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Abstract. We relate Orlicz–Hardy inequalities on a Euclidean domain to fatness conditions
on the complement. For certain iterated log-scale distortions of Ln, this relationship is necessary
and sufficient, extending results of Buckley and Koskela, and others.

1. Introduction

Suppose Ω ⊂ Rn, n ≥ 2, is a bounded domain and let d(x) = dist(x, ∂Ω). We
consider integral Hardy inequalities

(1.1) ∀u ∈ C∞
0 (Ω) :

ˆ
Ω

Ψ

(
|u(x)|
d(x)1+θ

)
dx ≤ C

ˆ
Ω

Ψ

(
|∇u(x)|
d(x)θ

)
dx,

and norm Hardy inequalities

(1.2) ∀u ∈ C∞
0 (Ω) :

∥∥∥∥ |u(x)|
d(x)1+θ

∥∥∥∥
LΨ(Ω)

≤ C

∥∥∥∥ |∇u(x)|d(x)θ

∥∥∥∥
LΨ(Ω)

where θ > −1, and Ψ: [0,∞) → [0,∞) is in a certain class of Orlicz functions with
polynomial growth; see Section 2 for a definition of the Luxemburg norm ∥ · ∥LΨ(Ω).
We denote by (1.10) and (1.20) the unweighted (θ = 0) cases of (1.1) and (1.2) above,
which especially interest us.

For power functions Ψ(t) = tp, it is clear that (1.1) and (1.2) are mutually
equivalent. For general Orlicz functions, they may not be equivalent, but it follows
easily from the subadditivity of Ψ that (1.1) always implies (1.2) with a comparable
constant C (as noted in the unweighted case in [5, p. 790]).

As follows from [4], [16], [19], the case of Hardy inequalities for power functions
on rough domains is related to a uniform p-fatness condition on Ωc; see also [14], [10],
and [11]. The same is true for certain log power distortions Ψ(t) = tp(log+(t))

α, where
log+(t) = max{1, log t}, t ≥ 0; see [5]. Here we consider distortions by products of
powers of iterated logarithms, and relate the validity of such Hardy inequalities to
fatness conditions on Ωc.

The Orlicz functions that most interest us are Ψ(t) = tpψ(t) (especially with
p = n), where ψ(t) ∈ IL, IL is the class of functions ψ =

∏k
i=1 l

αi
i , k ∈ N, αi ∈ R for

each i, l1 := log+, and li := l1 ◦ li−1 for i > 1. For any such ψ, we write ei(ψ) = αi

for 1 ≤ i ≤ k, and ei(ψ) = 0 for i > k.
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Given q ∈ R, we define the subclasses S+(q) and S−(q) of IL as follows: ψ ∈ S+(q)
(or S−(q)) if there exists i ∈ N such that ei(ψ) > q (respectively ei(ψ) < q) and
ej(ψ) = q for all j ∈ N, j < i.

In the power function case Ψ(t) = tp, p > 1, a domain with uniformly p-fat
complement satisfies p-Hardy; note that uniform p-fatness is a null condition if p > n.
This was proved by Ancona [4] when p = 2, and Lewis [16] and Wannebo [19]
for p ̸= 2. For Lipschitz domains, more precise results can be stated: Cianchi [7]
found balance conditions between a pair of Young functions that are necessary and
sufficient for the validity of norm-type Hardy inequalities. Buckley and Koskela [5,
Theorem 0.4] then showed that domains with p-fat complement satisfy (1.10) for log
power distortions of Lp. The following result generalizes this result in two ways:
it concerns the weighted case θ ̸= 0 and, more significantly, it involves IL-class
distortions of Lp.

Theorem 1.3. Let Ω ⊂ Rn, n > 1, be a bounded domain, and Ψ(t) = tpψ(t),
1 < p < ∞, ψ ∈ IL. Suppose Rn \ Ω is uniformly p-fat. Then Ω supports the
Hardy inequality (1.1) whenever θ > −ε for some ε = ε(ψ) > 0, and with constant
C dependent only on n, p, ψ, dia(Ω), and the fatness constants r0 and c of Rn \ Ω.

In the case Ψ(t) = tp, the subcase p = n is of particular importance because
the Hardy inequality is then equivalent to uniform fatness of the complement [16],
something that is false for p < n. Theorem 0.3 of [5] extended this to Ln(logL)α. As
a special case of our results below, we further extend this result to IL-class distortions
of Ln.

Theorem 1.4. Let Ω ⊂ Rn, n > 1, be a bounded domain, and let Ψ(t) = tnψ(t),
ψ ∈ IL \S−(−1).

(a) The unweighted integral Hardy inequality (1.10) is equivalent to the uniform
n-fatness of Rn \ Ω.

(b) If ψ /∈ S+(n − 1), then the unweighted norm Hardy inequality (1.20) is also
equivalent to the uniform n-fatness of Rn \ Ω.

The Hardy and fatness constants in the above equivalences depend quantitatively
only on each other, and on n, dia(Ω), and ψ.

We will see that (1.1) is naturally associated with a uniform infimal Ψ-fatness
condition which we show to be equivalent to uniform p-fatness for Ψ(t) = tpψ(t),
ψ ∈ IL. By contrast, (1.2) is naturally associated with the formally weaker uniform
Ψ-fatness condition, which is strictly weaker than its infimal variant for certain Ψ(t) =
tpψ(t), ψ ∈ IL, at least when p = n.

Let Ψ(t) = tnψ(t), ψ ∈ IL. By the previous paragraph, uniform infimal Ψ-fatness
always coincides with uniform n-fatness. By contrast, uniform Ψ-fatness coincides
with uniform n-fatness only when ψ /∈ S+(n− 1).

Theorem 1.5. Let Ψ(t) = tnψ(t) for some ψ ∈ IL. If ψ ∈ S+(n − 1), then all
non-empty compact sets are uniformly Ψ-fat. If ψ /∈ S+(n− 1), then a compact set
is uniformly Ψ-fat if and only if it is uniformly n-fat.

After preliminaries in Section 2, we prove in Section 3 that a uniform infimal
Ψ-fatness condition on the complement of a domain often implies (1.1), and we note
implications in the reverse direction for Orlicz classes near Ln. In Section 4, we
relate (infimal and non-infimal) Ψ-fatness to p-fatness for many Orlicz functions Ψ,
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including Ψ(t) = tpψ(t), ψ ∈ IL, allowing us to complete the proofs of the above
theorems.

We close this introduction by noting that, whenever they are true, both (1.1)
and (1.2) extend by the usual limiting argument to all u in W 1,Ψ

0 (Ω), the W 1,Ψ(Ω)-
closure of C∞

0 (Ω). Here, W 1,Ψ(Ω) is the Orlicz–Sobolev space with norm ∥u∥LΨ(Ω) +
∥ |∇u| ∥LΨ(Ω), where ∥ · ∥LΨ(Ω) denotes the usual Luxemburg norm on Ω with respect
to Ψ. For more on Orlicz–Sobolev spaces, see [18], [6], and some of the references
therein.

2. Preliminaries

In this paper, an Orlicz function is a convex homeomorphism Ψ: [0,∞) → [0,∞);
thus Orlicz functions are a special class of Young functions. An Orlicz function Ψ
is well behaved if it is C1 on (0,∞), strictly convex, and satisfies limt→0+ Ψ(t)/t = 0
and limt→∞ Ψ(t)/t = ∞. We single out well-behaved Orlicz functions because their
conjugate functions are more easily defined than those of other Young functions, and
because IL functions can be viewed as well-behaved Orlicz functions if we multiply
them by suitable bounded functions (as justified later in this section). Thus it is easy
to write down the conjugate function of an IL function (to within a bounded factor).

If Ω ⊂ Rn is a domain and Ψ an Orlicz function, the class LΨ(Ω) consists of all
f : Ω → R such that

´
Ω
Ψ(c|f(x)|) dx <∞ for some c > 0. We define the Luxemburg

norm ∥ · ∥LΨ(Ω) by

(2.1) ∥f∥LΨ(Ω) = inf

{
t > 0

∣∣∣∣ ˆ
Ω

Ψ

(
|f(x)|
t

)
dx ≤ 1

}
.

This is a norm on LΨ(Ω) once we identify functions that agree almost everywhere;
see theorem III.3.2.3 in [18].

Every Orlicz function Ψ has a conjugate Young function Ψ̃. According to [18,
p. 10], we can write Ψ(t) =

´ t

0
ψ(t) dt and Ψ̃(t) =

´ t

0
ψ̃(t) dt for all t > 0, where the

integrands map [0,∞] to itself, are nondecreasing and left continuous, and map 0

to 0, and where ψ̃ is the generalized inverse of ψ. For more on conjugate Young
functions, see [18] and [15].

Lemma 2.2. If Ψ is a well-behaved Orlicz function, then the function ψ defined
above is continuous and strictly increasing on [0,∞), and ψ̃ is its inverse. The
conjugate Young function Ψ̃(t) =

´ t

0
ψ̃(t) dt is also a well-behaved Orlicz function.

Proof. Convexity and Ψ′
+(0) = 0 imply that ψ(t) → 0 as t→ 0+. It follows that

ψ(0) = 0 and ψ ∈ C([0,∞)). Strict convexity of Ψ implies that ψ is strictly increasing
on [0,∞), and ψ maps [0,∞) onto itself because of the assumption limt→∞ Ψ(t)/t =
∞. Using Darboux’s theorem, we deduce that ψ is a self-homeomorphism of [0,∞).
The fact that Ψ̃ is a well-behaved Orlicz function now follows easily. �

For a well-behaved Orlicz function Ψ, the conjugate (well-behaved) Orlicz func-
tion Ψ̃ is thus given by Ψ̃(t) =

´ t

0
(Ψ′)−1(t) dt.

The Orlicz version of Hölder’s inequality [18, p. 58] says that

(2.3)
∣∣∣∣ˆ

X

fg dµ

∣∣∣∣ ≤ 2∥f∥LΨ(X,µ)∥g∥LΨ̃(X,µ)
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whenever µ is a measure on X. In fact we have the duality relation [18, p. 61]

(2.4)
sup

{∣∣´
X
fg dµ

∣∣ ∣∣∣∣ ∥g∥LΨ̃(X,µ) ≤ 1

}
∥f∥LΨ(X,µ)

∈ [1, 2].

We now discuss IL, the iterated logarithm class defined in the introduction. We
define a partial order -, and associated strict partial order ≺, on IL via:

f - g if lim
t→∞

f(t)/g(t) ≤ 1,

f ≺ g if lim
t→∞

f(t)/g(t) = 0.

Let FS be the set of finite sequences, meaning sequences α = (αi)
∞
i=1 of real

numbers with αi = 0 for all i > k for some k. Writing

e

(
k∏

i=1

lαi
i

)
= (α1, . . . , αk, 0, 0, . . . ),

we get an invertible map e : IL → FS. Letting ej(ψ) be the jth coordinate of e(ψ)
defines a family of maps ej : IL → R, j ∈ N.

For α ∈ FS, we denote by lα the function ψ ∈ IL with e(ψ) = α. The degree
of ψ ∈ IL, deg(ψ), is the smallest value of i for which ei(ψ) ̸= 0 and the co-degree,
codeg(ψ), is the largest value of i for which ei(ψ) ̸= 0. In the exceptional case
e(ψ) = 0 (equivalently, ψ ≡ 1), we write deg(ψ) = codeg(ψ) = 0.

We now record some basic facts about functions in this class. The proofs via
calculus and standard estimation are left to the reader. We use the notation o(1) for
a quantity that tends to zero as t→ ∞.

Facts 2.5.
(a) - is a total order on IL corresponding to bibliographic order on FS, i.e. lα ≺ lβ

for α, β ∈ FS if αi < βi for some i ∈ N, and αj = βj for all j < i.

(b) There exists R > 0, dependent only on codeg(ψ), such that tψ′(t) = αiσ(t)(1+
o(1)) for all t ≥ R, where i := deg(ψ), ej(σ) = ej(ψ) − 1 for j ≤ i, and
ej(σ) = ej(ψ) for j > i.

(c) Given Ψ(t) = tpψ(t) for some 1 < p < ∞ and ψ ∈ IL, there exists R > 0,
dependent only on codeg(ψ), such Ψ′(t) = ptp−1ψ(t)(1 + o(1)) for all t ≥ R.

(d) Given Ψ(t) = tplα(t) for some 1 < p < ∞ and α ∈ FS, let Φ(t) = t1/plβ(t)
where β ∈ FS is defined by βi = −αi/p, i ∈ N. Then there exist R, S > 0
such that ΨR := Ψ|[R,∞) is strictly increasing, ΨR(R) = S, and the inverse
function Ψ−1

R : [S,∞) → [R,∞) is within a bounded factor of ΦS := Φ|[S,∞)

(with bound dependent on α and p).

Proof. Part (a) follows from the fact that log t ≺ t. The assumption t ≥ R is
designed to ensure that ψ is differentiable; part (b) then follows easily from (a) and
the elementary equation

(lαi
i )′(t) =

αil
αi−1
i (t)

tl1(t) · · · li−1(t)
.
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Next, (c) follows from (b). As for (d), Ψ is strictly increasing for large t by (c).
Note that Φ(Ψ(t))/t equals (lα(t))1/plβ(Ψ(t)) which can be written as a product of
factors of the form [li(t)/li(Ψ(t))]αi/p. Since Ψ(t) ∈ [tp−1, tp+1] for large t, we readily
deduce (d). �

We also define the non-strict and strict bibliographic order - and ≺ on FS: α ≺ β
for α, β ∈ FS if αi < βi for some i ∈ N, and αj = βj for all j < i; α - β if α ≺ β or
α = β. In view of Fact 2.5(a), these definitions are consistent with the corresponding
order on IL via the identification e : IL → FS.

For the remainder of this section, Ψ(t) := tpψ(t), where 1 < p < ∞ and ψ ∈ IL.
In the introduction, we treated such a Ψ as an Orlicz function even though Ψ may
fail to be increasing or convex. We can still define ∥ · ∥LΨ(Ω) by (2.1), but this
treatment needs further justification. We show below that if we do not care about
multiplication by a bounded function, we can treat Ψ not just as an Orlicz function,
but as a well-behaved one.

Regardless of ψ, we have Ψ(t) = tp for 0 ≤ t ≤ 1, so Ψ has the desired properties
of a well-behaved Orlicz function on [0, 1]. It is routine to verify that limt→∞ Ψ(t)/t =
∞, and that there exists K = K(p, ψ) > 2 such that Ψ is C1 and strictly convex on
[K,∞), Ψ(K) > 1+pK, andDK := Ψ′(K) = (1+ε)pΨ(K)/K, for some ε < (p−1)/2.

Now define Ψ1 : [0,∞) → [0,∞) to coincide with Ψ on [0, 1] ∪ [K,∞), and by
linear interpolation on [1, K]. Then Ψ and Ψ1 are comparable, and so ∥ · ∥LΨ(Ω) and
∥ · ∥LΨ1 (Ω) are also comparable. Since we do not care about constants depending on
p and Ψ, we ignore the distinction between Ψ and Ψ1.

Ψ1 is an Orlicz function, but not a well-behaved one: it is not differentiable at
1 or K, and it fails to be strictly convex on [1, K]. We need to make a further
adjustment to fix these shortcomings. We do this by looking at strictly increasing
continuous redefinitions of Ψ′

1 on [1, K], with Ψ′
2(t) = Ψ′

1(t) outside this interval,
where Ψ2 is subject to the continuity assumptions Ψ′

2(t) = Ψ′
1(t) for t ∈ {1, K}. We

need to do this in such a way that Ψ2(K) = Ψ1(K). At one extreme, if we keep
Ψ′

2(t) very close to Ψ′
1(1) = p until t is very close to K, then Ψ2(K) will be very

close to pK which is much less than Ψ1(K) if K is sufficiently large. At the other
extreme, if Ψ′

2(t) is very close to Ψ′
1(K) already when t is very close to 1, then Ψ2(t)

is very close to KΨ′
1(K) and so strictly larger than Ψ1(K). An appropriate convex

combination of these two extreme redefinitions of Ψ′
1 will give Ψ2 with the property´ K

1
Ψ′

2(t) dt = Ψ1(K)−Ψ1(1), as required.
Like Ψ1, the function Ψ2 is comparable to Ψ. Since we do not care about constants

depending on p and Ψ, we ignore the distinction between Ψ and Ψ2, and we think of
Ψ as being a well-behaved Orlicz function.

Remark 2.6. It follows from Lemma 2.2 and Facts 2.5(c),(d) that, modulo a
bounded factor which we ignore, the conjugate Orlicz function to Ψ(t) = tpψ(t) for
ψ ∈ IL can be considered to be Ψ̃(t) = tp/(p−1)ψ̃(t), where ei(ψ̃) = −ei(ψ)/(p − 1),
i.e. ψ̃ = ψ−1/(p−1). Of course the fudge factor involved here means that we also need
to include bounded fudge factors whenever we apply (2.3) and (2.4).

We now define a sort of antiderivative of ψ(t)/t which will be useful later.

Definition 2.7. For ψ ∈ IL, let I(ψ) = ϕ, where ϕ is the unique function in IL
whose derivative is comparable to ψ(t)/t for all sufficiently large t. Explicitly, if i is
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the smallest positive integer such that αi ̸= −1, then I(lα) = lβ, where βj = αj + 1
for all j ≤ i and βj = αj for j > i.

Finally in this section, we discuss some classes of Orlicz functions. For C ≥ 2,
define ∆2(C) to consist of all Orlicz functions Ψ satisfying Ψ(2t) ≤ CΨ(t), t > 0.

Suppose 1 ≤ p < q < ∞ and C ≥ 1. Let Gp(C) be the class of Orlicz functions
Ψ such that Ψ(t1/p)/g(t) ∈ [1/C,C], t > 0, for some convex (increasing) function g,
let Gq(C) be the class of Orlicz functions Ψ such that Ψ(t1/q)/h(t) ∈ [1/C,C], t > 0,
for some concave (increasing) function h, and let Gq

p(C) = Gp(C) ∩Gq(C).
For any of the above classes, if the parameter C is unimportant we omit it. Thus

for instance Ψ ∈ ∆2 means Ψ ∈ ∆2(C) for some C.
If Ψ is a member of any of the Orlicz classes defined above, its growth rate is

constrained. In particular, it is clear that if Ψ ∈ ∆2(C), then Ψ grows no faster than
t 7→ tq, where q = log2C. Membership of Gq

p(C) constrains the growth rate of Ψ
to be intermediate between t 7→ tp and t 7→ tq. More precisely, a convex increasing
function f : [0,∞) → [0,∞) which is zero only at 0 satisfies f(st)/f(t) ≥ s for
t > 0, s ≥ 1, and the reverse inequality is true if f is concave instead of convex. We
therefore deduce that

∀ s > 1, t > 0 : Ψ(st)/Ψ(t) ≥ C−2sp,(2.8)

∀ s > 1, t > 0 : Ψ(st)/Ψ(t) ≤ C2sq.(2.9)

In fact (2.8) holds for Ψ ∈ Gp(C) and (2.9) holds for Ψ ∈ Gq(C).
For all 1 ≤ p1 < p < p2, the function Ψ(t) = tpψ(t), ψ ∈ IL, lies in Gp2

p1
(C) for

some C = C(p, ψ, p1, p2). More precisely, this follows easily from Facts 2.5(a),(c), for
the associated strict Orlicz function Ψ2 defined earlier in this section, although we
may need to increase the value of K = K(p, p1, p2, ψ) used there. It is also clear that
Ψ ∈ ∆2(C) for C = C(p, ψ).

Denote by a ∧ b and a ∨ b the minimum and maximum, respectively, of numbers
a, b.

3. Hardy inequalities and Orlicz space fatness conditions

In this section, we investigate the connection between Hardy inequalities and
fatness conditions defined in terms of Orlicz space capacities. We recall the level-t
Orlicz capacities and the corresponding infimal capacities as defined in [5]; as shown
there, there is a natural association between the infimal Ψ-capacity and (1.1), and
between the level-1 Ψ-capacity and (1.2); see also [3], [13], and [1].

Suppose Ψ is an Orlicz function and that E is a compact subset of an open set
Ω ( Rn. We define the level-t Ψ-capacity capt

Ψ(E; Ω) and the infimal Ψ-capacity
capinf

Ψ (E; Ω) by

capt
Ψ(E; Ω) = inf

{´
Ω
Ψ(|∇u(x)|) dx

Ψ(t)

∣∣∣∣u ∈ Lip(Ω), u ≥ tχE, u|∂Ω = 0

}
,

capinf
Ψ (E; Ω) = inf

t>0
capt

Ψ(E; Ω).

In particular, we write capΨ(E; Ω) = cap1
Ψ(E; Ω).

Writing Ax,r(y) = (y − x)/r, a set E ⊂ Rn is uniformly Ψ-fat if there exist
positive constants r0, c, such that

∀x0 ∈ E, 0 < r < r0 : capΨ(B(0, 1) ∩ Ax0,r(E);B(0, 2)) ≥ c,
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and E is uniformly infimally Ψ-fat if

∀ x0 ∈ E, 0 < r < r0 : capinf
Ψ (B(0, 1) ∩ Ax0,r(E);B(0, 2)) ≥ c.

If E is uniformly Ψ-fat for Ψ(t) ≡ tp, we say that E is uniformly p-fat.
We now state a sufficient condition for (1.1) which will be a key ingredient in the

proof of Theorem 1.3. Much of the proof is similar to the unweighted case proof in
[5, Theorem 2.4], so we omit some details and refer to that proof.

Theorem 3.1. Suppose Ω ⊂ Rn, n > 1, is a bounded domain, and that 1 ≤ C0,
1 < p < q, and q(n− p) < np. If Rn \Ω is uniformly infimally Ψ-fat for some Orlicz
function Ψ ∈ Gq

p(C0), then there exists ε = ε(p, q, C0) > 0 such that Ω supports the
integral Hardy inequality (1.1) for all θ ≥ −ε with constant C dependent only on n,
p, q, dia(Ω), and the fatness constants r0 and c of Rn \ Ω.

Proof. Both (1.1) and the uniform fatness condition are scale invariant, so we
may assume that dia(Ω) ≤ 1. Suppose u ∈ Lip0(Ω), the subspace of Lip(Ω) consisting
of functions whose support is a compact subset of Ω. For arbitrary α > 0, we derive
estimates with constants of comparability dependent only on α∧1 and the parameters
allowed in the statement of the theorem; any dependence on α∧ 1 is explicitly given.

As in the proof of [5, Theorem 2.4], we first get

(3.2)
ˆ
Ω

Ψ

(
|u(x)|
d1+α(x)

)
dx <∼

1

α ∧ 1

ˆ
Ω

Ψ
(
d−α(x)|∇u(x)|

)
dx.

Compared with (2.13) in [5], (3.2) has the factor α ∧ 1 in place of α; this is because
we allow α > 0 to be arbitrary, whereas 0 < α < 1 in [5].

(3.2) already gives the desired estimate for θ > 0. Suppose instead that θ ≤ 0.
From now on we restrict α so that 0 < α < 1. Since (3.2) holds for any Lip0(Ω)
function, we may replace u by v = udα−θ to deduce that

(3.3)
ˆ
Ω

Ψ

(
|u(x)|
d(x)1+θ

)
dx =

ˆ
Ω

Ψ

(
|v(x)|
d1+α(x)

)
dx <∼

1

α

ˆ
Ω

Ψ(d−α(x)|∇v|) dx.

But |∇v| <∼ dα−θ|∇u|+ (α− θ)dα−θ−1|u|, and so
ˆ
Ω

Ψ

(
|u|
d1+θ

)
dx ≤ C1

α

ˆ
Ω

Ψ

(
|∇u|
dθ

+ (α− θ)
|u|
d1+θ

)
dx

≤ C2

α

(ˆ
Ω

Ψ

(
|∇u|
dθ

)
dx+

ˆ
Ω

Ψ

(
(α− θ)|u|
d1+θ

)
dx

)
,(3.4)

where C1, C2 <∼ 1 and C2 > 1.
Suppose first that θ = 0. Take α := (2C2C

2
0)

−1/(p−1) ≈ 1, and then (2.8) implies
that

C2

α

ˆ
Ω

Ψ

(
α|u|
d

)
dx ≤ 1

2

ˆ
Ω

Ψ

(
|u|
d

)
dx.

From this last estimate and (3.4) we get the desired conclusion.
If instead θ < 0, but −θ ≤ α := (2pC2C

2
0)

−1/(p−1) ≈ 1, we can finish as before. �
We next recall the definition in [5] of a quasilog. Given K ≥ 1, a function

ψ : (0,∞) → (0,∞) lies in the class QL(K) of quasilogs if ψ(s)/ψ(t) ≤ K whenever
s, t ∈ [1/2, 2] or s, t > 0 satisfy t2 ∧ t1/2 ≤ s ≤ t2 ∨ t1/2.
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Note that the opposite inequality ψ(t)/ψ(s) ≤ K follows whenever s, t satisfy
the same conditions, and that a quasilog is doubling in the sense that ψ(t)/ψ(s) ≤ K
whenever 0 ≤ t/2 ≤ s ≤ 2t.

If the function ψ is Lipschitz and satisfies

(3.5) sup
t>0

ˆ
It

|ψ′(s)|
ψ(s)

ds < C <∞,

where It is the interval [1/2, 2] for 1/2 ≤ t2 ≤ 2, and the interval with endpoints t
and t2 for all other t > 0, then it is clear that ψ ∈ QL(exp(C)).

Taking ψ to be any non-constant element of IL, it follows from Fact 2.5(b) that
when t is large, |ψ′(t)|/ψ(t) is comparable with ϕ(t) = 1/(t

∏j
i=1 li(t)) for some j ∈ N.

Since ϕ is the derivative of lj+1, it follows that the left-hand side of (3.5) is finite,
and so every ψ ∈ IL is a quasilog. Conversely, it is not hard to show that quasilogs
cannot grow or decay faster than bounded powers of log, with the bound dependent
only on the parameter K. Thus, although quasilogs form a larger class than IL, the
range of growth/decay rates of IL functions and quasilogs coincide.

We now recall a “Hardy implies fatness” result for Orlicz spaces near Ln.

Theorem 3.6. [5, Theorem 3.2] Let Ω ⊂ Rn, n > 1, be a bounded domain,
and 1 ≤ K. If the unweighted integral Hardy inequality (1.10) holds for some Orlicz
function Ψ such that Ψ(t) = tnψ(t) for a function ψ ∈ QL(K) satisfyingˆ ∞

1

ψ(t) dt

t
= ∞,

then Rn \ Ω is uniformly infimally Ψ-fat. If instead the unweighted norm Hardy
inequality (1.20) holds for such a Ψ, then Rn \ Ω is uniformly Ψ-fat. In both
cases, we can choose the uniform fatness constants to satisfy r0 = dia(Ω) and
c = c(C, n, dia(Ω),Ψ).

It is a routine task to verify that ψ ∈ IL satisfies
´∞
1
(ψ(t)/t) dt <∞ if and only

if ψ ∈ S−(−1), thus yielding the following corollary.

Corollary 3.7. Let Ω ⊂ Rn, n > 1, be a bounded domain, and suppose Ψ(t) =
tnψ(t) for some ψ ∈ IL \S−(−1). If (1.10) holds, then Rn \ Ω is uniformly infimally
Ψ-fat. If instead (1.20) holds, then Rn \ Ω is uniformly Ψ-fat. In both cases, we can
choose the uniform fatness constants to satisfy r0 = dia(Ω) and c = c(C, n, dia(Ω),Ψ).

4. Relating Orlicz space fatness to Lp fatness

In this section, we relate infimal Ψ-fatness to p-fatness, and (non-infimal) Ψ-
fatness to n-fatness for large classes of Orlicz functions Ψ, including Ψ(t) = tpψ(t),
ψ ∈ IL.

Theorem 4.1. Suppose p > 1 and suppose Ψ ∈ Gp′∩∆2 for all 1 < p′ < p. Then
every uniformly p-fat set is uniformly infimally Ψ-fat, quantitatively. If additionally
there exist constants c1, c2 ∈ (0, 1) such that Ψ(t)/tp ∈ [c1, c

−1
1 ] for all 0 < t ≤ c2,

then uniform p-fatness is quantitatively equivalent to uniform infimal Ψ-fatness.

We next wish to examine the connection between n-fatness and Ψ-fatness. The-
orem 4.1 already gives us one direction: every uniformly n-fat set is uniformly Ψ-fat,
quantitatively, as long Ψ ∈ Gp′∩∆2 for all 1 < p′ < n. We now examine the converse.
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Theorem 4.2. The following are equivalent for Ψ ∈ ∆2:
(a) All uniformly Ψ-fat sets are uniformly n-fat.
(b) capΨ({0};B(0, 2)) = 0.
(c) ∥ |x|−n+1 ∥LΨ̃(B(0,2)) = ∞, where Ψ̃ is the Orlicz dual function of Ψ.

Using these theorems, it is easy to prove the results stated in the introduction.

Proof of Theorem 1.3. We have Ψ(t) = tp for all 0 ≤ t ≤ c2 := 1. As discussed
in Section 2, Ψ ∈ Gp2

p1
∩∆2 for all 1 ≤ p1 < p < p2. The condition p2(n− p1) < np1

is satisfied when p1 ∈ (1, p) and p2 > p are both close enough to p. The result now
follows from Theorems 3.1 and 4.1. �

Proof of Theorem 1.5. By Remark 2.6, the Orlicz conjugate of Ψ can be taken
to be Ψ̃(t) := tn/(n−1)ψ̃(t), where ψ̃ := ψ−1/(n−1). Thus ψ ∈ S+(n− 1) if and only if
ψ̃ ∈ S−(−1). It is easily verified that ∥ |x|−n+1 ∥LΦ(B(0,2)) <∞ for Φ(t) = tn/(n−1)ϕ(t),
ϕ ∈ IL, if and only if ϕ ∈ S−(−1). The theorem now follows immediately from
Theorem 4.2 and the comment preceding it. �

Proof of Theorem 1.4. Theorem 1.3 implies one direction in (a) and the combi-
nation of Corollary 3.7 and Theorem 4.1 imply the converse.

As noted in the introduction, (1.10) implies (1.20). Conversely if ψ /∈ S+(n− 1),
then Corollary 3.7 and Theorem 1.5 together tell us that (1.20) implies that Ω is
uniformly n-fat. �

We now turn to proving Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Suppose E ⊂ Ω is a uniformly p-fat set, and so it is
uniformly σ-fat for some σ < p, where σ is dependent only on p, n, and the fatness
constant [12, Theorem 1.2]. Thus there exist positive constants r0, c c dependent on
the p-fatness constants, n, and p such that

∀x0 ∈ E, 0 < r < r0 : capσ(B(0, 1) ∩ Ax0,r(E);B(0, 2)) ≥ c.

Writing F := Ax0,r(E), we have
ˆ
B(0,2)

|∇u|σ dx ≥ c, whenever u|F ≡ 1 and u|∂B(0,2) = 0.

Applying Jensen’s inequality to the convex function g comparable to t 7→ Ψ(t1/σ),
we get(ˆ

B(0,2)

Ψ(t|∇u|) dx
)1/σ

≈
ˆ
B(0,2)

g (tσ|∇u|σ) dx

>∼ g

(
cn

ˆ
B(0,2)

tσ|∇u|σ dx
)
>∼ Ψ(c1/σn c1/σt) >∼ Ψ(t),

where 1/cn is the volume of the unit ball; the last inequality above uses the fact that
Ψ ∈ ∆2(C). It follows that capΨ(B(0, 1) ∩ Ax0,r(E);B(0, 2)) ≥ c′, where c′ depends
on c, n, p, q, and the ∆2 and Gσ parameters.

The converse is straightforward, under the assumption that Ψ(t) = tpψ(t), where
ψ(t) ∈ [c1, c

−1
1 ] for all 0 ≤ t ≤ c2. Suppose F is a compact subset of B(0, 1) satisfying

capinf
Ψ (F ;B(0, 2)) ≥ c > 0. Suppose that for a given Lipschitz function u on B(0, 2)
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we have inft>0Qt ≥ c, where

Qt :=

ˆ
B(0,2)

|∇u|p · ψ (t|∇u|)
ψ(t)

dx .

By the Fatou–Lebesgue theorem,

c ≤ lim sup
t→0+

Qt ≤ c−2
1

ˆ
B(0,2)

|∇u|p dx.

In particular, capinf
Ψ (F,B(0, 2)) ≤ c−2

1 capp(F,B(0, 2)), and so we are done. �
Proof of Theorem 4.2. Trivially (a) implies (b), since (b) just says that singleton

sets are not uniformly Ψ-fat, and singleton sets are certainly not uniformly n-fat.
Suppose that (c) is false, and so ∥ |x|−n+1 ∥LΨ̃(B(0,2)) = A <∞. Applying (2.3) to

the following “representation formula” (for which, see [8, Lemma 7.14])

(4.3) ∀u ∈ Lip0(B(0, 2)) : |u(x)| ≤ Cn

ˆ
B(0,2)

|∇u| dy
|x− y|n−1

,

we get

∀u ∈ Lip0(B(0, 2)) : u(0) ≤ 2Cn∥ |∇u| ∥LΨ(B(0,2))∥ |x|−n+1 ∥LΨ̃(B(0,2)).

It follows that
´
B(0,2)

Ψ(|∇u|) ≥ 1 whenever u ∈ Lip0(B(0, 2)) and u(0) = 2CnA.
By taking v = u/(2CnA) for the set of all such functions u, we get the set of
all test functions for capΨ({0};B(0, 2)). Either 2CnA ≤ 1, and we deduce that
capΨ({0};B(0, 2)) ≥ 1, or 2CnA > 1 and we deduce that capΨ({0};B(0, 2)) ≥ c,
where c > 0 depends only on 2CnA and the ∆2 parameter. Thus we get a lower
bound on capΨ({0};B(0, 2)) in either case, and (b) is false. By taking a contraposi-
tive, we deduce that (b) implies (c).

Finally suppose that (c) holds. The well-known uniformly perfect condition is
equivalent to n-fatness [9, Theorem 4.1], so a set E is uniformly n-fat if and only if
every annulus B(x,R) \ B(x, r) contains a point of E whenever x ∈ E, R/r > C,
R < dia(E)/2, and C depends on n, α, and the fatness constant c. Suppose that
E is not uniformly n-fat. Thus there exists x ∈ E and some sequence of radii (Rm)
converging to 0 such that Sm := Ax,Rm(E) ∩B(0, 2) ⊂ B(0, 1/m), m ∈ N.

Let m be fixed but arbitrary. Define a measure µ on the positive real axis by
dµ(t) = cnt

n−1dt, where cn is the surface area of the unit sphere and dt is Lebesgue
measure. Let ε > 0 be fixed but arbitrary. It follows from duality (2.4) that

sup
{´ 2

ε
|f(t)|t1−ndµ(t) : ∥f∥LΨ(µ,[ε,2]) ≤ 1

}
∥ t1−n ∥LΨ̃(µ,[ε,2])

∈ [1, 2].

By positivity of |t|1−n and the Dominated Convergence Theorem, we may restrict
the above supremum to positive bounded functions. Writing Aε := ∥ t1−n ∥LΨ̃(µ,[ε,2]),
there thus exists a positive bounded fε on [ε, 2] with

∥fε∥LΨ(µ,[ε,2]) ≤ 1/Aε

and ˆ 2

ε

fε(t)t
1−n dµ(t) ∈ [1/2, 2].
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It follows immediately that by multiplying fε by a suitable constant between cn/2
and 2cn, we get a function gε on [ε, 2] such that ∥gε∥LΨ(µ,[ε,2]) ≤ 2cn/Aε and

ˆ 2

ε

gε(t) dt =

ˆ 2

ε

c−1
n gε(t)t

1−n dµ(t) = 1.

Now letting

uε(x) =

{
1, |x| ≤ ε,

1−
´ |x|
ε
gε(x) dt, ε ≤ |x| ≤ 2,

we get an admissable function for the capacity of the annulus B(0, 2) \ B(0, ε) such
that ∥∇uε∥LΨ(B(0,2)) ≤ 2cn/Aε. Since this upper bound tends to zero as ε → 0+,
and Ψ(st) ≥ sΨ(t) for all s ≥ 1 and t > 0 (by convexity), it follows that the
capΨ(B(0, 2) \B(0, ε)) → 0 as ε→ 0. Applying this result to Sm, m ∈ N, we deduce
that any set E that fails to be uniformly n-fat also fails to be uniformly Ψ-fat. Taking
the contrapositive, we get (a), as required. �

Finally we consider the relationship between the capacities associated with Ψ(t) =
tnψ(t) and certain associated Hausdorff contents. This will in many cases allow us
to give an associated Cantor set E such that E is a null set for ψ := ψ1 but not
for ψ := ψ2, where ψ1 ≺ ψ2, illustrating how many of these capacities are pairwise
distinct, in contrast to the associated uniform fatness conditions which, as we have
seen, are pairwise equivalent when ψ /∈ S+(n−1) (and separately pairwise equivalent
when ψ ∈ S+(n− 1)).

Denote by Hh
r (E) and Hh(E) the Hausdorff content and Hausdorff measure,

respectively, of E ⊂ Rn with respect to a (continuous increasing) gauge function
h : [0,∞) → [0,∞). For the basic theory of Hausdorff contents and measures, see
[17] or [2].

Below we are interested only in IL-class gauge functions, i.e. those of the form
h(t) = ϕ(1/t), ϕ ∈ IL. Since a gauge function h is required to satisfy h(t) → 0 as
t → 0+, such a ϕ must be of positive degree and satisfy ei(ϕ) < 0 for i := deg(ϕ).
Given this assumption, it is clear that we can multiply ϕ by a bounded function so
as to ensure that h is increasing (and continuous). As usual, we gloss over this minor
adjustment of ϕ, so when we say that h(t) := ϕ(1/t), t ∈ IL, is a gauge function we
simply mean that ei(ϕ) < 0 for i := deg(ϕ).

Theorem 4.4. Suppose Ψ(t) = tnψ(t) for ψ = lα ∈ IL \S−(−1), and k ∈ N,
k ≥ codeg(ψ). Let E be an arbitrary compact subset of B := B(0, 1), and let
E + t := {x ∈ Rn : dist(x,E) ≤ t}, t > 0.

(a) If h(t) = ϕ(1/t) · l−n
1 (1/t) is a gauge function, where ϕ := I(ψ) is as in Defi-

nition 2.7, then there exists C = C(n, α) such that capΨ(E; 2B) ≤ CHh
∞(E).

(b) Suppose h(t) = lβ(1/t) is a gauge function, for some β ∈ FS such that βi =
αi+1−n, i < k, and βk < αk+1−n. If |E+ t| ≤ C0t

n/h(t) for all 0 < t < 1,
and if Hh

∞(E) > c0 > 0, then there exists c = c(n, α, β, c0, C0) > 0 such that
capΨ(E;B(0, 2)) > c.
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Proof. We first prove (a). Let |x| < 5/4 and r ≤ 1/4. By taking

u(y) =


1, |y − x| ≤ r,

(log(1/2r))−1 log(1/2|y − x|) , r < |y − x| < 1/2,

0, |y − x| ≥ 1/2,

it follows thatˆ
2B

Ψ(|∇(u)|) dy =

ˆ
r<|y|<1/2

|x|−n log−n(1/2r) · ψ
(

1

|y| log(1/2r)

)
dy.

By two more changes of variables, we get

ln1 (1/r)

ˆ
2B

Ψ(|∇(u)|) dy ≈
ˆ 1/2

r

ψ

(
1

tl1(1/r)

)
dt

t

=

ˆ 1/rl1(1/r)

2/l1(1/r)

ψ(s) ds

s
≈ ϕ(s)

]1/rl1(1/r)
2/l1(1/r)

≈ ϕ(1/r).

The proof of (a) now follows as usual from the subadditivity of capΨ. The re-
strictions on x and r in the capacity estimate are not a problem: since trivially
capΨ(E; 2B)) <∼ 1, we may without loss of generality assume that Hh

∞(E) < c, where
c = cα,n > 0 is chosen so that any associated Hh

∞-efficient covering of E must use
balls of radius at most 1/4.

We now prove (b). By Frostman’s lemma [2, p.6], there is a Radon measure µ
supported on E such that µ(B(x, r)) ≤ h(r) for all x ∈ Rn, and µ(E) ≥ ac0 for some
a = a(n) > 0. It follows from (4.3) that if u ∈ Lip0(B(0, 2)) and u ≥ 1 on E, then

1 <∼ µ(E) ≤
ˆ
E

ˆ
B(0,2)

|∇u(y)| dy
|x− y|n−1

dµ(x)

=

ˆ
B(0,2)

|∇u(y)|
ˆ
E

dµ(x)

|x− y|n−1
dy <∼

ˆ
B(0,2)

|∇u(y)| · h(δ(y))
δ(y)n−1

dy,

where δ(y) = dist(y, E). Applying Hölder’s inequality (2.3), we see that

(4.5) 1 <∼ ∥ |∇u| ∥LΨ(B(0,2))

∥∥∥∥ h(δ(y))δ(y)n−1

∥∥∥∥
LΨ̃(B(0,2))

where Ψ̃(t) ≈ tn/(n−1)/(ψ(t))1/(n−1), by Remark 2.6. A little calculation givesˆ
B(0,2)

Ψ̃

(
h(δ(y))

δ(y)n−1

)
dy ≈

ˆ
B(0,2)

h(δ(y))

δ(y)n η(1/δ(y))
dy

where η ∈ IL, η = lγ, γi = 1 for i < k, and γk = 1+ε with ε = (α−β)/(n−1)−1 > 0.
Defining Am = (E + 2−m+2) \ (E + 2−m+1), m ∈ N, we see thatˆ

Am

h(δ(y))

δ(y)n η(1/δ(y))
dy <∼

1

m(
∏k−1

i=1 li(m)) · lεk−1(m)
.

The decay rate of |E + t| implies that |E| = 0, so by summation above we getˆ
B(0,2)

h(δ(y))

δ(y)n η(1/δ(y))
dy <∼ 1.

and so the rightmost norm in (4.5) is bounded. Thus 1 <∼ ∥ |∇u| ∥
L
Ψβ (B(0,2))

, and we
get the desired capacity lower bound. �
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In the above proof, the assumption ψ /∈ S−(−1) is needed only in (a), to ensure
that the antiderivative of s 7→ ψ(s)/s is comparable to a positive multiple of I(ψ).

In the generic case α1 ̸= −1, we have h(t) = lβ(1/t) in Theorem 4.4(a), where
β1 = α1 + 1 − n, and βi = αi, i > 1. The gap between this formula for β and that
in Part (b) (a gap that is a little larger when α1 = −1) means that Theorem 4.4 is
not strong enough to separate arbitrary pairs of capacities of the form Ψ(t) = tnψ(t),
ψ ∈ IL, but we now examine what pairs it does separate.

Choosing a gauge function hβ(t) := lβ(1/t), β ∈ FS, it follows as in [17, 4.11]
that there exists a Cantor set Fβ ⊂ [0, 1] such that 1/4 ≤ Hhβ(Fβ) ≤ 1, and such
that the kth approximation to Fβ consists of 2k intervals each of length sk, where
hβ(sk) = 2−k. Thus Hhγ (Fβ) = 0 for all γ ≺ β and Hhγ (Fβ ∩B(x, r)) = ∞ whenever
x ∈ Fβ, r > 0, β ≺ γ, and hγ is a gauge function. Letting Eβ = J(Fβ), where J
is the usual identification of the real line with the first coordinate axis in Rn, we
see that Eβ inherits the above properties of Fβ. Additionally |Eβ + t| <∼ (3t)n/hβ(t),
since Eβ + t can be covered by at most 1/hβ(t) cubes of sidelength 3t.

Now let Ψ(t) = tnlα(t). If I(ψ)l−n
1 = lγ for some γ ≺ β then Hhγ (Eβ) = 0 and

so Theorem 4.4(a) tells us that Eβ is a null set for capΨ. If instead there exists
j ∈ N such that αi = βi + n − 1 for i < j, and αj > βj + n − 1, and we define
γ ∈ FS by γi := βj for i < j, βj < γj < αj − n + 1, and γi := 0 for i > j, then
Hhγ (Eβ ∩ B(x, r)) = ∞ for all x ∈ Eβ, r > 0. This estimate plus Theorem 4.4(b)
together imply that Eβ is not a null set for capΨ.

The calculations in the above paragraph yield the following corollary; the as-
sumption β1 < n− 1 is made for simplicity but could be relaxed a little.

Corollary 4.6. Suppose Φ(t) = tnlα(t) and Ψ(t) = tnlβ(t), where α ≺ β and
β1 < n− 1. If α1 < β1, or α1 = β1 ̸= −1 and α2 < β2 + 1− n, or α1 = β1 = −1 and
α2 < β2−n, then there exists a Cantor set in Rn which is a null set for capΦ but not
for capΨ.

Cantor sets sometimes distinguish between Ψ-capacity and infimal Ψ-capacity.

Corollary 4.7. Suppose Ψ(t) = tnlβ(t), where β1 < n− 1. Suppose further that
either β1 > 0, or β1 = 0 and β2 > n− 1. Then there exists a Cantor set in Rn which
is a null set for capinf

Ψ but not for capΨ.

Proof. By the previous corollary with Φ(t) = tn, there exists a Cantor set in Rn

which is a null set for capΦ but not for capΨ. By contrast, the last line in the proof
of Theorem 4.1 tells us that infimal Ψ0-capacity is always dominated by n-capacity
for Ψ0 = Ψ, or indeed for any Ψ0(t) = tnψ0(t), ψ0 ∈ IL. �
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