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Abstract. In the present work we extend a local Tb theorem for square functions of Christ [3]
and Hofmann [17] to the multilinear setting. We also present a new BMO type interpolation result
for square functions associated to multilinear operators. These square function bounds are applied
to prove a multilinear local Tb theorem for singular integral operators.

1. Introduction

Consider the family of multilinear of operators {Θt}t>0 given by

Θt(f1, . . . , fm)(x) =

ˆ
Rmn

θt(x, y1, . . . , ym)
m∏
i=1

fi(yi)dyi(1.1)

where θt : R(m+1)n → C and the square functions associated to {Θt}t>0

S(f1, . . . , fm)(x) =

(ˆ ∞

0

|Θt(f1, . . . , fm)(x)|2
dt

t

) 1
2

(1.2)

where fi for i = 1, . . . ,m are initially functions in C∞
0 (Rn) (smooth with compact

support). The purpose of this work is to find appropriate cancellation conditions on
θt and indices p, p1, . . . , pm that guarantee Lp boundedness of the square functions S
of the form

||S(f1, . . . , fm)||Lp .
m∏
i=1

||f ||Lpi(1.3)

given that θt satisfies some size and regularity estimates. In particular, we assume
that θt is a multilinear standard Calderón–Zygmund kernel, i.e. it satisfies for all
x, y1, . . . , ym, x

′, y′1, . . . , y
′
m ∈ Rn,

|θt(x, y1, . . . , ym)| .
t−mn∏m

i=1(1 + t−1|x− yi|)N+γ
,(1.4)
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|θt(x, y1, . . . , ym)− θt(x, y1, . . . , y
′
i, . . . , ym)| . t−mn(t−1|yi − y′i|)γ,(1.5)

|θt(x, y1, . . . , ym)− θt(x
′, y1, . . . , ym)| . t−mn(t−1|x− x′|)γ,(1.6)

for some N > n and 0 < γ ≤ 1. It follows from a scaling argument that if (1.3)
holds, then the indices p, p1, . . . , pm satisfies the Hölder type relationship

1

p
=

m∑
i=1

1

pi
.(1.7)

So throughout this work we assume that all indices p, p1, . . . , pm satisfy (1.7).
There is a rich history of the study of square functions in harmonic analysis. In

[24], Semmes studied the linear version (m = 1) of the operators (1.1). He proved
that if θt satisfies (1.4), (1.5), and there exists a para-accretive function b such that
Θt(b) = 0 for all t > 0, then the bound (1.3) is satisfied with p = p1 = 2. (For the
definition of para-accretive see e.g. [7], [3], [24] or [15].) In fact the perspective of
Semmes was a Besov type square function given in the multilinear setting by

(f1, . . . , fm) 7→
(ˆ ∞

0

||Θt(f1, . . . , fm)||2Lp

dt

t

) 1
2

.(1.8)

When m = 1 and p = p1 = 2 as in (24), the study of this Besov type square function
(1.8) coincides with the study of (1.2). The Besov type square function point of
view was carried to the multilinear setting by Maldonado in [21] and Maldonado–
Naibo in [22], where the authors prove bounds of (1.8) on products of Besov and
Lebesgue spaces under kernel conditions essentially equivalent to (1.4) and (1.5),
and Θt(1, f2, . . . , fm) = 0 for t > 0.

In [12], Grafakos–Oliveira proved the bound (1.3) for p = 2 and 1 ≤ pi ≤ ∞ for
i = 1, . . . ,m assuming (1.4), (1.5) and that there exist para-accretive functions bi for
i = 1, . . . ,m on Rn such that the cancelation condition

(1.9) Θt(b1, . . . , bm) = 0

holds. In [15], under similar size, regularity and cancellation conditions, Hart showed
(in the discrete bilinear setting, but is easily extended to the m-linear setting) that
(1.3) holds for 1 < p, pi <∞ for i = 1, . . . ,m, and under stronger size and regularity
conditions for 1 < pi <∞ and 1

2
< p <∞. In [15] and [11], Hart and Grafakos–Liu–

Maldonado–Yang prove bounds of the square functions (1.2) and (1.8) on products of
various spaces of smooth functions assuming (1.4), (1.5) and a variety of cancellation
conditions.

The essence of T1 and Tb theorems is to determine the L2 boundedness of an
operator by verifying its behaviour in some particular test functions. In [3], Christ
introduced the notion of a local Tb theorem in the context of singular integrals, and
applied this to estimates for the Cauchy integral on Lipschitz curves. He changed
the existence of a (globally defined) para-accretive test function where the operator
vanishes, for the existence of a family of (locally defined) test functions when some
additional information about the behavior of the operator is known. More recently,
in [17] Hofmann gave an analogous result for square functions based on some previ-
ous work by Auscher–McIntosh–Hofmann–Lacey–Tchamitchian on the Kato square
root problem in [1] (see also related work [19] by Hofmann–McIntosh and [18] by
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Hofmann–Lacey–McIntosh). These kind of Tb theorems for square functions have
proven to be very useful in many applications in complex function theory and in
PDE, as they can be viewed as singular integrals taking values in a Hilbert space.

The principal result in this article is an extension of Hofmann’s result to multi-
linear square functions, which we state now.

Theorem 1.1. Let Θt and S be defined as in (1.1) and (1.2) where θt satisfies
(1.4)–(1.6). Suppose there exist qi, q > 1 for i = 1, . . . ,m with 1

q
=
∑m

i=1
1
qi

and
functions biQ indexed by dyadic cubes Q ⊂ Rn for i = 1, . . . ,m such that for every
dyadic cube Q ˆ

Rn

|biQ|qi ≤ B1|Q|,(1.10)

1

B2

≤

∣∣∣∣∣ 1

|Q|

ˆ
Q

m∏
i=1

biQ(x) dx

∣∣∣∣∣ ,(1.11) ∣∣∣∣∣ 1

|R|

ˆ
R

m∏
i=1

biQ(x) dx

∣∣∣∣∣ ≤ B3

m∏
i=1

∣∣∣∣ 1

|R|

ˆ
R

biQ(x) dx

∣∣∣∣(1.12)

for all dyadic subcubes R ⊂ Q, and

(1.13)
ˆ
Q

(ˆ ℓ(Q)

0

|Θt(b
1
Q, . . . , b

m
Q)(x)|2

dt

t

) q
2

dx ≤ B4|Q|.

Then S satisfies (1.3) for all 1 < pi <∞ and 2 ≤ p <∞ satisfying (1.7).

If {bQ} satisfies (1.10) and (1.11), we say that {bQ} is a pseudo-accretive system.
This definition of pseudo-accretive system is analogous to the one defined by Christ
in [3] in the linear case when restricted to the Euclidean setting. More precisely,
Christ defined a pseudo-accretive system to be a collection of functions {bB} indexed
by all balls B = B(x, r) ⊂ Rn satisfying (1.10) and (1.11) with m = 1, q = q1 = ∞
and dyadic cubes Q replaced with balls B. We say that {biQ} for i = 1, . . . ,m is
an m-compatible, or just compatible, collection of pseudo-accretive systems if they
satisfy (1.10)–(1.12). The proof of Theorem 1.1 follows along the lines of the linear
version in [17], with modifications to address difficulties that arise in the setting of
multilinear operators.

We also prove that if the square function S defined in (1.2) is bounded as in (1.3),
then S is also bounded from L∞

c (Rn) × · · · × L∞
c (Rn) into BMO, where L∞

c is the
set of L∞ functions with compact support. Note that L∞

c is not a Banach space and
S is not a linear operator, so this bound does not mean that S is continuous from
L∞ × · · · × L∞ into BMO. This is simply an estimate for f1, . . . , fm ∈ L∞

c

||S(f1, . . . , fm)||BMO .
m∏
i=1

||fi||L∞ ,

where the constant is independent of f1, . . . , fm (and in particular the support fi
for i = 1, . . . ,m). This means that we cannot use this bound to approximate
S(f1, . . . , fm) for f1, . . . , fm ∈ L∞, but the estimate is still useful for interpolation.
This will be discussed more in depth in section 4.
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This permits us to prove the following generalization of the multilinear T (1)
theorem of Grafakos–Torres [14] as a sort of multilinear version of the local Tb
theorem of Christ in [3].

Theorem 1.2. Let T be a continuous m linear operator from S × · · · ×S into
S ′ with standard Calderón–Zygmund kernel K. Suppose that T ∈ WBP and there
exist 2 ≤ q < ∞ and 1 < qi < ∞ with 1

q
=
∑m

i=1
1
qi

and an m-compatible collection
of functions {biQ} indexed by dyadic cubes Q and i = 1, . . . ,m such that

ˆ
Q

(ˆ ℓ(Q)

0

|QtT (Ptb
1
Q, . . . , Ptb

m
Q)(x)|2

dt

t

) q
2

dx . |Q|(1.14)

T ∗1(1, . . . , 1), . . . , T ∗m(1, . . . , 1) ∈ BMO.(1.15)

Then T is bounded from Lp1 × · · · × Lpm into Lp for all 1 < pi < ∞ such that (1.7)
holds. Here Pt is an approximation to the identity and Qt a Littlewood–Paley–Stein
projection operator both with C∞

0 convolution kernels.

To state (1.14) more precisely, we mean the following: For any φ, ψ ∈ C∞
0 such

that φ̂(0) = 1 and ψ̂(0) = 0, (1.14) holds for Ptf = φt ∗f and Qtf = ψt ∗f where the
constant is independent of the dyadic cube Q, but may depend on φ and ψ where
φt(x) =

1
tn
φ(x

t
) and ψt(x) =

1
tn
ψ(x

t
). The definition of standard Calderón–Zygmund

kernel and the weak boundedness property (WBP ) for an m linear operator T are
given in section 5.

The article is organized in the following way: In the next section we collect some
results that will be useful in the proofs of the results stated above. In section 3,
we prove the Theorem 1.1 for p = 2. In section 4, we precisely state and prove the
BMO endpoint estimate claimed above and complete the proof of Theorem 1.1 for
all 2 ≤ p <∞. In section 5, we prove the Theorem 1.2.

2. Preliminary results

In what follows A . B means A ≤ CB for some positive constant C. From this
point on we will always work with smooth and compactly supported functions, since
the general result follows from density unless otherwise stated.

Define for t > 0 the linear and multilinear dyadic average operators

Atf(x) =
1

|Q(x, t)|

ˆ
Q(x,t)

f(x) dx,

At(f1, . . . , fm)(x) =
m∏
i=1

Atfi(x),

where Q(x, t) is the smallest dyadic cube containing x with side length ℓ(Q) > t.
Define the linear and multilinear smooth approximation to the identity operators

Ptf(x) =

ˆ
φt(x− y)f(y) dy,

Pt(f1, . . . , fm)(x) =
m∏
i=1

Ptfi(x),

where φ ∈ C∞
0 (Rn) has integral 1.
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Definition 2.1. A positive measure dµ(x, t) on Rn+1
+ = {(x, t) : x ∈ Rn, t > 0}

is called a Carleson measure if

∥dµ∥C = sup
Q

1

|Q|
dµ(T (Q)) <∞,(2.1)

where the supremum is taken over all cubes Q ⊂ Rn, |Q| denotes the Lebesgue
measure of the cube Q, B(Q) = Q × (0, ℓ(Q)] denotes the box over Q, and ℓ(Q) is
the side length of Q.

We now state a multilinear version of the T (1) theorem for square functions due
to [15], [11] and [12].

Proposition 2.2. [15, 11, 12] Suppose that the kernel θt(x, y1, . . . , ym) satisfies
(1.4) and (1.5). If Θt(1, . . . , 1) = 0 for t > 0, then the square function defined in
(1.2) satisfies the bound (1.3) for all 1 < p, pi <∞, i = 1, . . . ,m satisfying (1.7).

Remark 2.3. Under extra size conditions on the kernel θt(x, y1, . . . , ym), i.e. if
we require N > mn in (1.4) and (1.6), we can apply the vector-valued Calderón–
Zygmund theory developed in [15] to extend the theorem above to the complete
quasi-Banach case, that is, with 1/m < p ≤ 1.

The following result relates Carleson measures and a special kind of multilinear
operator that will be useful for us. An important tool in the proof of the above
theorems is the following multilinear version of a theorem of Christ and Journé [4].

Proposition 2.4. Assume Θt and S are defined as in (1.1) and (1.2) where θt
satisfies (1.4)–(1.6). If Θt satisfies the Carleson measure estimate

ˆ
Q

ˆ ℓ(Q)

0

|Θt(1, . . . , 1)(x)|2
dt dx

t
. |Q|(2.2)

for all cubes Q ⊂ Rn, then (1.3) holds when p = 2 and 1 < pi < ∞ for i = 1, . . . ,m
satisfying (1.7).

Proof. We decompose Θt = Θt −MΘt(1,...,1)Pt +MΘt(1,...,1)Pt, where Mb is the
operator defined as pointwise multiplication by b. It is clear that Θt −MΘt(1,...,1)Pt

satisfies (1.4), (1.5) and Θt(1, . . . , 1)−MΘt(1,...,1)Pt(1, . . . , 1) = 0. Then by Proposi-
tion 2.2, it follows that the square function associated to Θt−MΘt(1,...,1)Pt is bounded
for all 1 < p, p1, . . . , pm < ∞. Using this bound and that |Θt(1, . . . , 1)(x)|2 dt dxt is a
Carleson measure (by assumption)

||S(f1, . . . , fm)||L2 ≤

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|Θt(f1, . . . , fm)−MΘt(1,...,1)Pt(f1, . . . , fm)|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
L2

+
m∏
i=1

(ˆ
Rn+1

+

|Ptfi(x)|pi|Θt(1, . . . , 1)(x)|2
dx dt

t

) 1
pi

.
m∏
i=1

||fi||Lpi .

The final inequality uses the well-known Carleson measure estimate: If dµ(x, t) is a
Carleson measure, then P : f 7→ Ptf(x) is bounded from Lq(Rn) into Lq(Rn+1

+ , dµ)
for 1 < q <∞. �
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The next result allows us to compare the multilinear dyadic averaging operators
At and the multilinear smooth approximation to the identity operators Pt. This
comparison principle will be important in the proof of Theorem 1.1. This is a par-
ticular case of a multilinear version of a result of Duoandikoetxea–Rubio de Francia
in [8].

Proposition 2.5. Let At, Pt, At and Pt be as above. Then for all 1 < pi <∞,
i = 1, . . . ,m, we have the bound∣∣∣∣∣

∣∣∣∣∣
(ˆ ∞

0

|At(f1, . . . , fm)−Pt(f1, . . . , fm)|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp

.
m∏
i=1

||fi||Lpi .

Note that this even holds for 1
m
< p <∞ as long as 1 < pi <∞.

Proof. Define for j = 1, . . . ,m

Ej
t(f1, . . . , fm) =

(
j−1∏
i=1

Atfi

)
(Atfj − Ptfj)

(
m∏

i=j+1

Ptfi

)
.

Here we use the convection that
∏0

i=1Ai =
∏m

i=m+1 Pt = 1. Then we have the follow-
ing decomposition by successively adding and subtracting the term Atf1 · · ·AtfjPt·
·fj+1 · · ·Ptfm

At(f1, . . . , fm)−Pt(f1, . . . , fm) = E1
t (f1, . . . , fm) + Atf1

(
m∏
i=2

Atfi −
m∏
i=2

Ptfi

)

=
2∑

j=1

Ej
t(f1, . . . , fm) + Atf1Atf2

(
m∏
i=3

Atfi −
m∏
i=3

Ptfi

)
=

m∑
j=1

Ej
t(f1, . . . , fm).

It is a standard argument to show that supt>0 |Ptf(x)| . Mf(x) where M is the
Hardy–Littlewood maximal function, and the same inequality holds replacing Pt with
At. Then we use the linear bound of At − Pt which was proved by Duoandikoetxea–
Rubio de Francia [8]∣∣∣∣∣

∣∣∣∣∣
(ˆ ∞

0

|Ej
t(f1, . . . , fm)|2

dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp

.
∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|(At − Pt)fj|2
dt

t

) 1
2 ∏

i̸=j

Mfi

∣∣∣∣∣
∣∣∣∣∣
Lp

≤

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|(At − Pt)fj|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lpj

∏
i̸=j

||Mfi||Lpi .
m∏
i=1

||f ||Lpi .

The square function bound for At −Pt easily follows. �

3. Proof of Theorem 1.1 with p = 2

We proceed by reducing our arguments to the dyadic case. Using dyadic covering
properties it is easy to see that if (2.2) holds for all dyadic cubes, then (2.2) holds
for all cubes Q with a slightly larger constant. In the following, we prove (2.2) for
dyadic cubes to conclude (1.3) for p = 2, and then proceed with other techniques in
the next section.
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3.1. Decomposition of dyadic cubes. We start with a proposition similar
to one used in [17], applied to m collections of pseudo-accretive systems {biQ} for
i = 1, . . . ,m.

Proposition 3.1. Given a m-compatible system of functions {biQ} indexed by
dyadic cubes for i = 1, . . . ,m satisfying (1.10)–(1.13), there exists a collection of
non-overlapping dyadic subcubes of Q, {Qk}, and η ∈ (0, 1)∑

k

|Qk| < (1− η)|Q|,(3.1)

where η does not depend on Q, and for t > τQ(x) and x ∈ Q

1

2B2B3

<
m∏
i=1

|Atb
i
Q(x)| (here WLOG we assume that B2, B3 ≥ 1),(3.2)

where

τQ(x) =

{
ℓ(Qk), x ∈ Qk,

0, x ∈ E,
(3.3)

E = Q\
∪
k

Qk.

Proof. Fix a dyadic cube Q ⊂ Rn and define

a =
1

|Q|

ˆ
Q

m∏
i=1

biQ(x) dx

which satisfies |a| ≥ 1
B2

, where B2 is from (1.11). Now choose from the dyadic
children of Q the cubes that are maximal with respect to the property

Re

[
1

a|Qj|

ˆ
Qj

m∏
i=1

biQ(x) dx

]
≤ 1

2
,

i.e. Qj ⊂ Q is the largest dyadic cube such that the above inequality holds. By the
properties of dyadic cubes, these maximal cubes are non-overlapping. This stopping
time criterion well defines a collection of cubes since

Re

[
1

a|Q|

ˆ
Q

m∏
i=1

biQ(x) dx

]
= 1.

If x ∈ Qk for some k and t > τQ(x), then using (1.12)

|At(b
1
Q, . . . , b

m
Q)(x)| =

m∏
i=1

∣∣∣∣ 1

|Q(x, t)|

ˆ
Q(x,t)

biQ(y) dy

∣∣∣∣
≥ 1

B3

∣∣∣∣∣ 1

|Q(x, t)|

ˆ
Q(x,t)

m∏
i=1

biQ(y) dy

∣∣∣∣∣
≥ |a|
B3

Re

(
1

a|Q(x, t)|

ˆ
Q(x,t)

m∏
i=1

biQ(y) dy

)
≥ 1

2B2B3

.
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Also if x ∈ E, then again using (1.12) and by the stopping time criterion it follows
that

|At(b
1
Q, . . . , b

m
Q)(x)| =

m∏
i=1

∣∣∣∣ 1

|Q(x, t)|

ˆ
Q(x,t)

biQ(y) dy

∣∣∣∣
≥ 1

B3

∣∣∣∣∣ 1

|Q(x, t)|

ˆ
Q(x,t)

m∏
i=1

biQ(y) dy

∣∣∣∣∣
≥ |a|
B3

Re

(
1

a|Q(x, t)|

ˆ
Q(x,t)

m∏
i=1

biQ(y) dy

)
≥ 1

2B2B3

.

Now we also have for i = 1, . . . ,m that

|Q| = Re

[
1

a

ˆ
Q

m∏
i=1

biQ(x) dx

]
≤
∑
k

Re

[
1

a

ˆ
Qk

m∏
i=1

biQ(x) dx

]
+

ˆ
E

∣∣∣∣∣
m∏
i=1

biQ(x)

∣∣∣∣∣ dx
≤ 1

2

∑
k

|Qk|+ |E|
1
q′

(ˆ
E

∣∣∣∣∣
m∏
i=1

biQ(x)

∣∣∣∣∣
q

dx

) 1
q

≤ 1

2
|Q|+ |E|

1
q′

m∏
i=1

(ˆ
Q

|biQ(x)|qi dx
) 1

qi

≤ 1

2
|Q|+Bm

1 |E|
1
q′ |Q|

1
q .

It follows that η|Q| < |E| where we may take η = 1
(2Bm

1 )q
′ ∈ (0, 1). �

3.2. Reduction to Carleson estimates. We pause for a moment to discuss the
strategy of the remainder of the proof of Theorem 1.1 for p = 2. By Proposition 2.4
and the discussion at the beginning of this section, it is sufficient to show that the
estimate (2.2) holds for dyadic cubes. In order to show this, we prove an intermediate
estimate: For all dyadic cubes Q ⊂ Rn

ˆ
Q

(ˆ ℓ(Q)

τQ(x)

|Θt(1, . . . , 1)(x)|2
dt

t

) q
2

dx ≤ C|Q|.(3.4)

The remainder of this section is dedicated to proving (3.4), and the next section
completes the proof of Theorem 1.1 for p = 2 by proving (2.2) from the reduction in
this section.

Proposition 3.2. For all dyadic cubes Q ⊂ Rn, (3.4) holds with τQ defined in
(3.3).

Proof. We have from Proposition 3.1 that |At(b
1
Q, . . . , b

m
Q)(x)| ≥ 1

2Bm
2 B3

, so it
follows that

ˆ
Q

(ˆ ℓ(Q)

τQ(x)

|Θt(1, . . . , 1)(x)|2
dt

t

) q
2

dx

≤ 2Bm
2 B3

ˆ
Q

(ˆ ℓ(Q)

τQ(x)

|Θt(1, . . . , 1)(x)At(b
1
Q, . . . , b

m
Q)(x)|2

dt

t

) q
2

dx.
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Now we consider the operator MΘt(1,...,1)At(f1, . . . , fm), which we decompose in the
following way

MΘt(1,...,1)At =MΘt(1,...,1)(At −Pt) + (MΘt(1,...,1)Pt −Θt) + Θt = R
(1)
t +R

(2)
t +Θt

By Proposition 2.5, it follows that
ˆ
Rn

(ˆ ∞

0

|R(1)
t (b1Q, . . . , b

m
Q)|2

dt

t

) q
2

dx .
m∏
i=1

||biQ||
q
Lq1 . |Q|.

Using Proposition 2.2, it follows that the R(2)
t term is controlled as desired

ˆ
Rn

(ˆ ∞

0

|R(2)
t (b1Q, . . . , b

m
Q)|2

dt

t

) q
2

dx . |Q|,

and by hypothesis (1.13),

ˆ
Q

(ˆ ℓ(Q)

0

|Θt(b
1
Q, . . . , b

m
Q)|2

dt

t

) q
2

dx ≤ B4|Q|.

Then we may choose C independent of Q such that (3.4) holds. �
3.3. End of the proof. Finally we use the reduction from the previous section

to complete the proof of Theorem 1.1.

Lemma 3.3. There exist N > 0 and β ∈ (0, 1) such that for every dyadic cube
Q

|{x ∈ Q : gQ(x) > N}| ≤ (1− β)|Q|,(3.5)

where

gQ(x) =

(ˆ ℓ(Q)

0

|Θt(1, . . . , 1)(x)|2
dt

t

) 1
2

,(3.6)

where τQ(x) is defined as in (3.3).

Proof. Fix a dyadic cube Q ⊂ Rn, and define for N > 0

ΩN = {x ∈ Q : gQ(x) > N}

Let Qk and E be as in Proposition 3.1, without loss of generality take N,C > 1, and
using Chebychev’s inequality it follows that

|ΩN | ≤
∑
k

|Qk|+ |{x ∈ E : gQ(x) > N}| ≤ (1− η)|Q|+ C

N q
|Q|

where C is chosen from (3.4) in Proposition 3.2 as discussed above. Now fix N large
enough so that C

Nq < η/2. Then (3.5) easily follows

|ΩN | ≤ (1− η)|Q|+ C

N q
|Q| < (1− β)|Q|

where β = η
2
> 0. �

We can finally prove the main theorem for p = 2.
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Proof. Fix ϵ ∈ (0, 1) and define for dyadic cube Q ⊂ Rn with ℓ(Q) > ϵ

gQ,ϵ(x) =

(ˆ min(1/ϵ,ℓ(Q))

ϵ

|Θt(1, . . . , 1)(x)|2
dt

t

) 1
2

and gQ,ϵ = 0 if ℓ(Q) ≤ ϵ. Also define

K(ϵ) = sup
Q

1

|Q|

ˆ
Q

gQ,ϵ(x) dx

where the supremum is over all dyadic cubes. Fix a dyadic cube Q and define

ΩN,ϵ = {x ∈ Q : gQ,ϵ(x) > N}.
Note that gQ,ϵ is defined depending only on the cube Q and ϵ, completely independent
of Qk, τQ(x) and η. It follows from (1.6) that Θt(1, . . . , 1)(x) is γ-Hölder continuous
in x and hence so is gQ,ϵ (with constant depending on ϵ). Fix 0 < η < 1 small enough
so that N(1− η) > n, and we have

|gQ,ϵ(x)− gQ,ϵ(x
′)|2 .

ˆ min(1/ϵ,ℓ(Q))

ϵ

(t−1|x− x′|)2γη

·
m∏
i=1

(ˆ
Rn

(
t−n

(1 + t−1|x− yi|)N(1−η)
+

t−n

(1 + t−1|x′ − yi|)N(1−η)

)
dyi

)2
dt

t

. ϵ−2−γ|x− x′|2γη.
Then gQ,ϵ is continuous, ΩN,ϵ is open, and so we may make the Whitney decomposi-
tion Qj of ΩN,ϵ. That is there exists a collection of cubes {Qj} such that∪

j

Qj = ΩN,ϵ,(3.7)

√
nℓ(Qj) ≤ dist(Qj,Ω

c) ≤ 4
√
nℓ(Qj),(3.8)

∂Qj ∩Qk ̸= ∅ =⇒ 1

4
≤ ℓ(Qj)

ℓ(Qk)
≤ 4,(3.9)

given a cube, there are at most 12n that touch it.(3.10)

Then, if FN,ϵ = Q\ΩN,ϵ,ˆ
Q

g2Q,ϵ(x) dx =

ˆ
FN,ϵ

g2Q,ϵ(x) dx+
∑
j

ˆ
Qj

g2Q,ϵ(x) dx

≤ N2|Q|+
∑
j

ˆ
Qj

ˆ min(1/ϵ,ℓ(Qj))

ϵ

|Θt(1, . . . , 1)(x)|2
dt dx

t

+
∑
j

ˆ
Qj

ˆ min(1/ϵ,ℓ(Q))

max(ϵ,ℓ(Qj)

|Θt(1, . . . , 1)(x)|2
dt dx

t

≤ N2|Q|+K(ϵ)
∑
j

|Qj|+
∑
j

ˆ
Qj

ˆ min(1/ϵ,ℓ(Q))

max(ϵ,ℓ(Qj))

|Θt(1, . . . , 1)(x)|2
dt dx

t

≤ N2|Q|+K(ϵ)(1− β)|Q|+
∑
j

ˆ
Qj

ˆ min(1/ϵ,ℓ(Q))

max(ϵ,ℓ(Qj))

|Θt(1, . . . , 1)(x)|2
dt dx

t
.
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To control the last term, since Qj is a Whitney decomposition, there exists xj ∈ FN,ϵ

such that
dist(xj, Qj) ≤ (4

√
n+ 1)ℓ(Qj).

We have for x ∈ Qj

|Θt(1, . . . , 1)(x)−Θt(1, . . . , 1)(xj)|

≤
ˆ
Rmn

|θt(x, y1, . . . , ym)− θt(xj, y1, . . . , ym)|
m∏
i=1

dyi

. (t−1|x− xj|)γη
m∏
i=1

ˆ
Rn

(
t−n

(1 + t−1|x− yi|)N(1−η)
+

t−n

(1 + t−1|xj − yi|)N(1−η)

)
dyi

. (t−1ℓ(Qj))
γη.

So choose c1 which depends only on the dimension such that the inequality

|Θt(1, . . . , 1)(x)−Θt(1, . . . , 1)(xj)| ≤ c1(t
−1ℓ(Qj))

γη

holds for all x ∈ Qj. Then∑
j

ˆ
Qj

ˆ min(1/ϵ,ℓ(Q))

max(ϵ,ℓ(Qj))

|Θt(1, . . . , 1)(x)|2
dt dx

t

≤
∑
j

ˆ
Qj

ˆ c1ℓ(Qj)

max(ϵ,ℓ(Qj))

|Θt(1, . . . , 1)(x)|2
dt dx

t

+
∑
j

ˆ
Qj

ˆ min(ℓ(Q),1/ϵ)

c1ℓ(Q)

|Θt(1, . . . , 1)(xj)|2
dt dx

t

+
∑
j

ˆ
Qj

ˆ min(ℓ(Q),1/ϵ)

c1ℓ(Q)

|Θt(1, . . . , 1)(x)−Θt(1, . . . , 1)(xj)|2
dt dx

t

= I + II + III.

We have that

I ≤ ||Θt(1, . . . , 1)||2L∞

∑
j

ˆ
Qj

ˆ c1ℓ(Qj)

ℓ(Qj)

dt dx

t
. c1

∑
j

|Qj| . |Q|.

Since xj ∈ FN,ϵ and gQ,ϵ(xj) ≤ N , it follows that

II ≤
∑
j

ˆ
Qj

ˆ ℓ(Q)

0

|Θt(1, . . . , 1)(xj)|2
dt dx

t
=
∑
j

|Qj|gQ,ϵ(xj)
2 . N2|Q|.

For all x ∈ Qj, |Θt(1, . . . , 1)(x)−Θt(1, . . . , 1)(xj)| ≤ c1(t
−1ℓ(Qj))

γη, so

III .
∑
j

ˆ
Qj

ˆ ∞

c1ℓ(Qj)

(t−1ℓ(Qj))
γη dt dx

t
.
∑
j

|Qj| ≤ |Q|.

Therefore K(ϵ) ≤ C(1 +N2) + (1− β)K(ϵ) and hence

K(ϵ) ≤ C(1 +N2)

β
.
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Therefore
1

|Q|

ˆ
Q

ˆ ℓ(Q)

0

|Θt(1, . . . , 1)(x)|2
dt dx

t

= sup
0<ϵ<1

sup
ℓ(Q)>ϵ

1

|Q|

ˆ
Q

ˆ ℓ(Q)

ϵ

|Θt(1, . . . , 1)(x)|2
dt dx

t
= sup

0<ϵ<1
K(ϵ) ≤ C(1 +N2)

β
.

Hence |Θt(1, . . . , 1)(x)|2 dt dxt is a Carleson measure and by Proposition 2.2 the square
function bound (1.3) holds with constant C(1+N2)/β for p = 2 and 1 < p1, . . . , pm <
∞. �

This proves theorem 1.1 for p = 2. In the following section we prove (1.3) holds
for all 2 ≤ p < ∞ and 1 < p1, . . . , pm < ∞, but first we make some remarks on
compatible pseudo-accretive systems.

3.4. A comment on compatible pseudo-accretive systems. The purpose
of this discussion is to better understand the conditions (1.11) and (1.12) through
various examples. In the first example we construct a class of non-trivial classes of
compatible pseudo-accretive systems.

Example 3.4.1. Suppose there exists ϵ > 0 such that ϵ ≤ biQ(x) ≤ ϵ−1 for a.e.
x ∈ Q, all dyadic cubes Q ⊂ Rn and each i = 1, . . . ,m, then (1.11) and (1.12) hold
as well,

ϵm ≤

∣∣∣∣∣ 1

|R|

ˆ
R

m∏
i=1

biQ(x) dx

∣∣∣∣∣ ≤ ϵ−m ≤ ϵ−2m
∏
i=1

∣∣∣∣ 1

|R|

ˆ
R

biQ(x) dx

∣∣∣∣ .
Notice that this is a uniform condition for biQ. That is there is no dependence between
the functions, as long as they are each in this class of functions. This class of functions
includes many commonly used functions. For example, the following functions defined
for each dyadic cube Q ⊂ Rn satisfy ϵ < bQ < ϵ−1 uniformly on the cube Q for some
ϵ.

Characteristic functions: bQ(x) = χQ(x),

Gaussian functions: bQ(x) = e
−

|x−xQ|2

ℓ(Q)2 ,

Poisson kernels: bQ(x) =
ℓ(Q)n+1

(ℓ(Q)2 + |x− xQ|2)
n+1
2

.

Example 3.4.2. Consider the pseudo-accretive systems on R for dyadic cubes
Qj,k = [j2−k, (j + 1)2−k) defined

b1Qj,k
= b1j,k = χ[j2−k,(j+3/4)2−k) − χ[(j+3/4)2−k,(j+1)2−k),

b2Qj,k
= b2j,k = χ[(j+1/4)2−k,(j+1)2−k) − χ[j2−k,(j+1/4)2−k).

It follows that bij,k satisfies (1.11) for i = 1, 2 by a quick computation

1

|Qj,k|

ˆ
Qj,k

b1j,k(x) dx =
1

|Qj,k|

ˆ
Qj,k

b2j,k(x) dx =
1

2
.

It is a bit more complicated to see that b1j,k, b2j,k satisfy (1.12), but it does hold: For
R = Qj,k, it follows that the left hand side of (1.12) is zero so the inequality holds.
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Now if R ⊂ Qj,k is any dyadic subcube contained in [j2−k, (j+1/2)2−k), then b1j,k = 1
on R and

1

|R|

ˆ
R

b1j,k(x)b
2
j,k(x) dx =

1

|R|

ˆ
R

b2j,k(x) dx =
2∏

i=1

1

|R|

ˆ
R

bij,k(x) dx.

A symmetric argument holds when R ⊂ [(j+1/2)2−k, (j+1)2−k). Therefore b1j,k, b2j,k
are compatible pseudo-accretive systems. This example is especially interesting be-
cause there are subcubes where bij,k has mean zero, b1j,k · b2j,k has mean zero, but the
particular structure of these functions allow for (1.11) and (1.12) to hold.

Example 3.4.3. There exist pseudo-accretive systems that are not compatible.
To construct such a system, we consider the bilinear setting and R. Consider the
cube Q = [0, 2] ⊂ R and define

bQ = b1Q(x) = b2Q(x) =

(
x− 1

2

)
χ[0,2](x).

We have that biQ satisfy (1.11) for i = 1, 2∣∣∣∣ˆ
[0,2]

bQ(x) dx

∣∣∣∣ = 1,

but if we consider the dyadic subcube [0, 1] ⊂ [0, 2], the functions violate (1.12)∣∣∣∣ˆ
[0,1]

b1Q(x)b
2
Q(x) dx

∣∣∣∣ = ˆ 1

0

(
x2 − x+

1

2

)
dx =

1

3
,

2∏
i=1

∣∣∣∣ˆ
[0,1]

biQ(x) dx

∣∣∣∣ = (ˆ 1

0

(
x− 1

2

)
dx

)2

= 0.

Here it is apparent that the failure of condition (1.12) is caused by the cancellation
of b1Q and b2Q in the same location.

From Examples 3.4.1 and 3.4.2, we can see that there are non-trivial compatible
pseudo-accretive system, even some with cancellation on dyadic subcubes. Exam-
ple 3.4.3 demonstrates that there are pseudo-accretive systems that aren’t compati-
ble, and furthermore the functions in Example 3.4.3 fail to satisfy the compatibility
condition (1.12) because they have cancellation behavior in the same location.

4. Extending square function bounds

In this section we prove a multilinear BMO bound and use it as an endpoint for
interpolation. More precisely, we prove the following L∞

c ×· · ·×L∞
c → BMO bound.

Theorem 4.1. Suppose Θt satisfies (1.4)-(1.6) and the square function S asso-
ciated to Θt is bounded from Lp1 × · · · × Lpm into Lp for some 1 ≤ p, pi ≤ ∞ that
satisfy (1.7). Then for all f1, . . . , fm ∈ L∞

c

||S(f1, . . . , fm)||BMO .
m∏
i=1

||fi||L∞ ,(4.1)

where the constant is independent of fi (and in particular the support of fi) for
i = 1, . . . ,m.



710 Ana Grau de la Herrán, Jarod Hart and Lucas Oliveira

This is essentially a square function version of a corresponding result for mul-
tilinear Calderón–Zygmund operators from Grafakos–Torres [13]: If a multilinear
Calderón–Zygmund operator T is bounded from Lp1 × · · · × Lpm into Lp for some
1 < p, p1, . . . , pm < ∞, then T is bounded from L∞

c × · · · × L∞
c into BMO. In [13],

the authors prove this using an inductive argument by reducing the m-linear case
to the m − 1 linear one. Here we present a direct multilinear proof adapted from
the classical linear version due to Spanne [25], Peetre [23] and Stein [26], but prior
to this proof we briefly discuss why we don’t conclude here that S is bounded from
L∞ × · · · × L∞ into BMO.

In [13], the authors also conclude that if an m-linear Calderón–Zygmund operator
T is bounded, then T is bounded from L∞ × · · · × L∞ into BMO estimate. One
difficultly in this problem is that T is not necessarily even defined for f1, . . . , fm ∈ L∞.
So one must define T for f1, . . . , fm ∈ L∞, and the definition for such functions must
be consistent with the given definition of T in the case that fi ∈ Lpi ∩ L∞. As it
turns out (see [13]), it is reasonable to define for f1, . . . , fm ∈ L∞

T (f1, . . . , fm) = lim
R→∞

T (f1χB(0,R), . . . , fmχB(0,R))

−
ˆ
|yi|>1

K(0, y1, . . . , ym)
m∏
i=1

fi(yi)χB(0,R)(yi) dyi,

where the limit is taken in the dual of C∞
c,0(R

n). Here C∞
c,0(R

n) is the collection of
all smooth compactly supported functions with mean zero. As expected, this well
defines T on L∞ × · · · × L∞ modulo a constant, which is permissible as an element
of BMO. The existence of this limit follows from the linearity and kernel estimates
of T . Along with the L∞

c × · · · × L∞
c → BMO estimate for T , the existence of this

limit implies that T is bounded from L∞ × · · · × L∞ into BMO.
It is typically reasonable to expect the square function S defined in (1.2) to

satisfy the same boundedness properties as m linear Calderón–Zygmund operators,
but despite the estimate for S on L∞

c × · · · × L∞
c , we are unable to make the same

boundedness conclusion on L∞ × · · · × L∞ for S as can be made for T in the last
paragraph. The reason for this essentially comes down to the fact that S is not a
linear operator. If one tries to mimic the proof from [13] replacing T with S, the
above limit does not necessarily exist. So the problem becomes finding a suitable
definition for S on L∞ × · · · × L∞, as the classical definition does not necessarily
exist (at least using the same proof techniques). Another approach to define S on
L∞ × · · · × L∞ is to view Θt as an m-linear operator taking values in L2(R+,

dt
t
).

In this case one may be able to define S as a weak limit of an appropriate space
of smooth functions taking values in L2(R+,

dt
t
). Since we only need the previous

estimate for compactly supported functions to prove our interpolation theorem, we
will not pursue this approach here.

Proof. Assume that fi ∈ L∞
c for i = 1, . . . ,m and B = B(xB, R) ⊂ Rn is a ball

for some R > 0 and xB ∈ Rn. Define

cB =

(ˆ ∞

0

|Θt(f1, . . . , fm)(xB)−Θt(f1χ2B, . . . , fmχ2B)(xB)|2
dt

t

) 1
2

,
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which exists since f1, . . . , fm ∈ Lp for all 1 ≤ p ≤ ∞ since we have assumed that
f1, . . . , fm are compactly supported. Then it follows that
ˆ
B

|S(f1, . . . , fm)(x)− cB| dx ≤
ˆ
B

S(f1χ2B, . . . , fmχ2B)(x)| dx

+
∑
F⃗∈Λ

ˆ
B

(ˆ R

0

(|Θt(f1χF1 , . . . , fmχFm)(x)|+|Θt(f1χF1 , . . . , fmχFm)(xB)|)2
dt

t

) 1
2

dx

+
∑
F⃗∈Λ

ˆ
B

(ˆ ∞

R

|Θt(f1χF1 , . . . , fmχFm)(x)−Θt(f1χF1 , . . . , fmχFm)(xB)|2
dt

t

) 1
2

dx

= I + II + III,

where

Λ = {(F1, . . . , Fm) : Fi = 2B or Fi = (2B)c}\{(2B, . . . , 2B)}.

That is Λ is the collection of m vectors of sets with with all combinations of compo-
nents 2B and (2B)c except for (2B, . . . , 2B). Note that |Λ| = 2m − 1. We can easily
estimate I using that S is bounded from Lp1 × · · · × Lpm into Lp

I ≤ |2B|
1
p′ ||S(f1χ2B, . . . , fmχ2B)||Lp . |B|

1
p′

m∏
i=1

||fiχ2B||Lpi . |B|
m∏
i=1

||fi||L∞ .

Then to bound II, take F⃗ ∈ Λ, x ∈ B, and we first look at the integrand for x ∈ B

|Θt(f1χF1 , . . . , fmχFm)(x)| .
ˆ
Rn

t−mn

m∏
i=1

fi(yi)χFi
(yi)

(1 + t−1|x− yi|)N+γ
dyi

≤
m∏
j=1

||fj||L∞

( ∏
i:Fi=2B

ˆ
Rn

1

(1 + |x− yi|)N+γ
dyi

) ∏
i:Fi=(2B)c

ˆ
|yi|>R

2N+γ tN+γ−n

|yi|N+γ
dyi


.

m∏
j=1

||fj||L∞

 ∏
i:Fi=(2B)c

tN+γ−n

RN+γ−n

 . tk0(N+γ−n)R−k0(N+γ−n)

m∏
j=1

||fj||L∞ ,

where k0 ∈ N is the number of terms in F⃗ such that Fi = (2B)c. It is important
here that k0 ≥ 1. Now recall that |Λ| = 2m − 1, and it is now trivial to bound I,

II .
m∏
j=1

||fj||L∞

ˆ
B

(ˆ R

0

(tk0(N+γ−n)R−k0(N+γ−n))2
dt

t

) 1
2

dx . |B|
m∏
j=1

||fj||L∞ .

To bound III, for a fixed F⃗ ∈ Λ and x ∈ B, we look at the integrand

|Θt(f1χF1 , . . . , fmχFm)(x)−Θt(f1χF1 , . . . , fmχFm)(xB)|

.
ˆ
Rmn

t−mn(t−1|x− xB|)γ
m∏
i=1

(
fi(yi)χFi

(yi)

(1 + t−1|x− yi|)N+γ
+

fi(yi)χFi
(yi)

(1 + t−1|xB − yi|)N+γ

)
dyi
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. t−γRγ

m∏
i=1

||fi||L∞

ˆ
Rn

(
t−n

(1 + t−1|x− yi|)N+γ
+

t−n

(1 + t−1|xB − yi|)N+γ

)
dyi

. t−γRγ

m∏
i=1

||fi||L∞ .

Then once more using that |Λ| = 2m − 1, we can bound III

III . |B|
m∏
j=1

||fj||L∞

(ˆ ∞

R

(t−γRγ)2
dt

t

) 1
2

. |B|
m∏
j=1

||fj||L∞ .

Then for fi ∈ L∞
c , i = 1, . . . ,m, (4.1) holds with constant independent of f1, . . . , fm.

�

Corollary 4.2. If θt satisfies (1.4)–(1.6) and (1.3) holds for p = 2 and 1 <
p1, . . . , pm <∞, then (1.3) holds for all 2 ≤ p <∞ and 1 < p1, . . . , pm <∞.

Proof. Define the sharp maximal function

M#f(x) = sup
Q∋x

1

|Q|

ˆ
Q

|f(y)− fQ|dy.

By definition we have that ||f ||BMO = ||M#f ||L∞ . Also it is easy to see that
||M#f ||Lp . ||Mf ||Lp , where M is the Hardy–Littlewood maximal operator. Then
using the L2 bound of M and the hypothesis on S, it follows that for all f1, . . . , fm ∈
L∞
c

||M#S(f1, . . . , fm)||L2 . ||MS(f1, . . . , fm)||L2 .
m∏
i=1

||fi||Lpi

and by theorem 4.1

||M#S(f1, . . . , fm)||L∞ = ||S(f1, . . . , fm)||BMO .
m∏
i=1

||fi||L∞ .

Then by multilinear Marcinkiewicz interpolation, it follows that

||M#S||Lp .
m∏
i=1

||fi||Lpi

for all fi ∈ L∞
c where 2 ≤ p < ∞ and 1 < p1, . . . , pm < ∞ satisfying (1.7) with

constant independent of f1, . . . , fm. Since L∞
c is dense in Lq for all 1 ≤ q < ∞,

it follows that M#S is bounded from Lp1 × · · · × Lpm into Lp for all 2 ≤ p < ∞
and 1 < p1, . . . , pm < ∞. We have also from a result of Fefferman–Stein [9] that
||f ||Lq . ||M#f ||Lq when 1 ≤ q < ∞ and f satisfies Mdf ∈ Lq where Md is the
dyadic maximal function (in particular, when f ∈ Lq for 1 < q <∞). Therefore

||S(f1, . . . , fm)||Lp . ||M#S(f1, . . . , fm)||Lp .
m∏
i=1

||fi||Lpi ,

which completes the proof. �
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5. Proof of Theorem 1.2

The way we will prove theorem 1.2 is to first assume that T satisfies

T ∗1(1, . . . , 1) = · · · = T ∗m(1, . . . , 1) = 0(5.1)

in place of (1.15), and prove that T is bounded. Then we proceed by using a multilin-
ear version of the T1 paraproduct used in the original T1 theorem by David–Journé
[6]. The bilinear version of this paraproduct was constructed in [16].

Lemma 5.1. Given β ∈ BMO, there exists a multilinear Calderón–Zygmund
operator L bounded from Lp1 × · · · ×Lpm into Lp for all 1 < pi <∞ satisfying (1.7)
such that

L(1, . . . , 1) = β and L∗i(1, . . . , 1) = 0 for i = 1, . . . ,m.(5.2)

We will give a proof of this lemma at the end of this section. First we state
the definition of standard Calderón–Zygmund kernel, and we prove the theorem 1.2
assuming lemma 5.1.

Definition 5.2. A function K : Rn+1\{(x, . . . , x) ∈ Rn+1 : x ∈ Rn} → C is a
standard m-linear Calderón–Zygmund kernel if for all x, x′, y1, . . . , ym, y′1, . . . , y′m ∈
Rn,

|K(x, y1, . . . , ym)| .
1

(|x− y1|+ · · ·+ |x− ym|)mn
,

|K(x, y1, . . . , ym)−K(x, y1, . . . , y
′
i, . . . , ym)| .

|yi − y′i|γ

(|x− y1|+ · · ·+ |x− ym|)mn+γ

whenever |yi − y′i| ≤ max(|x− y1|, . . . , |x− ym|)/2,

|K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)| .
|x− x′|γ

(|x− y1|+ · · ·+ |x− ym|)mn+γ

whenever |x − x′| ≤ max(|x − y1|, . . . , |x − ym|)/2 for some γ > 0. Given a m-
linear operator T that is continuous from S × · · · × S into S ′, T has standard
Calderón–Zygmund kernel K if for all f0, . . . , fm ∈ C∞

0 such that
m∩
i=0

supp(fi) = ∅,

T can be written as an absolutely convergent integral

⟨T (f1, . . . , fm), f0⟩ =
ˆ
R(m+1)n

K(y0, y1, . . . , ym)
m∏
i=0

fi(yi) dyi.

We continue now to prove theorem 1.2 assuming lemma 5.1.

Proof. Denote by Pt be a smooth approximation to identity operators with
smooth compactly supported kernels that satisfy

f = lim
t→0

Ptf and 0 = lim
t→∞

Ptf

in S for f ∈ S0. There exist Littlewood–Paley–Stein projection operators Q(i)
t for

i = 1, 2 with smooth compactly supported kernels such that t d
dt
P 2
t = Q

(2)
t Q

(1)
t . Using
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these operators, we decompose T for fi ∈ S0, i = 0, . . . ,m,

| ⟨T (f1, . . . , fm), f0⟩ | =
∣∣∣∣ˆ ∞

0

t
d

dt

⟨
T (P 2

t f1, . . . , P
2
t fm), P

2
t f0
⟩ dt
t

∣∣∣∣
≤

m∑
i=0

ˆ ∞

0

∣∣∣⟨Θ(i)
t (f1, . . . , fi−1, f0, fi+1, . . . fm), Q

(1)
t fi

⟩∣∣∣ dt
t

≤
m∑
i=0

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|Θ(i)
t (f1, . . . , fi−1, f0, fi+1, . . . fm)|2

dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp′

i

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|Q(1)
t fi|2

dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lpi

,

where we define p0 = p′ and

Θ
(i)
t (f1, . . . , fm) = Q

(2) ∗
t T ∗i(P 2

t f1, . . . , P
2
t fm)

and T ∗i is the ith formal transpose of T defined by the pairing for f0, . . . , fm ∈ S⟨
T ∗i(f1, . . . , fm), f0

⟩
= ⟨T (f1, . . . , fi−1, f0, fi+1, . . . , fm), fi⟩ .

This type of decomposition was originally done by Coifman–Meyer in [5], and then
in the bilinear setting in [16]. Since 1 < p1, . . . , pm < ∞, the second term in above
can be bounded by ||fi||Lpi using a Littlewood–Paley–Stein estimate for Q(1)

t . We
have also assumed that T ∈ WBP which we define now.

Definition 5.3. For M ∈ N, a function ϕ ∈ C∞
0 (Rn) is a normalized bump of

order M if supp(ϕ) ⊂ B(0, 1) and for all multi-indices α ∈ Nn
0 with |α| ≤M ,

||∂αϕ||L∞ ≤ 1.

An m-linear operator T : S × · · · ×S m → S ′ satisfies the weak boundedness prop-
erty, written T ∈ WBP , if there exists M ∈ N such that for all normalized bumps
ϕ0, . . . , ϕm ∈ C∞

0 of order M∣∣∣⟨T (ϕx,R
1 , . . . , ϕx,R

m ), ϕx,R
0

⟩∣∣∣ . Rn,

where ϕx,R(y) = ϕ
(
y−x
R

)
.

It follows that θ(i)t satisfy (1.4)–(1.6) for i = 0, 1, . . . ,m when |x − y| . t since
T ∈ WBP and for |x − y| & t using the kernel representation of T (for details see
[16]). It follows from Theorem 1.1 and (1.14) that (1.3) holds for all 2 ≤ p <∞ and
1 < pi <∞ where S is the square function associated to Θ

(0)
t defined by (1.2). Also

it follows from [15] or [11] that (1.3) holds for all 1 < p, pi <∞ where S is the square
function associated to Θ

(i)
t defined by (1.2) for i = 1, . . . ,m. Now fix 2 ≤ p < ∞

and 1 < pi < ∞ such that (1.7) holds. For example take pi = 2m and p = 2. Then
p′i =

2m
2m−1

> 1 for i = 1, . . . ,m. Using this choice of indices, it follows from (1.3) that
T is bounded from L2m×· · ·×L2m into L2, and hence is bounded from Lp1×· · ·×Lpm

into Lp for all 1 < p1, . . . , pm <∞ such that (1.7) holds (see for example [13]). Here
we have used that∣∣∣∣∣

∣∣∣∣∣
(ˆ ∞

0

|Θ(0)
t (f1, . . . , fm)|2

dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp

.
m∏
i=1

||fi||Lpi
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and that for j = 1, . . . ,m,∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|Θ(j)
t (f1, . . . , fj−1, f0, fj+1, . . . , fm)|2

dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp′

i

. ||f0||Lp′

∏
i̸=j

||fi||Lpi .

This proves the reduction case of theorem 1.2 where we assumed (5.1) in place of
(1.15). Now assuming that lemma 5.1 holds, we prove the full theorem 1.2 where T
satisfies (1.15). Given T satisfying the hypotheses of theorem 1.2, by lemma 5.1 there
exist operators bounded m-linear Calderón–Zygmund operators L1, . . . , Lm such that

L∗i
i (1, . . . , 1) = T ∗i(1, . . . , 1) and L∗j

i (1, . . . , 1) = 0 for i ̸= j.

Define

T̃ (f1, . . . , fm) = T (f1, . . . , fm)−
m∑
i=1

Li(f1, . . . , fm).

Then T̃ satisfies for i = 1, . . . ,m

T̃ ∗i(1, . . . , 1) = T ∗i(1, . . . , 1)−
m∑
i=1

L∗i
i (1, . . . ,m) = 0.

Now for any dyadic cube Q ⊂ Rn we bound T̃ as in (1.14),

ˆ
Q

(ˆ ℓ(Q)

0

|QtT̃ (Ptb
1
Q, . . . , Ptb

m
Q)|2

dt

t

) 1
2

dx

≤
m∑
i=1

ˆ
Q

(ˆ ℓ(Q)

0

|QtL
∗i
i (Ptb

1
Q, . . . , Ptb

m
Q)|2

dt

t

) 1
2

dx

+

ˆ
Q

(ˆ ℓ(Q)

0

|QtT (Ptb
1
Q, . . . , Ptb

m
Q)|2

dt

t

) 1
2

dx.

The second term is bounded by |Q| by hypothesis. If we prove that the square
function associated to each termQtL

∗i
i (Ptf1, . . . , Ptfm) is bounded from Lq1×· · ·×Lqm

into Lq, then we bound the first term as well and we can apply the reduced version
to complete the proof. So we have reduced the proof to showing that (1.3) holds for
2 ≤ p <∞ and 1 < p1, . . . , pm <∞ for Θt(f1, . . . , fm) = QtL

∗i
i (Ptf1, . . . , Ptfm) with

its associated kernel θt(x, y1, . . . , ym) and square function S as in (1.2). Since Li is
bounded, it follows that

|θt(x, y1, . . . , ym)| = | ⟨Li(φ
y1
t , . . . , φ

ym
t ), ψx

t ⟩ | . ||ψt||L2

m∏
i=1

||φt||L2m . t−mn.

Also if |x− yi0 | > 4t, then it follows that

|θt(x, y1, . . . , ym)| =

∣∣∣∣∣
ˆ
R(m+1)n

ℓ(u, v1, . . . , vm)ψt(x− u)

(
m∏
i=1

φt(yi − vi) dvi

)
du

∣∣∣∣∣
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=

∣∣∣∣∣
ˆ
R(m+1)n

(ℓ(u, v1, . . . , vm)−ℓ(x, v1, . . . , vm))ψt(x−u)

(
m∏
i=1

φt(yi−vi) dvi

)
du

∣∣∣∣∣
.
ˆ
R(m+1)n

|x− u|γ

(
∑m

i=1 |x− vi|)mn+γ |ψt(x− u)|

(
m∏
i=1

|φt(yi − vi)|dvi

)
du

.
ˆ
|vi0−yi0 |<t

ˆ
|x−u|<t

tγ

|x− vi0 |mn+γ
t−(m+1)ndu dv1 · · · dvm

. t−mn

(1 + t−1|x− yi0 |)mn+γ
.(5.3)

In this computation we use that |x− yi0 | > 4t to replace |x− vi0 | with |x− yi0 |+ t:
For vi0 such that |vi0 − yi0| < t, we have

|x− vi0 | ≥ |x− yi0 | − |yi0 − vi0 | >
1

2
|x− yi0 |+ t.

Since |θt(x, y1, . . . , ym)| . t−mn as well, it follows that θt satisfies (5.3) for all x, yi0 ∈
Rn and i0 = 1, . . . ,m (not just for |x − yi0 | > 4t). Then it follows that θt satisfies
(1.4),

|θt(x, y1, . . . , ym)| .
m∏
i=1

(
t−mn

(1 + t−1|x− yi|)mn+γ

)1/m

=
m∏
i=1

t−n

(1 + t−1|x− yi|)n+γ/m
.

It follows as well that θt satisfies (1.5) and (1.6). Consider

|θt(x, y1, . . . , ym)− θt(x
′, y1, . . . , ym)| =

∣∣∣⟨Li(φ
y1
t , . . . , φ

ym
t ), ψx

t − ψx′

t

⟩∣∣∣
. t−mn(t−1|x− x′|).

This estimate is sufficient for (1.6). Then by symmetric arguments for y1, . . . , ym ∈
Rn, θt satisfies (1.4)–(1.6). Moreover, since Li is bounded it follows that Li(1, . . . , 1) ∈
BMO and so

|Θt(1, . . . , 1)(x)|2 dx
dt

t
= |QtLi(1, . . . , 1)|2 dx

dt

t
is a Carleson measure. Therefore by proposition 2.4 and corollary 4.2, it follows that
(1.3) holds for the square function S associated to Θt = QtLi(Pt ⊗ · · · ⊗ Pt) for any
2 ≤ p < ∞, 1 < p1, . . . , pm < ∞ satisfying (1.7) and for each i = 1, . . . ,m. The
second term above can be bounded since q ≥ 2

ˆ
Q

(ˆ ℓ(Q)

0

|QtT (Ptb
1
Q, . . . , Ptb

m
Q)|2

dt

t

) 1
2

dx ≤ |Q|
q
q′

∣∣∣∣∣∣
∣∣∣∣∣∣
(ˆ ℓ(Q)

0

|Θt(b
1
Q, . . . , b

m
Q)|2

dt

t

) 1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
q

Lq

. |Q|
q
q′

m∏
i=1

||b1Q||
q
Lqi . |Q|.

Therefore T̃ satisfies (1.14) as well and hence is bounded for from Lp1×· · ·×Lpm into
Lp for all 1 < p1, . . . , pm <∞ satisfying (1.7). It follows easily that T is bounded on
the same spaces since T̃ and Li for each i = 1, . . . ,m are. �

Finally we prove the paraproduct construction in lemma 5.1.
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Proof. Let Pt be a smooth approximation to the identity with convolution kernel
supported in B(0, 1). Also fix ψ ∈ C∞

0 radial, real-valued with mean zero such thatˆ ∞

0

ψ̂(te1)
3dt

t
= 1,

where e1 = (1, 0, . . . , 0) ∈ Rn, and define Qtf = ψt ∗ f . It follows thatˆ ∞

0

Q3
tf
dt

t
= f

in Lp for all 1 < p < ∞ and in H1, where Q3
t is the composition of Qt with itself

three times. Now define L with kernel ℓ(x, y1, . . . , ym) by the following

L(f1, . . . , fm) =

ˆ ∞

0

Lt(f1, . . . , fm)
dt

t
=

ˆ ∞

0

Qt

(
(Q2

tβ)
m∏
i=1

Ptfi

)
dt

t
,

ℓ(x, y1, . . . , ym) =

ˆ ∞

0

ℓt(x, y1, . . . , ym)
dt

t

=

ˆ ∞

0

ˆ
Rn

ψt(x− u)Q2
tβ(u)

m∏
i=1

φt(u− yi) du
dt

t
.

We start by analyzing Lt. Define the non-negative measure dµ on Rn+1
+ by

dµ(x, t) = |L̃t(1, . . . , 1)(x)|2 dx
dt

t
= |Q2

tβ(x)|2 dx
dt

t
,

where

L̃t =MQ2
tβ

m∏
i=1

Ptfi.

It follows then that dµ(x, t) is a Carleson measure. It is straightforward to show that
the kernels of L̃t satisfy (1.4)–(1.6) as well (in fact we can take N > mn + 1 since
φ, ψ ∈ C∞

0 , which we will use later). The smoothness in x is easy to show since we
have that L̃t is multiplied by

Q2
tβ(x) =

ˆ
ψt(x− u)Qtβ(u) du

and ψt is smooth. So by proposition 2.4 and corollary 4.2, we have∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|L̃t(f1, . . . , fm)|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp

.
m∏
i=1

||fi||Lpi

for all 2 ≤ p < ∞ and 1 < p1, . . . , pm < ∞. Then for any f0, f1, . . . , fm ∈ S with
||f0||Lp′ ≤ 1,

| ⟨L(f1, . . . , fm), f0⟩ | ≤
ˆ ∞

0

∣∣∣∣∣
ˆ
Rn

(
Q2

tβ(x)
m∏
i=1

Ptfi

)
(x)Qtf0(x) dx

∣∣∣∣∣ dtt
≤

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|L̃t(f1, . . . , fm)|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp

∣∣∣∣∣
∣∣∣∣∣
(ˆ ∞

0

|Qtf0|2
dt

t

) 1
2

∣∣∣∣∣
∣∣∣∣∣
Lp′

. ||f0||Lp′

m∏
i=1

||fi||Lpi .
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Therefore L is bounded for appropriate indices p, p1, . . . , pm. It also follows that ℓ
is a Calderón–Zygmund kernel. To see this, take d =

∑m
i=1 |x − yi| and use (1.4) to

compute

|ℓ(x, y1, . . . , ym)| . d−(N+γ)

ˆ d

0

tN+γ−mndt

t
+

ˆ ∞

d

t−mndt

t
. d−mn.

Similarly when |x− x′| < max(|x− y1|, . . . , |x− ym|)/2, we have

|ℓ(x, y, z)− ℓ(x′, y, z)| . |x− x′|γd−(N+γ)

ˆ d

0

tN+γ−mndt

t
+ |x− x′|γ

ˆ ∞

d

t−mn−γ dt

t

. |x− x′|γd−(mn+γ).

With symmetric arguments for the regularity in y1, . . . , ym, it follows that the kernel
ℓ is an m-linear Calderón–Zygmund kernel. So L is an m-linear Calderón–Zygmund
operator, and is bounded from Lp1 × · · · ×Lpm into Lp for all 1 < pi <∞ when (1.7)
holds.

Now we show (5.2). Let η ∈ C∞
0 with η ≡ 1 on B(0, 1), supp(η) ⊂ B(0, 2), and

ηR(x) = η(x/R). Let ϕ ∈ C∞
0 with mean zero and N such that supp(ϕ) ⊂ B(0, N).

Then to compute L(1, . . . , 1),

⟨L(1, . . . , 1), ϕ⟩ = lim
R→∞

ˆ ∞

R/4

ˆ
Rn

Qtϕ(x) [PtηR(x)]
mQ2

tβ(x) dx
dt

t

+ lim
R→∞

ˆ R/4

0

ˆ
Rn

Qtϕ(x) [PtηR(x)]
mQ2

tβ(x) dx
dt

t
.(5.4)

We may write this only if the two limits on the right hand side of the equation exist.
As we are taking R → ∞ and N is a fixed quantity determined by ϕ, without loss of
generality assume that R > 2N . Note that for t ≤ R/4 and |x| < N + t,

supp(φt(x− ·)) ⊂ B(x, t) ⊂ B(0, N + 2t) ⊂ B(0, R).

Since ηR ≡ 1 on B(0, R), it follows that PtηR(x) = 1 for all |x| < N+t when t ≤ R/4.
Therefore

lim
R→∞

ˆ ∞

R/4

ˆ
Rn

Qtϕ(x) [PtηR(x)]
mQ2

tβ(x) dx
dt

t
=

ˆ
Rn

ˆ ∞

0

Q3
tϕ(x)

dt

t
β(x) dx = ⟨β, ϕ⟩ ,

where we have used that Calderón’s reproducing formula holds in H1. This fact is
due originally due to Folland–Stein [10] in the discrete setting and by Wilson in [27]
in the continuous setting as used here. For any t > 0,

||PtηR||L1 . ||φt|||L1 ||ηR||L1 . Rn,(5.5)
||PtηR||L∞ ≤ ||φt||L1||ηR||L∞ = 1,(5.6)

and for any x ∈ Rn,

|Qtϕ(x)| =
∣∣∣∣ˆ

Rn

(ψt(x− y)− ψt(x))ϕ(y) dy

∣∣∣∣
.
ˆ
Rn

t−n(t−1|y|)|ϕ(y)| dy . t−(n+1).

(5.7)
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Therefore ˆ ∞

R/4

ˆ
Rn

|Qtϕ(x) [PtηR(x)]
mQ2

tβ(x)| dx
dt

t

≤
ˆ ∞

R/4

||PtηR||L1 ||PtηR||m−1
L∞ ||Q2

tβ||L∞ ||Qtϕ||L∞
dt

t

. Rn

ˆ ∞

R/4

t−(n+1)dt

t
. R−1.(5.8)

Hence the second limit in (5.4) exists and tends to 0 as R → ∞. Then ⟨L(1, . . . , 1), ϕ⟩
= ⟨β, ϕ⟩ for all ϕ ∈ C∞

0 with mean zero and hence L(1, . . . , 1) = β as an element of
BMO. Again for any ϕ ∈ C∞

0 with mean zero and supp(ϕ) ⊂ B(0, N), we have for
i = 1, . . . ,m,⟨
Li∗(1, . . . , 1), ϕ

⟩
= lim

R→∞

ˆ R/4

0

ˆ
|x|<N+t

Q2
tβ(x)Ptϕ(x)[PtηR(x)]

m−1QtηR(x) dx
dt

t

+ lim
R→∞

ˆ ∞

R/4

ˆ
|x|<N+t

Q2
tβ(x)Ptϕ(x)[PtηR(x)]

m−1QtηR(x) dx
dt

t
.(5.9)

Once more without loss of generality take R > 2N . When |x| < N + t and t ≤ R/4

supp(ψt(x− ·)) ⊂ B(x, t) ⊂ B(0, N + 2t) ⊂ B(0, R)

and hence QtηR(x) = Qt1(x) = 0. With this it is apparent that the first limit in
(5.9) is 0. Similar to (5.5)–(5.7), for the terms of (5.9) we have ||PtηR||L1 . Rn,
||QtηR||L∞ . 1, and ||Ptϕ||L∞ . t−(n+1). So the second term of (5.9) tends to 0
as R → ∞ just like the second term in computing L(1, . . . , 1) from (5.8). Then
L∗1(1, . . . , 1) = 0, which concludes the proof of Lemma 5.2. �
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