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Abstract. Let k ≥ 0 be an integer and α > 1. Let F be a family of functions meromorphic

in a domain D ⊂ C. If
{

|f (k)|
1 + |f |α

: f ∈ F
}

is locally uniformly bounded away from zero, then F is

normal.

1. Introduction

Recently, there has been renewed activity in the study of the connection between
differential inequalities and normality. A natural point of departure for this subject
is the well-known theorem due to Marty.

Marty’s Theorem. [10, p. 75] A family F of functions meromorphic in a domain
D is normal if and only if {f# : f ∈ F} is locally uniformly bounded in D.

Following Marty’s Theorem, Royden proved the following generalization.

Theorem R. [9] Let F be a family of functions meromorphic in a domain D
with the property that for each compact set K ⊂ D, there is a positive increasing
function hK such that |f ′(z)| ≤ hK(|f(z)|) for all f ∈ F and z ∈ K. Then F is
normal in D.

This result has been significantly extended further in various directions; see [4],
[11] and [13]. Li and Xie established a different kind of generalization of Marty’s
Theorem, which involves higher derivatives.

Theorem LX. [5] Let F be a family of functions meromorphic in a domain D
such that each f ∈ F has zeros only of multiplicities ≥ k, k ∈ N. Then F is normal
in D if and only if the family{

|f (k)(z)|
1 + |f(z)|k+1

: f ∈ F
}

is locally uniformly bounded in D.
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In [7], the second and the third authors gave a counterexample to the validity of
Theorem LX, without the condition on the multiplicities of zeros for the case k = 2.

Concerning differential inequalities with the reversed sign of the inequality, Grahl,
and the second author proved the following result, which may be considered a coun-
terpart to Marty’s Theorem.

Theorem GN. [2] Let F be a family of functions meromorphic in D and C > 0.
If f#(z) > C for every f ∈ F and z ∈ D, then F is normal in D.

Steinmetz [12] gave a shorter proof of Theorem GN, using the Schwarzian deriv-
ative and some well-known facts on linear differential equations.

Then in [6], Liu together with the second and third authors generalized Theo-
rem GN and proved the following result.

Theorem LNP. Let 1 ≤ α < ∞ and C > 0. Let F be the family of all
meromorphic functions f in D such that

|f ′(z)|
1 + |f(z)|α

> C

for every z ∈ D.
Then the following hold:
(1) if α > 1, then F is normal in D;
(2) if α = 1, then F is quasi-normal in D but not necessarily normal.

Observe that (2) of Theorem LNP is a differential inequality that distinguish
between quasi-normality to normality.

In this paper, we continue to study differential inequalities with the reversed sign
(“≥”) and prove the following general theorem.

Theorem 1. Let D be a domain in C. Let k ≥ 0 be an integer, C > 0, α > 1
constants. Then the family F of all functions f meromorphic in D such that

(1)
|f (k)(z)|

1 + |f(z)|α
> C, z ∈ D,

is normal.

Let us set some notation. For z0 ∈ C and r > 0 we put ∆(z0, r) = {z : |z−z0| <
r} and ∆(z0, r) = {z : |z − z0| ≤ r}. We write fn(z)

χ⇒ f(z) on D to indicate that
the sequence {fn(z)} converges to f(z) in the spherical metric, uniformly on compact
subsets of D, and fn(z) ⇒ f(z) on D if the convergence is also in the Euclidean
metric.

We need two lemmas for the proof.

2. Auxiliary lemmas

The first lemma we need is the lemma of Chen and Gu [1, Thm. 2], see also [8,
Lemma 2]. Observe that this is an “if and only if” lemma.

Lemma 1. Let F be a family of functions meromorphic in a domain D ⊂ C, all
of whose zeros have multiplicity at least m, and all of whose poles have multiplicity
at least p, and let −p < α < m. Then F is not normal at some z0 ∈ D if and
only if there exist sequences {fn}∞n=1 ⊂ F , {zn}∞n=1 ⊂ D, {ρn}∞n=1 satisfying zn → z0,
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ρn → 0+ and
gn(ξ) := ραnfn(zn + ρnξ)

χ⇒ g(ξ) on C,

where g is a nonconstant function meromorphic in C.

The second lemma of which we shall make use is the general criterion of normality
due to Gu.

Lemma 2. [3] Let k ≥ 1 be an integer. Then the family F of all functions
meromorphic in a domain D ⊂ C such that f(z) ̸= 0, f (k)(z) ̸= 1 for every z ∈ D is
normal.

3. Proof of Theorem 1

The case k = 0 is immediate, so we assume that k ≥ 1. Let z0 ∈ D and let
{fn}∞n=1 be a sequence of functions of F . We prove that {fn}∞n=1 is normal at z0.

Separate into two cases.

Case (I). There is some r > 0 and a subsequence of {fn}∞n=1, all of which are
holomorphic in ∆(z0, r).

Without loss of generality, we denote this subsequence also as {fn}∞n=1. Let us
take β > k

α−1
.

If {fn}∞n=1 is not normal at z0, then by Lemma 1 there is a subsequence of {fn}∞n=1

(that will also be denoted by {fn}∞n=1), and sequences zn → z0, ρn → 0+ such that

(2) ρβnfn(zn + ρnξ) ⇒ g(ξ) on C,

where g is a nonconstant entire function in C.
Let ξ0 ∈ C be such that g(ξ0) ̸= 0. Differentiating (2) k times at ξ0 gives

(3) ρβ+k
n f (k)

n (zn + ρnξ0) −→
n→∞

g(k)(ξ0) on C,

By (2) and the choice of ξ0 we have fn(zn + ρnξ0) −→
n→∞

∞, and thus by (1) we
have

|f (k)
n (zn + ρnξ0)| > C|fn(zn + ρnξ0)|α.

Thus ρβ+k
n |f (k)

n (zn+ρnξ0)| > Cρβ+k
n |fn(zn+ρnξ0)|α = C

(
ρβn|fn(zn + ρnξ0)|

)α
ρβ+k−βα
n .

By the choice of β and ξ0 the last expression tends to ∞ as n → ∞, and this is
a contradiction to (3), as g(k)(ξ0) is finite.

Case (II). There are N ∈ N and {zn}∞n=N such that zn −→
n→∞

z0 and fn(zn) = ∞.
Without loss of generality N = 1. Let Kn ≥ 1 denote the multiplicity of the pole
zn of fn. We also assume that there is a sequence z̃n −→

n→∞
z0 such that fn(z̃n) = 0.

Indeed, by (1) we have |f (k)
n (z)| > C for every n ≥ 1 and z ∈ D. If there was no

such sequence z̃n −→ z0 as above, there would exist some ρ > 0 and a subsequence
of {fn}∞n=1 (that we also denote by {fn}∞n=1) such that fn ̸= 0 in ∆(0, ρ). Then by
Lemma 2, {fn}∞n=1 would be normal at z0 and we are done.

Consider now the sequence {f
(k)
n

fn
}∞n=1. If |fn(z)| ≤ 1, then

∣∣∣f (k)
n

fn
(z)
∣∣∣ ≥ ∣∣∣f (k)

n (z)
∣∣∣ ≥

|f (k)
n (z)|

1+|fn(z)|α > C. If |fn(z)| > 1, then
∣∣∣f (k)

n

fn
(z)
∣∣∣ ≥ |f (k)

n (z)|
1+|fn(z)|α > C. Hence {f

(k)
n

fn
}∞n=1 is

normal (in D) and so is { fn

f
(k)
n

}∞n=1. Thus we can assume, after moving to a subsequence
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(that will also be denoted by { fn

f
(k)
n

}∞n=1) that fn

f
(k)
n

⇒
n→∞

H in D. Since for each n, fn

f
(k)
n

is holomorphic in D, and since fn

f
(k)
n

(zn) = fn

f
(k)
n

(z̃n) = 0, H is analytic in D. The

point z̃n is a zero of fn

f
(k)
n

of multiplicity at least 1. The point zn is a zero of fn

f
(k)
n

of
multiplicity exactly k. Thus, if H ̸≡ 0, then by Rouche’s Theorem z0 is a zero of H
of multiplicity at least k + 1. Thus, in both cases H ̸≡ 0 or H ≡ 0, we have

(4)

(
fn

f
(k)
n

)(k)

(zn) →
n→∞

0.

In some small neighborhood of zn (that depends on n), we have

(5) fn(z) =
An

(z − zn)Kn
(1 + hn(z))

where An ̸= 0 is a constant and hn is analytic, hn(zn) = 0.
Differentiating (5) k times gives

(6) f (k)
n (z) =

(−1)kKn(Kn + 1) · · · (Kn + k − 1)An

(z − zn)Kn+k
(1 + h∗

n(z)),

where h∗
n has the same properties of hn. Dividing (5) in (6) and differentiating k

times at zn gives

(7)

(
fn

f
(k)
n

)(k)

(zn) =
(−1)kk!

Kn(Kn + 1) · · · (Kn + k − 1)
.

Now, if {Kn}∞n=1 is bounded, then the right hand side of (7) does not tend to 0 as
n → ∞, contradicting (4).

Otherwise, we can choose n such that Kn > k
α−1

. We then have that both the
nominator and the denominator of (1) are infinite at zn and by (6) we have

|f (k)
n (zn)|

1 + |fn(zn)|α
= lim

z→zn

Kn(Kn+1)···(Kn+k−1)·|An|
|z−zn|Kn+k

|An|α
|z−zn|Knα

= lim
z→zn

|An|1−αKn(Kn + 1) · · · (Kn + k − 1)|z − zn|Kn(α−1)−k.

By the choice of Kn this limit is 0. This is a contradiction to (1) and the proof of
Theorem 1 is completed.
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