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Abstract. Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequa-
lities of the form T∗f . M(Tf) or T∗f . M2(Tf) for certain singular integral operators T , such as
the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control
when T is the Cauchy transform along a Lipschitz graph. We show that this is not possible in
general, and we give a partial positive result when the graph is substituted by a Jordan curve.

1. Introduction

Given a complex Radon measure ν on the plane R2 ≡ C, we define the Cauchy
transform of ν by

Cν(z) =

ˆ
C

dν(ξ)

ξ − z
, z ∈ C \ supp(ν).

The integral in the definition may not be absolutely convergent if z ∈ supp(ν). For
this reason, we consider the truncated operators {Cϵ}ϵ>0, which are given by

Cϵν(z) =

ˆ
|ξ−z|>ϵ

dν(ξ)

ξ − z
, z ∈ C.

Notice that the integral above is absolutely convergent for all z ∈ C if, for example,
|ν|(C) <∞.

If µ is a fixed positive Radon measure in C and f ∈ L1
loc(µ), we set

Cµf(z) = C(f dµ)(z), z ∈ C \ supp(f dµ)
and, for ϵ > 0,

Cµ,ϵf(z) = Cϵ(f dµ)(z), z ∈ C.

We say that C is bounded between two spaces of functions X and Y (typically, Lp(µ),
Lp,∞(µ),. . . ) if the operators Cµ,ϵ are bounded from X to Y uniformly on ϵ > 0.

A particularly interesting case is the one that arises when µ is the arc-length
measure (or some measure comparable to this) supported on a Lipschitz graph. To
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be more precise, let A : R → R be a Lipschitz function, and let Γ ⊂ R2 ≡ C be its
graph, which we parametrize by

z(x) = x+ iA(x), x ∈ R.

We define a measure µ on Γ by

µ(z(E)) = |E|,

where E is any Borel subset of R. We will normally call Cµ the Cauchy transform
along Γ. Recall that, since A is Lipschitz, it is differentiable almost everywhere and,
furthermore, its Lipschitz constant coincides with ∥A′∥∞. Moreover, it is easy to
check that the measure µ that we are considering is comparable to the arc-length
measure on Γ.

In [1], Calderón proved that Cµ is bounded in L2(µ) when ∥A′∥∞ is sufficiently
small. Later, in [2], Coifman, McIntosh and Meyer proved that Cµ is bounded in
L2(µ) for every Lipschitz function A. It also follows from the work of Calderón that

p.v.Cµf(z) = lim
ϵ↘0

Cµ,ϵf(z)

exists for a.e. z ∈ supp(µ) for all f ∈ L2(µ), and, as a result, we can think of Cµ to
be defined as a principal value operator

Cµf(z) = p.v.
ˆ
Γ

f(ξ)

ξ − z
dµ(ξ).

All the considerations regarding the Cauchy transform along Γ can be posed in
terms of its parametrized version, which, abusing notation and language, will be
again denoted by C and called the Cauchy transform along Γ. It is defined, for
f ∈ L2(R) and x ∈ R, by

Cf(x) = p.v.
ˆ
R

f(y)

z(y)− z(x)
dy.

Associated with it, we consider as well the truncated operators

Cϵf(x) =

ˆ
|y−x|>ϵ

f(y)

z(y)− z(x)
dy

and the maximal operator

C∗f(x) = sup
ϵ>0

|Cϵf(x)|.

Notice that the truncated operators Cϵ are not the exact analogues to the truncated
operators Cµ,ϵ defined above, which would correspond to

C̃ϵf(x) =

ˆ
|z(y)−z(x)|>ϵ

f(y)

z(y)− z(x)
dy.

We will deal with this issue later.
From the standard Calderón–Zygmund theory, we obtain that C is bounded in

Lp(R) for 1 < p < ∞, it is bounded from L1(R) to L1,∞(R) and from L∞(R) to
BMO(R), and it satisfies the classical Cotlar’s inequality, i.e., for all f ∈ L2(R) and
all x ∈ R,

C∗f(x) .M(Cf)(x) + Cf(x),
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where M is the Hardy–Littlewood maximal operator, defined for h ∈ L1
loc(R) and

x ∈ R by

Mh(x) = sup
r>0

1

2r

ˆ x+r

x−r

|h(y)| dy.

Here, and throughout the whole paper, the notation A . B will mean that there
exists a constant c > 0, not depending on A or B, such that A ≤ cB. Also, the
notation A ≈ B will be equivalent to A . B . A.

In the papers [7], [8] and [9], Mateu, Orobitg, Pérez and Verdera study the
problem of controlling the maximal singular integral T∗f in terms of the singular
integral Tf . As it is stated in those papers, one reason to consider this problem is to
gain a better understanding of David–Semmes conjecture regarding the possibility of
characterizing uniform rectifiability by the boundedness of the Riesz transforms (see
[3]).

Next we describe some of the results proved in those papers. First, recall that
for a Calderón–Zygmund operator with kernel K = K(x, y), the truncated operators
Tϵ are defined, for ϵ > 0, by

Tϵf(x) =

ˆ
|y−x|>ϵ

K(x, y)f(y) dy,

and the associated maximal operator is

T∗f(x) = sup
ϵ>0

|Tϵf(x)|.

Definition 1. A higher-order Riesz transform is a Calderón–Zygmund principal
value operator defined, for f ∈ L2(Rn), by

Tf(x) = p.v.
ˆ
Rn

P (x− y)

|x− y|n+d
f(y) dy,

where P is a harmonic homogeneous polynomial of degree d ≥ 1. We say that T is
odd (respectively, even) if d is odd (respectively, even).

Theorem A. Let T be a higher order Riesz transform, and let T∗ be the asso-
ciated maximal operator. Then,

(1) if T is even, then for all f ∈ L2(Rn) and all x ∈ Rn,

T∗f(x) .M(Tf)(x).

(2) if T is odd, then for all f ∈ L2(Rn) and all x ∈ Rn,

T∗f(x) .M2(Tf)(x).

Definition 2. A smooth homogeneous Calderón–Zygmund operator is a principal
value Calderón–Zygmund operator which is defined, for f ∈ L2(Rn), by

Tf(x) = p.v.
ˆ
Rn

Ω(x− y)

|x− y|n
f(y) dy,

where Ω: Rn → C is a homogeneous function of degree 0 whose restriction to the
unit sphere Sn−1 is of class C∞ and satisfies the cancellation propertyˆ

Sn−1

Ω(u) dσ(u) = 0,
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where σ is the surface measure on Sn−1. We will say that the operator is odd (resp.,
even) if Ω is odd (resp., even).

Theorem B. Let T be a smooth homogeneous Calderón–Zygmund operator,
and let T∗ be the associated maximal operator. Then,

• if T is even, the following assertions are equivalent:
(1) T∗f(x) .M(Tf)(x) for all f ∈ L2(Rn) and all x ∈ Rn.
(2) ∥T∗f∥L2 . ∥Tf∥L2 for all f ∈ L2(Rn).

• if T is odd, the following assertions are equivalent:
(1) T∗f(x) .M2(Tf)(x) for all f ∈ L2(Rn) and all x ∈ Rn.
(2) ∥T∗f∥L2 . ∥Tf∥L2 for all f ∈ L2(Rn).

The statements in the previous two theorems concerning even operators were
proved in [8], while those concerning odd operators were proved in [7].

Motivated by these results, we consider the problem of controlling the maximal
Cauchy transform just in terms of the Cauchy transform. We will only deal with the
problem of giving a pointwise estimate of the form

C∗f(x) .Mn(Cf)(x),

for some n ∈ N, n ≥ 2, since the inequality

∥C∗f∥L2(R) . ∥Cf∥L2(R)

is almost trivial, as we will show later (observe that Theorem B cannot be applied
to C since it is not a convolution operator).

Notice that the Cauchy transform along a Lipschitz graph Γ coincides with a
constant multiple of the Hilbert transform when Γ is a straight line, and this is a
reason why one could think that the pointwise estimate C∗f . Mn(Cf) could hold
for the Cauchy transform along, at least, some class of graphs Γ. We will show that
one cannot have a similar inequality for the Cauchy transform, unless Γ is a straight
line.

Theorem 1. Consider the Lipschitz function A(x) = |x|, and let C denote the
Cauchy transform along Γ, the graph of A. Then, there exists f ∈ L2(R) such that
for all c > 0 and all n ≥ 1, there exists ϵ > 0 such that

|Cϵf(0)| > cMn(Cf)(0).

This theorem can be easily generalized to Lipschitz graphs Γ with angles, meaning
with this points x where A′ has a jump discontinuity, as we will show later.

After obtaining this result, one might think of establishing the inequality C∗f .
Mn(Cf) imposing some restrictions on the smoothness of A. This is not the case, as
the next theorem shows.

Theorem 2. Let A be a Lipschitz function with compact support, and let C
denote the Cauchy transform along Γ, the graph of A. Suppose A is not identically
null, or, equivalently, that Γ is not a straight line. Then, there exists x ∈ R such
that for all c > 0 there exists f ∈ L2(R) with

C∗f(x) > cMn(Cf)(x)

for all n ≥ 1.

We want to remark that the points x mentioned in this last theorem are ‘easy’
to find. For example, when A is of class C2, any point x with A′′(x) ̸= 0 will do the
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job. Notice also that in the case when A has compact support and Γ has an angle at
a point x, the failure of the inequality C∗f(x) ≤ cMn(Cf)(x) for all f ∈ L2(R) can
also be deduced from this result, but Theorem 1 is stronger in this setting, since the
argument used there provides a single function f for which the previous inequality
fails for all possible constants c > 0.

2. Another version of the Cauchy transform

We define a new operator, which, abusing language, will also be called the Cauchy
transform along Γ, by

Tf(x) =
1

πi
p.v.
ˆ
R

f(y)

z(y)− z(x)
dz(y),

where dz(y) = z′(y)dy = (1 + iA′(y)) dy. As before, associated with it, we will
have the truncated operators Tϵ and the maximal operator T∗. This operator is very
closely related to C. Indeed,

(1)
Tf(x) =

1

πi
p.v.
ˆ
R

f(y)

z(y)− z(x)
dz(y)

=
1

πi
p.v.
ˆ
R

f(y)z′(y)

z(y)− z(x)
dy =

1

πi
C(f · z′)(x).

Analogously,

(2) Cf(x) = πiT

(
f

z′

)
(x).

It is clear that T satisfies the same boundedness properties that C satisfies (with
different multiplicative constants). Moreover, by equations (1) and (2), and taking
into account that z′ ∈ L∞ and |z′| ≈ 1, we can limit ourselves to prove the Theo-
rems 1 and 2 substituting C by T , Cϵ by Tϵ and C∗ by T∗.

The main reason for using this version of the Cauchy transform is contained in
the following result, which we learnt from Escauriaza [5].

Lemma 1. If f ∈ Lp(R), 1 < p <∞, then T 2f = f .

Proof. For w ∈ C and α > 0, we define the upper and lower half cones with
vertex at w and generatrix slope α, respectively, by

X+(w, α) = {z ∈ C : |Re z − Rew| < α(Im z − Imw)},
X−(w, α) = {z ∈ C : |Re z − Rew| < α(Imw − Im z)}.

It is immediate that for all w ∈ Γ and all 0 < α < 1
∥A′∥∞ ,

X+(w, α) ⊂ {x+ iy ∈ C : y > A(x)}

and

X−(w,α) ⊂ {x+ iy ∈ C : y < A(x)}.
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Fix 0 < α < 1
∥A′∥∞ . Let f ∈ Lp(R), and let us define, for x ∈ R,

T+f(x) = lim
w→z(x)

w∈X+(z(x),α)

1

πi

ˆ
R

f(y)

w − z(x)
dz(y),

T−f(x) = lim
w→z(x)

w∈X−(z(x),α)

1

πi

ˆ
R

f(y)

w − z(x)
dz(y).

From the Plemelj’s formulas (see, for example, Chapter 8 of [10]), we obtain

T+f(x) = Tf(x) + f(x); T−f(x) = Tf(x)− f(x)

for a.e. x ∈ R. In particular, T = T+ − Id. Hence,

T 2 = (T+ − Id)2 = (T+)
2 − 2T+ + Id .

A direct application of Cauchy’s integral formula gives (T+)
2 = 2T+. As a conse-

quence, T 2 = Id, as desired. �
As a consequence of this result, one easily gets the Lp control of the maximal

Cauchy transform in terms of the Cauchy transform, for 1 < p <∞.

Corollary 1. If f ∈ Lp(R), 1 < p <∞, then ∥T∗f∥Lp . ∥Tf∥Lp .

Proof. Indeed, taking into account the Lp-boundedness of T∗ and T , and the fact
that T 2f = f , we get

∥T ∗f∥Lp . ∥f∥Lp = ∥T 2f∥Lp . ∥Tf∥Lp . �
The following lemma states that T is antisymmetric with respect to dz, and its

proof follows by an easy application of Fubini’s Theorem.

Lemma 2. Let 1 < p < ∞, p′ the conjugate exponent to p and f ∈ Lp(R),
g ∈ Lp′(R). Then, ˆ

R

Tf(x)g(x) dz(x) = −
ˆ
R

f(y)Tg(y) dz(y).

3. The proofs

We argue here as Mateu, Orobitg, Pérez and Verdera did in [7], where they proved
T∗f .M2(Tf), for T an odd higher order Riesz transform.

Let f ∈ L2(R), x ∈ R and ϵ > 0. We have

Tϵf(x) =
1

πi

ˆ
|y−x|>ϵ

f(y)

z(y)− z(x)
dz(y).

For x ∈ R and ϵ > 0, define

Kx,ϵ(y) =
1

πi

1

z(y)− z(x)
χ|y−x|>ϵ(y),

so that
Tϵf(x) =

ˆ
R

f(y)Kx,ϵ(y) dz(y).

A straightforward computation yields that Kx,ϵ ∈ L2(R) ∩ L∞(R) and

∥Kx,ϵ∥L2 ≤ 1√
ϵ
, ∥Kx,ϵ∥L∞ ≤ 1

ϵ
.
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Now let gx,ϵ = T (Kx,ϵ), so that

Tϵf(x) =

ˆ
R

f(y)Kx,ϵ(y) dz(y) =

ˆ
R

f(y)T (T (Kx,ϵ))(y) dz(y)

= −
ˆ
R

Tf(y)T (Kx,ϵ)(y) dz(y) = −
ˆ
R

Tf(y)gx,ϵ(y) dz(y).

Fix N > 0 to be chosen later, and denote, for a ∈ R and r > 0,

Ia,r = (a− r, a+ r).

Also, for a function h ∈ L1
loc(R) and an interval I ⊂ R, denote

mIh =
1

|I|

ˆ
I

h(x) dx.

Then, we have,

−Tϵf(x) =
ˆ
R

Tf(y)gx,ϵ(y) dz(y)

=

ˆ
|y−x|<Nϵ

Tf(y)gx,ϵ(y) dz(y) +

ˆ
|y−x|>Nϵ

Tf(y)gx,ϵ(y) dz(y)

=

ˆ
Ix,Nϵ

Tf(y)[gx,ϵ(y)−mIx,Nϵ
(gx,ϵ)] dz(y) +mIx,Nϵ

(gx,ϵ)

ˆ
Ix,Nϵ

Tf(y) dz(y)

+

ˆ
|y−x|>Nϵ

Tf(y)gx,ϵ(y) dz(y) = I + II + III.

Let us check now that |I| . M2(Tf)(x) and |II| . M(Tf)(x). We recall first
the following tesults, stated in [7], and whose proofs can be found in [11] and [6],
respectively:

Lemma 3. Let ϕ ∈ BMO(Rn), ψ a measurable function in Rn and Q a cube
in Rn. Then,

1

Q

ˆ
Q

|ϕ(x)−mQϕ||ψ(x)| dx ≤ c∥ϕ∥BMO∥ψ∥L logL,Q,

where c > 0 only depends on n.

Lemma 4. There exists a positive constant c = c(n) > 0 such that for every
cube Q ⊂ Rn and every function ψ ∈ L1

loc(R
n) we have

∥ψ∥L logL,Q ≤ cM2ψ(x),

where M2 =M ◦M and M is the Hardy–Littlewood maximal operator.

We have

|I| =

∣∣∣∣∣
ˆ
Ix,Nϵ

Tf(y)[gx,ϵ(y)−mIx,Nϵ
(gx,ϵ)] dz(y)

∣∣∣∣∣
.
ˆ
Ix,Nϵ

|Tf(y)||gx,ϵ(y)−mIx,Nϵ
(gx,ϵ)| dy

. |Ix,Nϵ|∥gx,ϵ∥BMO∥Tf∥L(logL),Ix,Nϵ

. ϵ∥T (Kx,ϵ)∥BMOM
2(Tf)(x)

. ϵ∥Kx,ϵ∥L∞M2(Tf)(x) .M2(Tf)(x).
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On the other hand,

|II| =

∣∣∣∣∣mIx,Nϵ
(gx,ϵ)

ˆ
Ix,Nϵ

Tf(y) dz(y)

∣∣∣∣∣ . 1

|Ix,Nϵ|

∣∣∣∣∣
ˆ
Ix,Nϵ

gx,ϵ(y) dy

∣∣∣∣∣
ˆ
Ix,Nϵ

|Tf(y)| dy

=

∣∣∣∣∣
ˆ
Ix,Nϵ

T (Kx,ϵ)(y) dy

∣∣∣∣∣ 1

|Ix,Nϵ|

ˆ
Ix,Nϵ

|Tf(y)| dy

≤ |Ix,Nϵ|
1
2∥T (Kx,ϵ)∥L2M(Tf)(x) . ϵ

1
2∥Kx,ϵ∥L2M(Tf)(x) .M(Tf)(x),

as claimed.
Now, since M(Tf) ≤M2(Tf), we get

(3) |I|+ |II| .M2(Tf)(x).

Let us study III now. Recall that

(4) III =

ˆ
|y−x|>Nϵ

Tf(y)gx,ϵ(y) dz(y) =

ˆ
|y−x|>Nϵ

Tf(y)T (Kx,ϵ(y)) dz(y).

An easy contour integration argument yields the following result:

Lemma 5. Fix x ∈ R and ϵ > 0. Then, for almost every y ∈ R with |y−x| > ϵ,
we have

T (Kx,ϵ)(y) =
1

πi

1

z(y)− z(x)
[B(x, ϵ) +Gx,ϵ(y)] ,

where

B(x, ϵ) = log
|z(x+ ϵ)− z(x)|
|z(x− ϵ)− z(x)|

+ i
(
π + arg[z(x+ ϵ)− z(x)]− arg[z(x− ϵ)− z(x)]

)
and

Gx,ϵ(y) = log
|z(x− ϵ)− z(y)|
|z(x+ ϵ)− z(y)|

+ i
(
arg[z(x− ϵ)− z(y)]− arg[z(x+ ϵ)− z(y)]

)
,

where, for a complex number w ̸= 0, we consider −π
2
≤ arg(w) < 3π

2
.

Proof. Let x ∈ R, ϵ > 0 and y ∈ R with |y − x| > ϵ. We will assume that y > x
(the case y < x is treated analogously) and also that A is differentiable at y. For
a set I ⊂ R, denote Γ(I) = {z(t) : t ∈ I}, and for a complex number w ̸= 0, let
Log(w) = log |w|+ i arg(w). Then, we have

T (Kx,ϵ)(y) =
1

πi
p.v.
ˆ
R

Kx,ϵ(t)

z(t)− z(y)
dz(t)

= lim
R→∞
δ→0

1

πi

ˆ
Γ({t : |t−x|>ϵ,|t−y|>δ,|t|<R})

dw

(w − z(x))(w − z(y))

=
1

πi(z(y)− z(x))
lim
R→∞
δ→0

ˆ
Γ({t : |t−x|>ϵ,|t−y|>δ,|t|<R})

(
1

w − z(y)
− 1

w − z(x)

)
dw

=
1

πi(z(y)− z(x))
lim
R→∞
δ→0

(IR,δ + IIR,δ + IIIR,δ),
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where, for sufficiently small δ > 0 and sufficiently big R > 0,

IR,δ =

ˆ
Γ((−R,x−ϵ))

(
1

w − z(y)
− 1

w − z(x)

)
dw

= Log[z(x− ϵ)− z(y)]− Log[z(−R)− z(y)]− Log[z(x− ϵ)− z(x)]

+ Log[z(−R)− z(x)],

IIR,δ =

ˆ
Γ((x+ϵ,y−δ))

(
1

w − z(y)
− 1

w − z(x)

)
dw

= Log[z(y − δ)− z(y)]− Log[z(x+ ϵ)− z(y)]− Log[z(y − δ)− z(x)]

+ Log[z(x+ ϵ)− z(x)]

and

IIIR,δ =

ˆ
Γ((y+δ,R))

(
1

w − z(y)
− 1

w − z(x)

)
dw

= Log[z(R)− z(y)]− Log[z(y + δ)− z(y)]− Log[z(R)− z(x)]

+ Log[z(y + δ)− z(x)].

Gathering the previous identities, we obtain

(5)

Re (IR,δ + IIR,δ + IIIR,δ) = log
|z(x− ϵ)− z(y)||z(x+ ϵ)− z(x)|
|z(x+ ϵ)− z(y)||z(x− ϵ)− z(x)|

+ log
|z(−R)− z(x)||z(R)− z(y)|
|z(−R)− z(y)||z(R)− z(x)|

+ log
|z(y − δ)− z(y)||z(y + δ)− z(x)|
|z(y + δ)− z(y)||z(y − δ)− z(x)|

.

On the other hand,

(6)

Im (IR,δ + IIR,δ + IIIR,δ) = (arg[z(x− ϵ)− z(y)]− arg[z(x− ϵ)− z(x)]

− arg[z(x+ ϵ)− z(y)] + arg[z(x+ ϵ)− z(x)])

+ (− arg[z(−R)− z(y)] + arg[z(−R)− z(x)]

+ arg[z(R)− z(y)]− arg[z(R)− z(x)])

+ (arg[z(y − δ)− z(y)]− arg[z(y − δ)− z(x)]

− arg[z(y + δ)− z(y)] + arg[z(y + δ)− z(x)]).

Gathering the identities (5) and (6), letting R → ∞ and δ → 0, and using the
fact that A is differentiable at y, we obtain

lim
R→∞
δ→0

(IR,δ + IIR,δ + IIIR,δ) = Gx,ϵ(y) +B(x, ϵ),

and so the desired conclusion follows. �
It is easy to check that the term B(x, ϵ) satisfies the following:

Lemma 6. Let x ∈ R and ϵ > 0. Then, the following assertions are equivalent:
(1) B(x, ϵ) = 0.
(2) ImB(x, ϵ) = 0.
(3) The points z(x− ϵ), z(x) and z(x+ ϵ) are collinear.
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On the other hand, we can prove the following decay at infinity of the term
Gx,ϵ(y).

Lemma 7. Choose N > 1 + 4(1 + ∥A′∥∞). Then for |y − x| > Nϵ,

|Gx,ϵ(y)| .
ϵ

|y − x|
.

Proof. Denote Λ1 = ∥A′∥∞, and let

ux,ϵ(y) = ReGx,ϵ(y) = log
|z(x− ϵ)− z(y)|
|z(x+ ϵ)− z(y)|

and
vx,ϵ(y) = ImGx,ϵ(y) = arg[z(x− ϵ)− z(y)]− arg[z(x+ ϵ)− z(y)].

Recall that, for w ∈ C, |w| < 1
2
,

|Log(1 + w)| ≤ 2|w|,

where Log is defined as in the previous lemma.
Now, for |y − x| > Nϵ, we have

z(x− ϵ)− z(y)

z(x+ ϵ)− z(y)
= 1 +

z(x− ϵ)− z(x+ ϵ)

z(x+ ϵ)− z(y)
,

and ∣∣∣∣z(x− ϵ)− z(x+ ϵ)

z(x+ ϵ)− z(y)

∣∣∣∣ ≤ (1 + Λ1)2ϵ

|y − (x+ ϵ)|
≤ (1 + Λ1)2ϵ

N−1
N

|y − x|

≤ (1 + Λ1)2ϵ
N−1
N
Nϵ

=
2(1 + Λ1)

N − 1
≤ 1

2
,

where the last inequality holds precisely because of the choice of N . Then,

|ux,ϵ(y)| =
∣∣∣∣log |z(x− ϵ)− z(y)|

|z(x+ ϵ)− z(y)|

∣∣∣∣ = ∣∣∣∣log ∣∣∣∣1 + z(x− ϵ)− z(x+ ϵ)

z(x+ ϵ)− z(y)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣Log(1 + z(x− ϵ)− z(x+ ϵ)

z(x+ ϵ)− z(y)

)∣∣∣∣ ≤ 2

∣∣∣∣z(x− ϵ)− z(x+ ϵ)

z(x+ ϵ)− z(y)

∣∣∣∣
≤ 2

(1 + Λ1)2ϵ
N−1
N

|y − x|
=

4N(1 + Λ1)

N − 1

ϵ

|y − x|
. ϵ

|y − x|
.

On the other hand,

|vx,ϵ(y)| = |arg[z(x− ϵ)− z(y)]− arg[z(x+ ϵ)− z(y)]|
≤ |Log[z(x− ϵ)− z(y)]− Log[z(x+ ϵ)− z(y)]|

=

∣∣∣∣ˆ
Γ((x−ϵ,x+ϵ))

dz

z − z(y)

∣∣∣∣ ≤ length(Γ((x− ϵ, x+ ϵ))) max
|t−x|≤ϵ

1

|z(t)− z(y)|

≤ 2(1 + Λ1)ϵ

|y − x|
. ϵ

|y − x|
.

Putting all together, the lemma follows. �
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As a result, going back to (4), and applying Lemma 5, we obtain

(7)

III =
1

πi

ˆ
|y−x|>Nϵ

Tf(y)
1

z(y)− z(x)
[B(x, ϵ) +Gx,ϵ(y)] dz(y)

=
1

πi

[
B(x, ϵ)

ˆ
|y−x|>Nϵ

Tf(y)
dz(y)

z(y)− z(x)
+

ˆ
|y−x|>Nϵ

Tf(y)
Gx,ϵ(y) dz(y)

z(y)− z(x)

]
= B(x, ϵ)TNϵ(Tf)(x) + IV.

Now, fixing N > 1 + 4(1 + ∥A′∥∞), and applying Lemma 7, we obtain

(8)

|IV | =
∣∣∣∣ 1πi
ˆ
|y−x|>Nϵ

Tf(y)
Gx,ϵ(y) dz(y)

z(y)− z(x)

∣∣∣∣ . ϵ

ˆ
|y−x|>Nϵ

|Tf(y)| dy

|y − x|2

= ϵ
∞∑
k=0

ˆ
2kNϵ<|y−x|<2k+1Nϵ

|Tf(y)| dy

|y − x|2

≤ ϵ
∞∑
k=0

1

(2kNϵ)2

ˆ
2kNϵ<|y−x|<2k+1Nϵ

|Tf(y)| dy

≤ ϵ

∞∑
k=0

1

2k−2Nϵ

1

2 · 2k+1Nϵ

ˆ
|y−x|<2k+1Nϵ

≤ ϵ

(
∞∑
k=0

1

2k−2Nϵ

)
M(Tf)(x) .M(Tf)(x) ≤M2(Tf)(x).

As a result, gathering the estimates in (3), (7) and (8), we have the following:

Lemma 8. For all f ∈ L2(R), all x ∈ R and all ϵ > 0,

|Tϵf(x) +B(x, ϵ)TNϵ(Tf)(x)| .M2(Tf)(x).

3.1. Proof of Theorem 1. Fix the Lipschitz function A(x) = |x|. In this case,

B(0, ϵ) = log
|z(ϵ)− z(0)|
|z(−ϵ)− z(0)|

+ i
(
π + arg[z(ϵ)− z(0)]− arg[z(−ϵ)− z(0)]

)
=
πi

2
.

Assume that the inequality

T∗f(x) .Mn(Tf)(x) for all f ∈ L2(R)

were true for some n ≥ 2. Then, applying Lemma 8, this would yield

|B(x, ϵ)TNϵ(Tf)(x)| .Mn(Tf)(x)

for all f ∈ L2(R). Now, taking into account that T 2 = Id, and setting x = 0, the
latter implies

(9) |TNϵf(0)| .Mnf(0),

for all f ∈ L2(R), and this is false for f = χ[0,1]. Indeed, Mnf(0) ≤ 1, while for
0 < Nϵ < 1,

TNϵf(0) =
1

πi

ˆ
|y|>Nϵ

χ[0,1](y)
dz(y)

z(y)− z(0)
=

1

πi

ˆ 1

Nϵ

1 + i

y + iy
dy

=
1

πi

ˆ 1

Nϵ

dy

y
= − 1

πi
log(Nϵ),
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so
lim
ϵ→0

|TNϵf(0)| = ∞,

yielding a contradiction with (9).
This counterexample can be generalized in the following way. Suppose Γ has an

angle at a point z(x), x ∈ R, meaning with this that A′ has a jump discontinuity at
x, i.e.,

lim
h→0+

A(x+ h)− A(x)

h
= A′

+(x) ̸= A′
−(x) = lim

h→0−

A(x+ h)− A(x)

h
.

A straightforward computation shows now that

lim
ϵ→0

ImB(x, ϵ) = arctan(A′
+(x))− arctan(A′

−(x)) ̸= 0,

and so B(x, ϵ) stays away from 0 as ϵ→ 0. The same argument that was used above,
substituting χ[0,1] by χ[x,x+1], will show that the inequality

T∗f(x) .Mn(Tf)(x)

cannot hold.

3.2. Proof of Theorem 2. We will study now the term TNϵ(Tf)(x) to give
more light to this subject. This will lead us to prove that, when A has compact
support, the inequality

T∗f(x) .Mn(Tf)(x)

can only hold when A = 0, i.e., when Γ is a straight line, which is a case already
known since T is, essentialy, the Hilbert transform.

Assume that A has compact support, say supp(A) ⊂ [−L,L], L > 0. Let f ∈
L2(R), and write

g = (Tf)χ[−2L,2L], h = (Tf)χR\[−2L,2L],

so that Tf = g + h and

TNϵ(Tf)(x) = TNϵg(x) + TNϵh(x).

Fix x ∈ [−L,L]. Observe that

iπTNϵg(x) =

ˆ
|y−x|>Nϵ

g(y)

z(y)− z(x)
dz(y) =

∞∑
k=0

ˆ
2kNϵ<|y−x|<2k+1Nϵ

g(y)

z(y)− z(x)
dz(y).

Now, taking into account that supp(g) ⊂ [−2L, 2L], one gets that, when 2kNϵ >
4L, ˆ

2kNϵ<|y−x|<2k+1Nϵ

g(y)

z(y)− z(x)
dz(y) = 0.

This yields that only the first ML,ϵ terms of the sum above do not vanish, where

ML,ϵ =

⌈
log
(
4L
Nϵ

)
log 2

⌉
(by ⌈t⌉ we denote the smallest integer n such that t ≤ n).
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Furthermore, for each k ≥ 0,∣∣∣∣ˆ
2kNϵ<|y−x|<2k+1Nϵ

g(y)

z(y)− z(x)
dz(y)

∣∣∣∣ . ˆ
2kNϵ<|y−x|<2k+1Nϵ

|g(y)|
|y − x|

dy

. 1

2kNϵ

ˆ
|y−x|<2k+1Nϵ

|g(y)| dy .Mg(x).

Putting all together, and taking into account that Mg ≤M(Tf), we obtain

|TNϵg(x)| .
(
1 +

∣∣∣∣∣ log
(
4L
Nϵ

)
log 2

∣∣∣∣∣
)
M(Tf)(x).

On the other hand, since A = 0 on supp(h), we get

iπTNϵh(x) =

ˆ
|y−x|>Nϵ

h(y)

z(y)− z(x)
dz(y) =

ˆ
|y−x|>Nϵ

h(y)

y − z(x)
dy.

Now, for |y − x| > Nϵ,

1

y − z(x)
=

1

y − x
+

(
1

y − z(x)
− 1

y − x

)
=

1

y − x
+D(x, y),

and so

iπTNϵh(x) =

ˆ
|y−x|>Nϵ

h(y)

y − x
dy +

ˆ
|y−x|>Nϵ

h(y)D(x, y) dy

:= HNϵh(x) +

ˆ
|y−x|>Nϵ

h(y)D(x, y) dy.

Observe now that, for x ̸= y,

|D(x, y)| =
∣∣∣∣ 1

y − z(x)
− 1

y − x

∣∣∣∣ = ∣∣∣∣ iA(x)

(y − x)(y − z(x))

∣∣∣∣ ≤ |A(x)|
|y − x|2

.

Then, taking into account that h = 0 on [−2L, 2L], and recalling that |x| ≤ L, one
gets ∣∣∣∣ˆ

|y−x|>Nϵ

h(y)D(x, y) dy

∣∣∣∣ ≤ |A(x)|
ˆ
|y−x|>L

|h(y)|
|y − x|2

dy.

Splitting the last integral into the regions {2kL < |y − x| ≤ 2k+1L}, and using the
fact that M(h) ≤M(Tf), we get∣∣∣∣ˆ

|y−x|>Nϵ

h(y)D(x, y) dy

∣∣∣∣ ≤ 8

L
|A(x)|M(Tf)(x).

The previous discussion shows that

TNϵ(Tf)(x) =
1

πi
HNϵh(x) + V,

where
|V | ≤ c(x, ϵ,N, L)M(Tf)(x)

and 0 < c(x, ϵ,N, L) <∞. Recall now that, by Lemma 8, we have

|Tϵf(x) +B(x, ϵ)TNϵ(Tf)(x)| .M2(Tf)(x).
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Then, it follows that∣∣∣∣Tϵf(x) + 1

πi
B(x, ϵ)HNϵh(x)

∣∣∣∣ ≤ c′(x, ϵ,N, L)M2(Tf)(x),

where 0 < c′(x, ϵ,N, L) <∞.
Assume A is not identically null, and suppose that the inequality T∗f(x) .

Mn(Tf)(x) holds. Applying Lemma 6, we may pick x ∈ [−L,L] and ϵ > 0 with

−L < x−Nϵ < x < x+Nϵ < L

and such that B(x, ϵ) ̸= 0. Then, it follows that

|B(x, ϵ)||HNϵ((Tf)χR\[−2L,2L])(x)| ≤ c′′(x, ϵ,N, L)Mn(Tf)(x),

with 0 < c′′(x, ϵ,N, L) <∞.
Now, for each k = 3, 4, . . . , pick fk ∈ L2(R) such that Tfk = χ[0,kL], and so

(Tfk)χR\[−2L,2L] = χ(2L,kL]. Applying the previous inequality for each fk, and using
that Mn(Tfk) ≤ 1, we obtain

|B(x, ϵ)||HNϵ(χ(2L,kL])(x)| ≤ c′′(x, ϵ,N, L).

Finally, observe that

HNϵ(χ(2L,kL])(x) =

ˆ kL

2L

dy

y − x
= log

kL− x

2L− x
,

and so

|B(x, ϵ)| log kL− x

2L− x
≤ c′′(x, ϵ,N, L),

yielding a contradiction, since the left hand side tends to ∞ as k → ∞.

4. Further results

4.1. Another version of the truncated operators. Let us consider now
another version of the truncated operators. Define, for ϵ > 0 and x ∈ R,

T̃ϵf(x) =
1

πi

ˆ
|z(y)−z(x)|>ϵ

f(y)

z(y)− z(x)
dz(y)

and the associated maximal operator T̃∗f(x) = supϵ>0 |T̃ϵf(x)|. This is a truncation
over balls of radius ϵ, while the one for Tϵ was a truncation over strips of width 2ϵ.

We consider now the same problem as before: that of giving an estimate of the
form

T̃∗f(x) .Mn(Tf)(x),

and the same arguments employed before will work here. Indeed, if we define l(x, ϵ) =
z(x−), r(x, ϵ) = z(x+), where

x− = sup{t < x : |z(t)− z(x)| = ϵ}
and

x+ = inf{t > x : |z(t)− z(x)| = ϵ},
then l(x, ϵ) and r(x, ϵ) will play the same role that z(x−ϵ) and z(x+ϵ) played before.
Precisely, l(x, ϵ) is the last point of Γ to the left of z(x) that belongs to the circle
centered at z(x) with radius ϵ, and r(x, ϵ) is the analogue of this one at the right.



Counterexamples to pointwise estimates of the MCT by the CT 671

Since the quantities |y− x| and |z(y)− z(x)| are comparable, one can repeat the
arguments used before to get an analogous of Lemma 8, which will be stated now as

|T̃ϵf(x) + B̃(x, ϵ)T̃Nϵf(x)| .M2(Tf)(x),

where

B̃(x, ϵ) = log
|r(x, ϵ)− z(x)|
|l(x, ϵ)− z(x)|

+ i
(
π + arg[r(x, ϵ)− z(x)]− arg[l(x, ϵ)− z(x)]

)
.

As in Lemma 6, B̃(x, ϵ) = 0 if, and only if, l(x, ϵ), z(x) and r(x, ϵ) are collinear.
With this tools at hand, one can prove the following results, which are the analogs

to Theorems 1 and 2 in this setting.

Theorem 3. Consider the Lipschitz function A(x) = |x|. Then, there exists
f ∈ L2(R) such that for all c > 0 and all n ≥ 1, there exists ϵ > 0 such that

|T̃ϵf(0)| > cMn(Tf)(0).

To prove this, one can mimic the argument in section 3.1, since here we have
again B̃(0, ϵ) = iπ

2
.

Theorem 4. Let A be a Lipschitz function with compact support. Suppose A is
not identically null, or, equivalently, that Γ is not a straight line. Then, there exists
x ∈ R such that for all c > 0 there exists f ∈ L2(R) with

T̃∗f(x) > cT̃ n(Tf)(x)

for all n ≥ 1.

Again, the argument in Section 3.2 adapts trivially to this case, by just taking
into account that, if A is not identically null, one can find x ∈ R and ϵ > 0 as small
as needed such that l(x, ϵ), z(x) and r(x, ϵ) are not collinear.

4.2. The case of Jordan curves. Let Γ be a Jordan curve in the plane,
parametrized by a periodic function γ : R → C. We will pose, for the moment, the
following assumptions on γ:

• γ is of class C1.
• γ is L-periodic, γ([0, L)) = Γ.
• γ is injective on [0, L).
• |γ′(t)| = 1 for all t.
• ω is the modulus of continuity of γ′ (this means that ω is a non-negative

and increasing continuous function in [0,∞) with ω(0) = 0 and such that
|γ′(s)− γ′(t)| ≤ ω(|s− t|) for all s, t ∈ R).

We denote by µ the arc-length measure on Γ. We have, for a Borel set I ⊂ [0, L),

µ(γ(I)) =

ˆ
I

|γ′(t)| dt = |I|.

For a point z ∈ Γ and r > 0, denote

Γz,r = γ({t : |t− x| < r}),

where z = γ(x), x ∈ R.
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The Hardy–Littlewood maximal function of a function f ∈ L1(Γ, µ) is defined,
for z ∈ Γ, by

Mf(z) = sup
r>0

1

µ(Γz,r)

ˆ
Γz,r

|f | dµ = sup
r>0

1

2r

ˆ
Γz,r

|f | dµ.

The Cauchy transform of a function f ∈ L2(Γ, dµ) is defined, for z ∈ Γ, as the
principal value integral

Tf(z) = lim
ϵ→0

Tϵf(z),

where

Tϵf(z) =
1

πi

ˆ
Γ\Γz,ϵ

f(ξ)

ξ − z
dξ.

We consider as well the maximal operator associated with T ,

T∗f(z) = sup
ϵ>0

|Tϵf(z)|.

In this section we will prove that, if γ is regular enough (we will specify later how
much regularity is needed), then

T∗f(z) .M2(Tf)(z) for all f ∈ L2(Γ, µ).

We will follow, essentially, the same steps we have taken in Section 3 for the case
of Lipschitz graphs. Most of the arguments there will be valid in this setting, and
so we will not enter into many details. First of all, we remark that the analogues of
Lemmas 1 and 2 hold now:

Lemma 9. If f ∈ L2(Γ, µ), T 2f = f .

Lemma 10. If f, g ∈ L2(Γ, µ), thenˆ
Γ

Tf(z)g(z) dz = −
ˆ
Γ

f(z)Tg(z) dz.

We argue now as in Section 3. Fix f ∈ L2(Γ, µ), z ∈ Γ and ϵ > 0. Then, we have

Tϵf(z) =
1

πi

ˆ
Γ\Γz,ϵ

f(ξ)

ξ − z
dξ =

ˆ
Γ

f(ξ)Kz,ϵ(ξ) dξ,

where

Kz,ϵ(ξ) =
1

πi(ξ − z)
χΓ\Γz,ϵ(ξ).

It is easy to check that Kz,ϵ ∈ L2(Γ, µ) ∩ L∞(Γ, µ), and moreover

∥Kz,ϵ∥L2 . 1√
ϵ
, ∥Kz,ϵ∥L∞ . 1

ϵ
.

Since Kz,ϵ ∈ L2(Γ, µ), we have Kz,ϵ = T 2(Kz,ϵ) = T (gz,ϵ), for gz,ϵ = T (Kz,ϵ).
Then, we get

Tϵf(z) =

ˆ
Γ

f(ξ)Kz,ϵ(ξ) dξ =

ˆ
Γ

f(ξ)T (gz,ϵ)(ξ) dξ = −
ˆ
Γ

Tf(ξ)gz,ϵ(ξ) dξ,
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and, as a consequence,

−Tϵf(z) =
ˆ
Γ

Tf(ξ)gz,ϵ(ξ) dξ =

ˆ
Γz,2ϵ

Tf(ξ)gz,ϵ(ξ) dξ +

ˆ
Γ\Γz,2ϵ

Tf(ξ)gz,ϵ(ξ) dξ

=

ˆ
Γz,2ϵ

Tf(ξ)[gz,ϵ(ξ)−mΓz,2ϵ(gz,ϵ)] dξ +mΓz,2ϵ(gz,ϵ)

ˆ
Γz,2ϵ

Tf(ξ) dξ

+

ˆ
Γ\Γz,2ϵ

Tf(ξ)gz,ϵ(ξ) dξ = I + II + III,

where, for a function h ∈ L1(Γ, µ) and a Borel set E ⊂ Γ with µ(E) > 0,

mEh =
1

µ(E)

ˆ
E

h dµ.

Arguing essentially as in Section 3, one can prove that |I| . M2(Tf)(z) and
|II| .M(Tf)(z). Let us study III now,

III =

ˆ
Γ\Γz,2ϵ

Tf(ξ)gz,ϵ(ξ) dξ =

ˆ
Γ\Γz,2ϵ

Tf(ξ)T (Kz,ϵ)(ξ) dξ.

A similar argument to the one used in Lemma 5 yields the following result.

Lemma 11. For ξ ∈ Γ \ Γz,2ϵ,

T (Kz,ϵ)(ξ) =
1

πi

1

z − ξ
[B(z, ϵ) +Gz,ϵ(ξ)],

where
Gz,ϵ(ξ) .

ϵ

|z − ξ|
and

|B(z, ϵ)| . ω(2ϵ).

Remark. The expressions of Gz,ϵ(ξ) and B(z, ϵ) are totally analogous to the
ones for Gx,ϵ(y) and B(x, ϵ) in Lemma 5, for suitably chosen branches of arg(w − z)
and arg(w − ξ). The estimate for Gz,ϵ is proved as in Lemma 7, while the estimate
for B(z, ϵ) follows from an application of the Mean Value Theorem.

From this, it follows that

III =

ˆ
Γ\Γz,2ϵ

Tf(ξ)T (Kz,ϵ)(ξ) dξ

= B(z, ϵ)
1

πi

ˆ
Γ\Γz,2ϵ

Tf(ξ)
1

z − ξ
dξ +

1

πi

ˆ
Γ\Γz,2ϵ

Tf(ξ)
Gz,ϵ(ξ)

z − ξ
dξ

= B(z, ϵ)T2ϵ(Tf)(z) +
1

πi

ˆ
Γ\Γz,2ϵ

Tf(ξ)
Gz,ϵ(ξ)

z − ξ
dξ = III1 + III2.

On the one hand,

|III2| ≤
1

π

ˆ
Γ\Γz,2ϵ

|Tf(ξ)| |Gz,ϵ(ξ)|
|z − ξ|

dµ(ξ) . ϵ

ˆ
Γ\Γz,2ϵ

|Tf(ξ)|
|z − ξ|2

dµ(ξ) .M(Tf)(z),

where the last inequality is shown by splitting the integral over the sets

Γz,2k+1ϵ \ Γz,2kϵ, k = 1, 2, 3, . . . .
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On the other hand,

|III1| = |B(z, ϵ)| 1
π

ˆ
Γ\Γz,2ϵ

|Tf(ξ)|
|ξ − z|

dµ(ξ) . ω(2ϵ)

ˆ
Γ\Γz,2ϵ

|Tf(ξ)|
|z − ξ|

dµ(ξ).

To estimate the last integral, we also split it over the sets

Γz,2k+1ϵ \ Γz,2kϵ, k = 1, 2, 3, . . . .

Notice that, for k big enough, Γz,2kϵ = Γ, and so Γz,2k+1ϵ \ Γz,2kϵ = ∅. Precisely, this
holds for all k such that 2kϵ > 2L, which is equivalent to

k >
log 2L

ϵ

log 2
.

As a result, if we denote by k0(ϵ) the smallest integer k that satisfies the previous
inequality, we have
ˆ
Γ\Γz,2ϵ

|Tf(ξ)|
|z − ξ|

dµ(ξ) =

k0(ϵ)∑
k=1

ˆ
Γ
z,2k+1ϵ

\Γ
z,2kϵ

|Tf(ξ)|
|z − ξ|

dµ(ξ)

.
k0(ϵ)∑
k=1

1

2kϵ

ˆ
Γ
z,2k+1ϵ

\Γ
z,2kϵ

|Tf(ξ)| dµ(ξ)

≤ 4

k0(ϵ)∑
k=1

1

2 · 2kϵ

ˆ
Γ
z,2k+1ϵ

|Tf(ξ)| dµ(ξ) ≤ 4k0(ϵ)M(Tf)(z).

As a result,

|III1| . ω(2ϵ)k0(ϵ)M(Tf)(z) . ω(2ϵ)

∣∣∣∣log 2L

ϵ

∣∣∣∣M(Tf)(z).

Gathering the estimates for |I|, |II|, |III1| and |III2|, we have

|Tϵf(z)| .M2(Tf)(z) + ω(2ϵ)

∣∣∣∣log 2L

ϵ

∣∣∣∣M(Tf)(z).

From this, it follows that, if ω is such that ω(2ϵ)| log ϵ| stays bounded as ϵ→ 0, then
we have

|Tϵf(z)| .M2(Tf)(z).

Thus, we have proved the following result:

Theorem 5. With the notation established in this section, suppose γ′ has a
modulus of continuity ω such that ω(ϵ)| log ϵ| stays bounded as ϵ→ 0 (this happens,
for example, if γ ∈ C1+δ for some δ > 0). Then, there exists a constant c > 0 such
that, for all f ∈ L2(Γ, dµ) and all z ∈ Γ,

T∗f(z) ≤ cM2(Tf)(z).

We want to remark, finally, that a totally analogous result holds if one considers
the truncated operators given by

T̃ϵf(z) =
1

πi

ˆ
Γ\B(z,ϵ)

f(ξ)

ξ − z
dξ.
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