r > 0,

and

(4.3)
ˆ
d(y,x)≥r

K ◦ µ(x, y) dµ(y) ∼
ˆ ∞

µB(x,r)

K(t) dt, x ∈ X, r > 0,

with constants depending on the doubling constants for µ and K(r) and the numbers
A,N in (DC).

Proof. Fix any x ∈ X, r > 0, let N ≥ 2 be the constant in (DC) and define
circular sets

Eν = {y;N−ν · r < d(y, x) ≤ N1−ν · r}, ν integer.

Then µEν ∼ µB(x,N1−νr) and for the integral in the left hand side of (4.2) we get
∞∑
ν=1

ˆ
Eν

K ◦ µ(x, y) dµ(y) ∼
∞∑
ν=1

K(µB(x,N−ν · r)) · µB(x,N1−ν · r).

Put bν = µB(x,N−ν · r), then for the integral on the right hand side of (4.2) we have
∞∑
ν=1

ˆ bν−1

bν

K(t) dt ∼
∞∑
ν=1

K(µB(x,N1−ν · r)) · (µB(x,N1−ν · r))− µB(x,N−ν · r))

∼
∞∑
ν=1

K(µB(x,N−ν · r)) · µB(x,N1−ν · r)

by (DC), with constants depending on µ and K(r). The relation (4.3) is proved in
the same way. �

The following lower bound for CK(B(x, r)) will be used in the proof of Theo-
rem 2.2(b), c.f. [1, Ch. 5].

Lemma 4.2. Let (X, d, µ) be a homogeneous space satisfying (DC) and let K ◦µ
be a doubling kernel. Then

(4.4) CK(B(x, r)) ≥ C · µB(x, r) ·
( ˆ µB(x,r)

0

K(t) dt

)−1

, x ∈ X, r > 0,

where C only depends on the doubling constants for µ and K(r) and the numbers
A,N in (DC). Moreover, if K is any compact set with CK(K) = 0, then µ(K) = 0.

Proof. Let B = B(x0, r0), r0 > 0 and ν = µ(B)−1·µ0, where µ0 is the restriction of
µ to B. Then ν ∈ M+(B), ∥ν∥1 = 1 and CK(B) ≥ IK(ν)

−1. In the following we find
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upper estimates for Uµ0

K (x) and IK(µ0) and start with Uµ0

K (x). If d(x, x0) ≤ 4K2r0,
then d(x, y) ≤ 5K3r0 for all y ∈ B and

Uµ0

K (x) ≤
ˆ
d(y,x)≤5K3r0

K ◦ µ(x, y) dµ(y) ≤ C ·
ˆ µB(x,5K3r0)

0

K(t) dt ≤ C ·
ˆ µ(B)

0

K(t) dt

by Lemma 4.1 and the doubling properties of µ and K(r). If d(x, x0) ≥ 4K2r0 then
B ⊂ B(y, d(x, y)) for all y ∈ B and

Uµ0

K (x) ≤ K(µ(B)) · µ(B) ≤
ˆ µ(B)

0

K(t) dt.

Hence IK(µ0) ≤ C · µ(B) ·
´ µ(B)

0
K(t) dt and (4.2) follows from the definition of

ν. Finally, let K ⊂ B(x0, r0) be a compact set with µ(K) > 0 and let µ1 be the
restriction of µ to K, then IK(µ1) ≤ IK(µ0) < ∞ and therefore CK(K) > 0. This
completes the proof of Lemma 4.2. �

5. Potentials with finite energy

Potentials of definite kernels have played an important role in the development
of modern potential theory, see [10, Ch. II.3]. Recall that a kernel k(x, y) is called
definite if Ik(ν) ≥ 0 for all ν ∈ M(X) such that Ik(ν) is defined. Let E(X) be the
class of ν ∈ M(X) such that Ik(ν) is well defined, nonnegative and finite. Then
E(X) is a pre-Hilbert space with scalar product I(ν, τ) and norm ∥ν∥ = I(ν)1/2,
ν, τ ∈ E(X). The subspace of E(X) of nonnegative measures is denoted by E+(X).
Convergence in the seminorm ∥ · ∥ is called strong convergence in E(X).

We show that some of the kernels K ◦ µ have equivalent definite kernels. Let
k(x, y) be a kernel (not necessarily of the form K ◦ µ) and let ν ∈ M(X) be a
measure such that U ν

k (z) is well defined µ-a.e., then

0 ≤
ˆ

dµ(z)U ν
k (z)

2 =

ˆ
dν(x)

ˆ
dν(y)

ˆ
k(x, z)k(z, y) dµ(z) = Ik1(ν),

by Fubini’s theorem, where k1(x, y) =
´
k(x, z)k(z, y) dµ(z). It is easy to see that

k1(x, y) is a, possibly infinite, definite kernel. The following lemma gives an equivalent
form of k1(x, y), when k(x, y) = K ◦ µ(x, y).

Lemma 5.1. Let (X, d, µ) be a homogeneous space, where µ satisfies (DC), and
let K ◦ µ be a doubling kernel, then

(5.1) K1(x, y)
def
=

ˆ
K ◦ µ(x, z) ·K ◦ µ(z, y) dµ(z) ∼ K̃ ◦ µ(x, y),

where

(5.2) K̃(r) = K(r) ·
ˆ r

0

K(t) dt+

ˆ ∞

r

K(t)2 dt,

and the constants only depend on µ and K(r).

Proof. Fix any x ̸= y in X and let d(x, y) = d. We split the integral in the left
hand side of (5.1) over sets E1 = {z; d(z, x) < d/2K}, E2 = {z; d(z, y) < d/2K}
and E3 = {z; d(z, x) ≥ d/2K and d(z, y) ≥ d/2K}. The integrals over E1 and E2

are equivalent to the first term in (5.2), while the integral over E3 is equivalent to
the second term, by Lemma 4.1. �
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For any doubling kernel K ◦ µ(x, y) we define K1(x, y) and K̃ ◦ µ(x, y) by (5.1)
and (5.2), where we assume that

´∞
1

K(t)2 dt < ∞. Clearly, K̃(r) is continu-
ous, doubling and nonincreasing, since K(r) is absolutely continuous and K̃ ′(r) =
K ′(r)

´ r

0
K(t) dt ≤ 0 a.e. Then K1(x, y) is a definite and doubling kernel equivalent

to K̃ ◦ µ(x, y).
Next we consider the special choice of Kα(r) = r−α, 0 < α < 1, and define the

Riesz kernel Kα ◦ µ(x, y) = (µB(x, d) + µB(y, d))−α, where d = d(x, y), and

(5.3) kα(x, y) =

ˆ
Kβ ◦ µ(x, z) ·Kβ ◦ µ(z, y) dµ(z),

with β = (1+α)/2. The kα(x, y) is a definite kernel and Kα ◦µ(x, y) ∼ kα(x, y), with
constants depending on µ and α, by Lemma 5.1 and a straight forward calculation.

More generally, let 1/2 < β < 1, let p be a real number and put Kβ,p(r) =
(log(1/r))p · r−β, 0 < r < r0, and Kβ,p(r) = (log(1/r0))

p · r−β, r > r0, where
r0 = min(ep/β, 1/2). Then Kβ,p(r) is continuous, decreasing and doubling. Define
kα,2p(x, y) by (5.3) with Kβ(r) replaced by Kβ,p(r). Then kα,2p(x, y) is a definite
kernel. Standard calculations show that K̃β,p(r) ∼ Kα,2p(r), where K̃β,p(r) is given
by (5.2) and hence kα,2p(x, y) ∼ Kα,2p ◦ µ(x, y). We denote the capacity relative to
Kα,p ◦ µ by Cα,p.

We will need one more property of our kernels: A kernel k(x, y) satisfies the
continuity principle if, whenever a potential U ν

k (x) is continuous as a function on the
closed support of ν, then it is continuous in the entire space c.f. [10, p. 150].

Lemma 5.2. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1. Then any continuous and doubling kernel K ◦ µ(x, y) satisfies the continuity
principle.

Remark. In the terminology of [10], a kernel that satisfies the continuity prin-
ciple is called a regular kernel.

Proof of Lemma 5.2. Let ν ∈ M+(X) and assume that F = supp ν is compact.
It is sufficient to prove that U ν

K(x) is continuous on F . Let ϵ > 0, then by the uniform
continuity of U ν

k (x) on F , there is δ > 0 such that u2Kδ(x) < ϵ for all x ∈ F , where
uδ(x) is the integral

´
K ◦ µ(x, y) dν(y) over the set {y; d(y, x) < δ}. Let x be any

point in X. If d(x, F ) ≥ δ, then uδ(x) = 0. If d(x, F ) < δ we let z be a point in F
closest to x. Then

uδ(x) =

ˆ
d(y,x)<δ

K ◦ µ(x, y) dν(y) ≤ C ·
ˆ
d(y,z)<2Kδ

K ◦ µ(z, y) dν(y) < C · ϵ

by the doubling property of K ◦ µ(x, y), which proves that U ν
K(x) is continuous on

X in this case. If F is unbounded put FR = F
∩

B(x0, R), for some x0 ∈ F , and let
νR be the restriction of ν to FR. Then U νR

K (x) → Uν
K(x), as R → ∞, uniformly in

neighbourhoods of x0, by the doubling property of K ◦ µ(x, y), which completes the
proof of Theorem 5.2. �

A definite kernel k(x, y) is called consistent if every strong Cauchy filter in E+(X)
with a weak limit point ν ∈ M+(X) converges strongly to ν [10, p. 167]. If k(x, y)
is a consistent kernel on a locally compact space, then every set E with Ck(E) < ∞
has a capacitary measure and a capacitary potential [10, Theorem 4.1]. In particular,
this holds for open sets G with Ck(G) < ∞. If the space is compact it is sufficient
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that k(x, y) is definite and satisfies the continuity principle by [10, Theorem 3.4.1].
We state this fact in a form that is suitable for our purposes.

Lemma 5.3. Let (X, d, µ) be a complete homogeneous space of order γ, 0 <
γ < 1, and let k(x, y) be a continuous, doubling and definite kernel. Then for every
bounded open set G there is ν ∈ M+(G) such that ∥ν∥1 = 1 and

U ν
k (x) ≥ 1/Ck(G), Ck-q.e. x ∈ G,(5.4)

U ν
k (x) ≤ 1/Ck(G), x ∈ supp ν.(5.5)

Proof. Let B = B(a, r) be a closed ball containing G, then B is a compact
Hausdorff space with the topology from X. Let k0(x, y) be the restriction of k(x, y)
to B. Then k0(x, y) is a definite kernel on B and Ck0(K) = Ck(K) for all compact
subsets K of B, since Ik0(ν) = Ik(ν) for ν ∈ M+(B). Moreover, k0(x, y) satisfies the
continuity principle in Lemma 5.2 and hence k0(x, y) is a consistent kernel on B, by
[10, Theorem 3.4.1]. Then by [10, Theorem 4.1] there is ν ∈ M+(G), ∥ν∥1 = 1 such
that (5.3) and (5.4) hold with U ν

k0
(x) instead of U ν

k (x). The lemma follows, since
these potentials agree on the compact set B. �

In the classical case the capacitary potential U ν
k (x) in Lemma 5.3 satisfies (5.4)

everywhere in G, c.f. [17, Ch. II]. A slightly weaker result holds in our case.

Lemma 5.4. Let (X, d, µ), k(x, y) and G be as in Lemma 5.3 and let K ◦µ(x, y)
be a doubling kernel equivalent to k(x, y). Then there are positive numbers m and
M , only depending on µ and the equivalence between the kernels, such that U ν

k (x) ≥
m/Ck(G), x ∈ G, and U ν

k (x) ≤ M/Ck(G), x ∈ X.

Proof. For the sake of simplicity, we let k(x, y) denote any of the kernels k(x, y)
and K ◦µ(x, y). The second inequality is a standard maximum principle for doubling
kernels, c.f. [17, Ch. I]. We prove the first inequality with an idea from [4, Sec. III].
The exceptional set in (5.4) is a Borel set E such that Ck(K) = 0 and hence µ(K) = 0,
for all compact subsets of E. Thus (5.4) holds µ-a.e. by the regularity of µ. Fix any
x ∈ G and define

q(z, x) =
k(z, x)´

0<d(w,x)<d(z,x)
k(w, x) dµ(w)

,

for 0 < a < d(z, x) < b, and q(z, x) = 0 elsewhere, c.f. [4, Sec. III]. For every b > 0
there is 0 < a < b such that 1 ≤

´
q(z, x) dµ(z) ≤ C, where C only depends on µ

and K(r). To see this we note that
´
q(z, x) dµ(z) > 1, if a is small enough, and´

q(z, x) dµ(z) ≤ C, if a = b/N and N is the number in (DC).
Assume that B(x, b) ⊂ G, then we get

Ck(G)−1 ≤
ˆ

U ν
k (z) · q(z, x) dµ(z) =

ˆ
dν(y)

ˆ
k(z, y) · q(z, x) dµ(z).

Denote the inner integral by I(x, y). It is enough to show that I(x, y) ≤ C · k(x, y).
Fix any y ̸= x. If d(z, x) ≤ 2Kd(z, y) then k(z, y) ≤ C · k(x, y) by the doubling
property of K(r). Otherwise, d(z, y) < d(z, x)/2K which implies that d(x, y)/2K ≤
d(z, x) ≤ 2Kd(x, y) and I(x, y) ≤ C · k(x, y), by Lemma 4.1. �

We conclude this section with a lemma on the definition of polar sets. In the
study of sets where potentials Uν

k (x) are infinite, it is natural to exclude the case
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where the potentials are identically infinite. We do this in the next lemma. Then we
can define polar sets in (X, d, µ) as in [17, Ch. III].

Lemma 5.5. Let (X, d, µ) be a complete homogeneous space and let K ◦µ be a
doubling kernel.

(a) If ν ∈ M+(X) satisfies

(5.6)
ˆ
d(x,a)>1

K(µB(a, d(x, a)) dν(x) < ∞

for some a ∈ X, then U ν
K(x) < ∞, for CK-q.e. x ∈ X.

(b) If ν ∈ M+(X) and (5.6) does not hold, then U ν
K(x) = ∞ for all x ∈ X.

Definition 5.1. A set E is called a polar set relative to a doubling kernel K ◦
µ(x, y) if there is ν ∈ M+(X) satisfying (5.6) such that U ν

K(x) = ∞ precisely when
x ∈ E.

Remark. The condition (5.6) is clearly independent of the choice of the point
a, by the doubling property of µ and K(r).

Proof of Lemma 5.5. To prove (a) we put E = {x; U ν
K(x) = ∞}. Let B(a, r)

be a fixed ball, define Er = E
∩
B(a, r) and let νr be the restriction of ν to B(a, 2r).

Then for x ∈ B(a, r) we have U ν
K(x) = ∞ if and only if U νr

K (x) = ∞. By [10,
Lemma 2.3.5] it is sufficient to prove that CK(Er) = 0 for all r > 0. Let K be a
compact subset of the open set Gn = {x; U νr

K (x) > n} and let τ be the capacitary
measure for K, then

n <

ˆ
Uνr
K (x) dτ(x) =

ˆ
U τ
K(x) dνr(x ≤ C · ∥νr∥1/CK(K).

Hence CK(Gn) ≤ C · ∥ν∥1/n and CK(Er) = 0 by the outer regularity of CK . Finally,
if (5.6) fails, then for any fixed x ∈ X

U ν
K(x) ≥ C ·

ˆ
d(y,x)≥1

K(µB(x, d(x, y))) dν(y) = ∞,

which proves (b). �

6. Proofs

We begin with the proof of Theorem 2.1 and construct the desired open neigh-
bourhood G of E as G =

∪∞
1 Gn, where {Gn}∞1 is a locally finite, open covering of

E such that Ck(G) ≤
∑∞

1 Ck(Gn) is small.

Proof of Theorem 2.1. Let ϵ > 0 be arbitrary and let {an}∞1 be positive numbers
such that

∑∞
1 an < m·ϵ, where m is the number in Lemma 5.4. Fix a ∈ X and define

open sets V1 = {x; d(x, a) < 2K} and Vn = {x; (2K)n−2 < d(x, a) < (2K)n−1},
n ≥ 2, where K is the constant in (3.1). Then {Vn}∞1 is a locally finite, open
covering of X, such that every x ∈ X belongs to at most two sets Vn. Further, the
distance between Vn and Vp is at least (2K)n+1, for p ≥ n + 3. Choose open sets
Gn ⊂ Vn such that E

∩
Vn ⊂ Gn and Ck(Gn) < an. Let νn be the capacitary measure

for Gn from Lemma 5.3. Define σn = Ck(Gn)/m · νn, then U νn
k (x) ≥ 1, x ∈ Gn, by

Lemma 5.4, and ∥σ∥1 < an/m, n ≥ 1. Put σ =
∑∞

1 σn and G =
∪∞

1 Gn, then
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∥σ∥1 ≤
∑∞

1 an/m < ϵ, Ck(G) ≤
∑∞

1 Ck(Gn) < ϵ and Uσ
k (x) ≥ 1, x ∈ G. Finally, let

x ∈ Vn for some fixed n, then

Uσ
k (x) =

∑
|p−n|≤2

U
σp

k (x) +
∑

|p−n|>2

U
σp

k (x) = I + II.

If |p − n| > 2, then d(x, y) ≥ (2K)2 for all y in the support of σp and U
σp

k (x) ≤
K(µB(x, (2K)2)) · ∥σp∥1, which proves that II is finite. Clearly, I is finite by
Lemma 5.4 and the proof of Theorem 2.1 is complete. �

The proof of part (a) in Theorem 2.2 is fairly standard, while the proof of (b)
uses the capacitary measure in Theorem 2.1 and the estimate for the capacity of a
ball B(x, r) in Lemma 4.2.

Proof of Theorem 2.2. The proof of (a) follows from the lower semicontinuity
of the potential and Lemma 5.5(a). In the following we assume that E is a Gδ-
set with Ck(E) = 0. Recall the open sets {Vn}∞1 from the proof of Theorem 2.1.
Let (an)

∞
1 and (bp)

∞
1 be decreasing sequences of positive numbers, to be specified

below, and choose open sets Gn, n ≥ 1, such that E =
∩∞

1 Gn, Ck(Gn) < an and
Ck(Gn

∩
Vp) < an · bp+1, n, p ≥ 1. For fixed n ≥ 1, define closed sets

fn,m = {x ∈ Gn; (2K)−m−1 ≤ d(x, ∂Fn) ≤ (2K)−m}, m ∈ Z,

where Fn = X \Gn. Then Gn =
∪

m fn,m, n ≥ 1. We claim that fn,m = ϕ, for m < n,
provided only the numbers (an)∞1 and (bp)

∞
1 are choosen small enough. Assume that

x0 ∈ fn.m and m < n, then

B(x0, (2K)−n−1) ⊂ B(x0, (2K)−m−2) ⊂ fn,m−1

∪
fn,m

∪
fn,m+1 ⊂ Gn

by a straight forward calculation. Assume that x0 ∈ Vp, p ≥ 2, then

B(x0, (2K)−n−1) ⊂ Gn

∩(
Vp−1

∪
Vp

∪
Vp+1

)
and Ck(B(x0, (2K)−n−1)) ≤ 3 ·an ·bp. To get a contradiction we find a lower estimate
for the capacity of B0 = B(x0, (2K)−n−1). Lemma 4.2 and the doubling properties
of µ and K(r) give

Ck(B0) ≥ C/K(µB0) ≥ C · (2K)−αn/K(µB(x0, 1)) ≥ C · (2K)−αn/K(mp),

where mp = inf{µB(x, 1); x ∈ Vp}, and α > 0 depends on µ and K(r). Choosing
an ≤ (2K)−αn and bp << K(mp)

−1 gives the contradiction that proves our claim.
Define sets En.m = E

∩
fn,m and choose open sets Gn,m such that En,m ⊂ Gn,m

and
Ck(Gn.m) < am, Gn,m ⊂ fn,m−1

∪
fn,m

∪
fn,m+1, m ≥ n ≥ 1.

Let σn,m denote the capacitary measure constructed for Gn,m in Theorem 2.1 such
that Uσn.m

k ≥ 1, x ∈ Gn,m, and ∥σn,m∥1 < am. Put

σ =
∞∑
n=1

∑
m≥n

σn,m.

We claim that σ ∈ M+(X) and Uσ
k (x) = ∞ precisely when x ∈ E. The first part of

the claim follows from the definition of σ and the fact that ∥σ∥1 ≤
∑∞

n=1

∑
m≥n am <

∞, by the choice of (an)∞1 above. If x ∈ E then x belongs to some En,m ⊂ Gn,m,
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m ≥ n, for every n ≥ 1, and hence Uσ
k (x) = ∞ by the definition of σn,m. If x /∈ E

there is n0 = n0(x) such that x ∈ Fn, n > n0. We split Uσ
k (x) as follows

Uσ
k (x) =

∑
n≤n0

∑
m≥n

U
σn,m

k (x) +
∑
n>n0

∑
m≥n

U
σn,m

k (x) = I + II

and start with II.
Fix any n > n0 and x ∈ Fn and suppose that y belongs to the closed support of

ν. Let y ∈ Gn,m ⊂ fn,m−1

∪
fn,m

∪
fn,m+1. An easy calculation shows that d(y, x) ≥

(2K)−m−1. Then

K ◦ µ(x, y) ≤ K(µB(x, (2K)−m−1)) ≤ C · (2K)α(m+1) ·K(µB(x, 1))

by the doubling properties of µ and K(r). Hence

II ≤ C ·K(µB(x, 1)) ·
∑
n>n0

∑
m≥n

(2K)α(m+1) · am < ∞

if the numbers (an)
∞
1 are choosen small enough. To estimate I we fix 1 ≤ n ≤ n0.

Then x belongs to
∪k=m+2

k=m−2 fn,k for at most a finite number of values of m. For all
other values of m, the distance between x and the closed support of νn,m is at least
(2K)−m−4, since dist(fn,m, fn,m+2) ≥ (2K)−m−2 for all m ∈ Z. Thus we can apply
the estimate for II. It follows that U ν

K(x) is finite, which completes the proof of
Theorem 2.2. �

Remark. The open sets Gn in the proof of Theorem 2.2 can be constructed in
the following way. Choose open sets Hn and Hn,p such that E ⊂ Hn, Ck(Hn) < an
and E

∩
Vp ⊂ Hn,p, Ck(Hn,p) < an · bp+1/3. Then define Gn = Hn

∩(∪∞
p=1Hn,p

)
.

Clearly, E ⊂ Gn and Ck(Gn) < an. For fixed p, Gn

∩
Vp is a subset of the union of

Hn,p−1, Hn,p and Hn,p+1. Hence Ck(G
∩
Vp) < an · bp and the open sets {Gn}∞1 have

the desired properties.

Proof of Theorem 2.4. The sufficiency part of the proof follows from The-
orem 2.2(a). For the necessity part we note that Lemma 5.4 holds for the def-
inite kernel K1(x, y) defined by (5.1) and therefore also for the equivalent kernel
K̃ ◦ µ(x, y). Hence Theorem 2.1 holds for K̃ ◦ µ(x, y) and we can apply the proof of
Theorem 2.2(b). �

Proof of Theorem 2.5. The proof of Theorem 2.5 is, word by word, the same
as the proof of Theorem 2.4, if we replace K1(x, y) and K̃ ◦ µ(x, y) by kα(x, y) and
Kα ◦ µ(x, y), respectively. �

Proof of Theorem 2.6. The proof of Theorem 2.5 applies with Kα ◦ µ(x, y)
replaced by Kα,p ◦ µ(x, y). �
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