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Abstract. According to the size of sets for doubling measures, subsets of Rn can be divided
into six classes. Sets in these six classes are respectively called very thin, fairly thin, minimally
thin, minimally fat, fairly fat, and very fat. In our main results, we prove that if a quasisymmetric
mapping f of [0, 1] maps a uniform Cantor set E onto a uniform Cantor set f(E), then E is of
positive Lebesgue measure if and only if f(E) is so. Also, we prove that the product of n uniform
Cantor sets is very fat if and only if each of the factors is very fat, and that the product is minimally
fat if and only if one of the factors is minimally fat.

1. Introduction

A Borel regular measure µ on Rn is called doubling if there is a constant K > 1
such that

0 < µ(Q1) ≤ Kµ(Q2) < ∞
for any pair Q1, Q2 of adjacent cubes of the same side-length in Rn. In this case,
we also say that µ is K-doubling. Hereafter, a cube Q(x, r) in Rn, of side-length 2r
centered at x = (x1, · · · , xn), is defined to be the product set

n∏
i=1

[xi − r, xi + r].

Two cubes are said to be adjacent, if they have a nonempty intersection.
Denote by D(Rn) the family of doubling measures on Rn and by DK(R

n) the
family of K-doubling measures. Then DK(R

n) is increasing with respect to K and
D(Rn) = ∪K>1DK(R

n). For every set E ⊂ Rn denote by |E| its n-dimensional
Lebesgue measure and by dimH E its Hausdorff dimension.

We divide subsets of Rn into six classes: VF, FF, MF, VT, FT, and MT. Sets in
these six classes are respectively called very fat, fairly fat, minimally fat, very thin,
fairly thin, and minimally thin. They are defined as follows: Let E ⊂ Rn.

E ∈ VF if µ(E) > 0 for all µ ∈ D(Rn).
E ∈ MF if |E| > 0 and for every K > 1 there is a K-doubling measure µ ∈

DK(R
n) such that µ(E) = 0.
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E ∈ FF if |E| > 0 and E ̸∈ VF ∪ MF.
E ∈ VT if µ(E) = 0 for all µ ∈ D(Rn).
E ∈ MT if |E| = 0 and for every K > 1 there is a K-doubling measure µ ∈

DK(R
n) such that µ(E) > 0.

E ∈ FT if |E| = 0 and E ̸∈ VT ∪ MT.
The above classification of subsets of Rn was introduced by Buckley, Hanson,

and MacManus [1] in 2001. To gain some understanding on fat and thin sets, let us
recall some known results on them. We begin with two important facts on doubling
measures.

Lemma 1. Let K ≥ 1 and let µ ∈ DK(R
n). Then

(1) C−1
( r

R

)β
≤ µ(Q(y, r))

µ(Q(x,R))
≤ C

( r

R

)α
for any cubes Q(y, r) and Q(x,R) in Rn with Q(y, r) ⊂ Q(x,R), where C, α, and β
are constants depending only on K and n.

Lemma 2. For every ε > 0 there is a subset E of Rn and a measure µ ∈ D(Rn)
such that dimH E < ε and µ(E) = µ(Rn).

Doubling measures may be defined on a metric space with cubes replaced by balls
(see [10, 17]). Lemma 1 holds for doubling measures on every uniformly perfect space
[7]. Lemma 2 was proved by Wu for every compact doubling metric space [20]. It is
also true for every complete doubling metric space [9]. Recently, Käenmäki, Rajala,
and Suomala [11] showed that for every complete doubling metric space and for every
ε > 0 there is a doubling measure having full measure on a set of packing dimension
at most ε. We note that for every ε > 0 there is a unidimensional doubling measure
on Rn of dimension ε. Recall that a Radon measure µ on Rn is unidimensional of
dimension ε, if its local dimension is equal to ε for µ-a.e. x ∈ Rn (See [3]).

It is clear that a set with nonempty interior is very fat. However, a set of full
Lebesgue measure may not be very fat. For the set E in Lemma 2, we have that
Rn \ E is of full Lebesgue measure, but it is not very fat.

It is easily seen from Lemma 1 that every set of dimH = 0 is very thin. This
can not be improved because Lemma 2 implies that for every ε > 0 there is a set of
Hausdorff dimension ε, which is not very thin. See also [15].

Another example of very thin sets can be obtained by porosity. A set E ⊂ Rn

is said to be porous, if there is a constant c > 0 such that every cube Q(x, r) has a
subcube of sidelength cr not meeting E. It is not difficult to see that porous sets are
very thin. In fact, sets with a certain weaker porosity are very thin (see [19]). By
contrast, Staples and Ward [14] introduced the αk-thickness condition for subsets of
R and proved that if {αk} ∈ ℓp for all 0 < p < 1, then αk-thick sets are very fat
in R. Hereafter ℓp denotes the family of sequences {ak}∞k=1 of positive real numbers
with

∑
apk < ∞.

The above results on porosity and thickness have been extended to uniform per-
fect metric space by Ojala, Rajala, and Suomala [12], in which very fat and very thin
sets are simply called fat and thin, respectively. They proved that the cut-out set

X \
∞∪
i=1

B(xi, ri)
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is fat or thin, provided that X is a uniform perfect metric space and B(xi, ri) is a
sequence of closed balls in X with {ri} ∈ ℓp for any 0 < p < 1.

As an application of the fact that porous sets are very thin, we easily see that if
f : Rn → R is Lipschitz, then the graph

G(f) = {(x, f(x)) : x ∈ Rn}
is very thin for doubling measures on Rn+1. By contrast, Garnett, Killip, and Schul
[4] constructed a rectifiable curve that is not very thin for doubling measures on Rn.
However, the following question is still open.

Problem 1. Is the graph of a continuous function f : [0, 1] → [0, 1] very thin for
doubling measures on R2?

This paper is devoted to studying uniform Cantor sets and doubling measures.
Let {nk} be a sequence of positive integers and {ck} a sequence of real numbers in
(0, 1), with nkck < 1 for every k ≥ 1. The uniform Cantor set of data {nk} and {ck},
denoted by E{nk, ck}, is defined by

E{nk, ck} =
∞∩
k=0

Ek,

where {Ek} is a nested sequence of compact sets, E0 = [0, 1], and Ek is defined by
removing nk open intervals of the same length ck|I| from every component interval I
of Ek−1, such that the rest nk +1 closed intervals in I are of equal length. It is clear
from the definition that the set Ek consists of

Nk =
k∏

i=1

(ni + 1)

closed intervals, each of length

δk =
k∏

i=1

1− nici
ni + 1

.

The Lebesgue measure of E{nk, ck} is

|E{nk, ck}| =
∞∏
i=1

(1− nici),

and so

(2) |E{nk, ck}| > 0 ⇐⇒ {nici} ∈ ℓ1.

Lemma 3. Let E = E{nk, ck} be a uniform Cantor set and 0 < p < ∞. Then
there is a Kp-doubling measure µ on [0, 1] such that

(3) (1− Cp(nkck)
p)µ(Ek−1) ≤ µ(Ek) ≤ (1− C−1

p (nkck)
p)µ(Ek−1),

where Kp and Cp are constants depending only on p. Moreover, Kp can be chosen
such that limp→1 Kp = 1.

For the proof of this lemma we refer to [13]. See also Csörnyei and Suomala [2].
It plays an important role in proving the following result (see [1, 6, 13]).

Lemma 4. Let E = E{nk, ck} be a uniform Cantor set. Then
(a) E ∈ VF if and only if {nkck} ∈ ∩p>0ℓ

p;
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(b) E ∈ MF if and only if {nkck} ∈ ℓ1 \ ∪p<1ℓ
p;

(c) E ∈ VT if and only if {nkck} ̸∈ ∪p>1ℓ
p;

(d) E ∈ MT if and only if {nkck} ∈ ∩p>1ℓ
p \ ℓ1.

A sufficient and necessary condition for fairly fat (fairly thin, respectively) uni-
form Cantor sets is implicated in the lemma itself. Using Lemma 4, we may construct
a very thin set E ⊂ R of dimH E = 1.

We have seen that the size of sets in the sense of doubling measures can not
be described by Hausdorff dimension. In the case of n = 1, we have a satisfactory
criterion for very fat and very thin sets (see [18]). In the present paper, we continue
to investigate fat and thin sets in Rn. We shall focus on the following two questions:

1. For which doubling measures µ on [0, 1] we have µ(E) > 0, provided that the
uniform Cantor set E in Lemma 4 is neither VF nor VT?

2. When does the product of n subsets of [0, 1] belong to VF, FF, MF, VT, FT,
or MT for doubling measures on [0, 1]n?

To formulate our result for Question 1, we recall that a homeomorphism f : Rn →
Rn is quasisymmetric, if there is a constant K such that

(4) |f(x)− f(a)| ≤ K|f(x)− f(b)|

for every triple a, b, x of distinct points in Rn with |x− a| ≤ |x− b| (see [7]). Then it
is clear that, for n = 1, a measure µ on R is doubling if and only if µ is the pullback
measure m ◦ f of a quasisymmetric mapping f : R → R. Our first result, formulated
in Theorem 1, partly answers Question 1.

Theorem 1. Let E be the uniform Cantor set of data {nk} and {ck}. Let
f : [0, 1] → [0, 1] be a quasisymmetric mapping such that f(E) is the uniform Cantor
set of data {nk} and {dk}. Suppose that every component interval of level-k of E is
mapped onto a component interval of level-k of f(E). Then |E| > 0 if and only if
|f(E)| > 0.

Let E be a uniform Cantor set and f : [0, 1] → [0, 1] a quasisymmetric mapping.
We say that f(E) has uniformly comparable gaps, if there is a constant K > 1 such
that

|f(J)| ≤ K|f(M)|

for every k ≥ 1 and for every pair J,M of component intervals of Ek−1 \ Ek.

Corollary 1. Let E be a uniform Cantor set. Let f : [0, 1] → [0, 1] be a qua-
sisymmetric mapping such that f(E) has uniformly comparable gaps. Then |E| > 0
implies |f(E)| > 0.

It is known that for the uniform Cantor set E of data {nk} and {ck}, we have
dimH f(E) = 1 for any quasisymmetric mapping f of [0, 1] onto itself, if {nk} is
bounded and dimH E = 1 (see [5, 8]). By contrast, Corollary 1 gives us a condition
under which quasisymmetric mappings map a uniform Cantor sets of positive length
onto a set of positive length. It should be pointed out that Corollary 1 had been
obtained for αk-thick sets by Staples and Ward [14] in a different way.

We do not know if Theorem 1 is true without assuming that every component
interval of level-k of E is mapped onto a component interval of level-k of f(E). Also,
the following question is open.
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Problem 2. Does |E| = 0 imply |f(E)| = 0 under the assumption of Corol-
lary 1?

When n ≥ 2 we have no problem of Theorem 1 for quasisymmetric mappings
because, in this case, the quasisymmetry is equivalent to the quasiconformality and
the pullback measures m ◦ f by quasisymmetric mappings are mutually absolutely
continuous with the Lebesgue measure [16]. However, the question of which sets are
fat or thin for doubling measures is still pending. Now we are going to state our
results in this direction.

Theorem 2. Let E1, · · · , En be sets in [0, 1] of Lebesgue measure zero. Then
(1) E1 × · · · × En ∈ VT if and only if Ei ∈ VT for some i,
(2) E1 × · · · × En ∈ MT if and only if Ei ∈ MT for all i.

Theorem 3. Let E1, · · · , En be sets in [0, 1] of positive Lebesgue measure. Then
(1) if E1 × · · · × En ∈ VF then Ei ∈ VF for all i,
(2) if Ei ∈ MF for some i then E1 × · · · × En ∈ MF.

We do not know if the inverses of two propositions in Theorem 3 hold for the
product of general sets. We shall prove that they are true for products of uniform
Cantor sets.

Theorem 4. Let E1, · · · , En be uniform Cantor sets in [0, 1] of positive Lebesgue
measure. Then

(1) E1 × · · · × En ∈ VF if and only if Ei ∈ VF for all i,
(2) E1 × · · · × En ∈ MF if and only if Ei ∈ MF for some i.

Theorems 2, 3, and 4 will be proved only for n = 2 because, in higher dimensional
case, the related things are the same. The uniformity assumption for Cantor sets
in Theorems 1 and 4 is unnecessarily too strong. It would be interesting to obtain
further results for more general Cantor sets.

2. Proof of Theorem 1

Let E be a uniform Cantor set of data {nk} and {ck}. Let f : [0, 1] → [0, 1]
be a quasisymmetric mapping such that f(E) is a uniform Cantor set of data {nk}
and {dk}. Suppose that every component interval of level-k of E is mapped onto a
component interval of level-k of f(E). We are going to prove that |E| > 0 if and only
if |f(E)| > 0. Since the inverse of a quasisymmetric mapping is quasisymmetric, it
suffices to show that |E| > 0 implies |f(E)| > 0.

Let Gk denote the family of component intervals of Ek−1 \ Ek. A member in Gk

will be called a gap of level k of E. Write I ∈ Ek when I is a component interval of
Ek. The proof is based on the following lemmas.

Lemma 5. Let s ≥ k be positive integers. Let Ik be a component interval of Ek

and Is a component interval of Es. Then
|f(Is)|
|f(Ik)|

≤ |E|−1 |Is|
|Ik|

.

Proof. By the assumptions, we have

|f(Is)|
|f(Ik)|

=
s∏

i=k+1

1− nidi
ni + 1

≤
( s∏

i=k+1

(1− nici)

)−1 s∏
i=k+1

1− nici
ni + 1

≤ |E|−1 |Is|
|Ik|

.
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This proves the lemma. �

Lemma 6. Let s ≥ k. Let Is ∈ Es, Ik ∈ Ek, Is+1 ∈ Es+1, and Js+1 ∈ Gs+1 with
Is+1 ∪ Js+1 ⊂ Is ⊂ Ik. Then

|f(Is+1 ∪ Js+1)|
|f(Ik)|

≤ 2|E|−1

(ns+1 + 1)

|Is|
|Ik|

.

Proof. By the construction of the uniform Cantor set E and the proof of Lemma 5,
we have

|f(Is+1 ∪ Js+1)|
|f(Ik)|

=
|f(Is+1)|
|f(Ik)|

+
|f(Js+1)|
|f(Ik)|

=
s+1∏

i=k+1

1− nidi
ni + 1

+ ds+1

s∏
i=k+1

1− nidi
ni + 1

=

(
1− ns+1ds+1

ns+1 + 1
+ ds+1

) s∏
i=k+1

1− nidi
ni + 1

≤ 1 + ds+1

ns+1 + 1
|E|−1 |Is|

|Ik|
≤ 2|E|−1

(ns+1 + 1)

|Is|
|Ik|

.

The proof of this lemma is complete. �
Since |E| > 0, we have {nkck} ∈ ℓ1, so, without loss of generality, we may assume

that nkck < 1/3 for all k ≥ 1. Since f(E) has been assumed to be the uniform Cantor
set of data {nk} and {dk}, by (2), to show |f(E)| > 0, we only need to prove

(5) nkdk ≤ Knkck

for all k ≥ 1. Hereafter K is a constant depending only on the quasisymmetry
constant of f and it may be different in every appearance.

Now, let k be a given positive integer. Let Ik ∈ Ek and Jk ∈ Gk. Then

(6) nkdk ≤
|f(Jk)|
|f(Ik)|

.

On the other hand, since nkck < 1/3 has been assumed, one has

(7)
|Jk|
|Ik|

=
(nk + 1)ck
1− nkck

≤ 3nkck < 1.

Let s ≥ k be the unique integer such that |Is+1 ∪ Js+1| ≤ |Jk| < |Is ∪ Js|, where
Is ∈ Es, Js ∈ Gs, Is+1 ∈ Es+1, and Js+1 ∈ Gs+1. Two possible cases may happen.

Case 1. (ns+1 + 1)|Is+1 ∪ Js+1| ≤ |Jk| < |Is ∪ Js|.
In this case, we have |Is| < |Jk| < 2|Is|. We may assume that Is and Jk are

adjacent. By (6), the quasisymmetry of f , Lemma 5, and (7), we get

nkdk ≤
|f(Jk)|
|f(Ik)|

≤ K
|f(Is)|
|f(Ik)|

≤ K|E|−1 |Is|
|Ik|

≤ K|E|−1 |Jk|
|Ik|

≤ K|E|−1nkck.

Case 2. p |Is+1 ∪ Js+1| ≤ |Jk| < (p+ 1)|Is+1 ∪ Js+1| for some 1 ≤ p ≤ ns+1.
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In this case, by (6), the quasisymmetry of f , Lemma 6, and (7), we get

nkdk ≤
|f(Jk)|
|f(Ik)|

≤ K
p |f(Is+1 ∪ Js+1)|

|f(Ik)|
≤ K

|Jk|
|Is+1 ∪ Js+1|

|f(Is+1 ∪ Js+1)|
|f(Ik)|

≤ K
|Jk|

|Is+1 ∪ Js+1|
2|E|−1

(ns+1 + 1)

|Is|
|Ik|

≤ 2K|E|−1 |Jk|
|Ik|

≤ 2K|E|−1nkck.

This proves (5). The proof of Theorem 1 is thus completed. �
Proof of Corollary 1. Let E be a uniform Cantor set and f : [0, 1] → [0, 1] be

a quasisymmetric mapping such that f(E) has uniformly comparable gaps. We are
going to show that |E| > 0 implies |f(E)| > 0.

In fact, since f(E) has uniformly comparable gaps, there is a constant K > 1
such that

K−1|f(L \ E)| ≤ |f(I \ E)| ≤ K|f(L \ E)|
for all k and for all pairs I, L ∈ Ek. Given a k and a pair I, L ∈ Ek, if |f(E)| = 0,
then

|f(E ∩ I)| = |f(E ∩ L)| = 0,

and so K−1|f(L)| ≤ |f(I)| ≤ K|f(L)|. This implies that f(E) also has uniformly
comparable component intervals, so there is a bilipschitz mapping g : [0, 1] → [0, 1]
such that g(f(E)) is a uniform Cantor set. Noting that g ◦ f is quasisymmetric with
|g(f(E))| = 0, we get |E| = 0 from Theorem 1, a contradiction. �

3. Products, projections and extensions

To prove the rest results of this paper, we need the following facts on products,
projections and extensions of doubling measures.

Lemma 7. Let Ki ≥ 1 and µi ∈ DKi
([0, 1]), i = 1, 2. Then the product µ1 × µ2

is a K1K2-doubling measure on [0, 1]2.

Proof. It is immediate from the definition of doubling measure. �

Lemma 8. Let K ≥ 1 and µ ∈ DK([0, 1]
2). Let δ > 0. Let I and J be intervals

in [0, 1] with |I| ≤ δ|J |. Then the measure µ(·×J), defined on I, is C(K, δ)-doubling
on I, where C(K, δ) is a constant depending only on K and δ. Moreover, C(K, δ)
can be chosen so that limδ→0 C(K, δ) = K.

Proof. It is not difficult to prove that the measure µ(· × J) is C(K, δ)-doubling
on I, with the constant C(K, δ) depending only on K and δ. We only show that
C(K, δ) can be chosen so that limδ→0C(K, δ) = K.

Let δ < 1/2. Let I1, I2 be adjacent intervals of equal length in I. Let J = ∪k
i=1Ji

be a partition of J by intervals with

|J1| = |J2| = · · · = |Jk−1| = |I1|, 0 ≤ |Jk| < |I1|.

Then k ≥ δ−1. Since µ ∈ DK([0, 1]
2), we have µ(I1 × Ji) ≤ Kµ(I2 × Ji) for i ̸= k,

and so

(8)
∑
i ̸=k

µ(I1 × Ji) ≤ Kµ(I2 × J).
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Let t be the index such that

µ(I2 × Jt) = min
1≤i≤k−1

µ(I2 × Ji).

Then
µ(I2 × Jt) ≤

1

k − 1
µ(I2 × J).

Fixed Jt, if necessary, by modifying the previous partition, we may suppose Jk is
adjacent to Jt. This modification preserves (8). And we have

(9) µ(I1 × Jk) ≤ Kµ(I2 × Jt) ≤
K

k − 1
µ(I2 × J).

It follows from (8) and (9) that

(10) µ(I1 × J) ≤ kK

k − 1
µ(I2 × J) ≤ K

1− δ
µ(I2 × J).

Therefore, we may choose C(K, δ) = K
1−δ

when δ < 1/2. The proof of Lemma 8 is
complete. �

Lemma 9. Let K ≥ 1 and µ ∈ DK([0, 1]
2). Let δ > 0. Let I1, I2, and J be

intervals in [0, 1] with I1 ⊂ I2 and |I2| ≤ δ|J |. Then

(11) λ

(
|I1|
|I2|

)β

≤ µ(I1 × J)

µ(I2 × J)
≤ 4

(
|I1|
|I2|

)α

where λ, α, and β are constants depending only on K and δ. More precisely, the
constant α can be chosen as α = log2(1 + C(K, δ)−1).

Proof. Using Lemma 8, the proof is the same as that of Lemma 1 in [19]. �

Lemma 10. Let I be a closed interval in R. Let K ≥ 1 and µ ∈ DK(I). Then
µ can be extended to be a C(K)-doubling measure on R, where C(K) is a constant
depending only on K. Moreover, C(K) can be chosen so that limK→1C(K) = 1.

Proof. It is a corollary of Lemma 2.1 of [1]. �

4. Proofs of Theorems 2 and 3

Proof of Theorem 2. Let E and F be subsets of [0, 1] with |E| = |F | = 0. Based
on Section 3, the proof goes as follows.

Claim 1. E ∈ VT =⇒ E × F ∈ VT.

Let E ∈ VT and µ ∈ D([0, 1]2). By Lemma 8, we have µ(· × [0, 1]) ∈ D([0, 1]).
It follows that µ(E × [0, 1]) = 0, so µ(E × F ) = 0. Thus E × F ∈ VT.

Claim 2. E × F ∈ VT =⇒ either E or F ∈ VT.

Suppose neither E nor F is very thin. Then there are µ, ν ∈ D([0, 1]) such
that µ(E)ν(F ) > 0. By Lemma 7, we have µ × ν ∈ D([0, 1]2), for which we have
(µ× ν)(E × F ) = µ(E)ν(F ) > 0. This shows E × F ̸∈ VT.

Claim 3. Both E and F ∈ MT =⇒ E × F ∈ MT.

Since both E and F ∈ MT, for every K > 1 there are µ, ν ∈ DK1/2([0, 1]) such
that µ(E)ν(F ) > 0. By Lemma 7, we have µ×ν ∈ DK([0, 1]

2) with (µ×ν)(E×F ) =
µ(E)ν(F ) > 0. It follows that E × F ∈ MT.



Fat and thin sets for doubling measures in Euclidean space 543

Claim 4. E × F ∈ MT =⇒ E ∈ MT.

Given K > 1, choose a sufficiently small δ > 0 such that (1 − δ)K > 1. Since
E×F ∈ MT, there is a (1−δ)K-doubling measure µ on [0, 1]2 such that µ(E×F ) > 0.
Let I be an interval in [0, 1] of length |I| ≤ δ such that µ((E ∩ I) × F ) > 0. From
the proof of Lemma 8, the measure µ(· × [0, 1]), defined on I, is K-doubling on I,
and for which the set E ∩ I has positive measure. Now, using Lemma 10, the above
measure on I can be extended to be a C(K)-doubling measure ν on [0, 1] such that

ν(E) ≥ µ((E ∩ I)× [0, 1]) ≥ µ((E ∩ I)× F ) > 0.

Since C(K) can be chosen so that limK→1C(K) = 1, we get E ∈ MT. �
Proof of Theorem 3. Let E and F be subsets of [0, 1] with |E| > 0 and |F | > 0.

Based on Lemma 7, the proof goes as follows.

Claim 1. E × F ∈ VF =⇒ E ∈ VF.

If E ̸∈ VF then there is a µ ∈ D([0, 1]) such that µ(E) = 0. From Lemma 7
we have µ × L ∈ D([0, 1]2), where L denotes the Lebesgue measure on [0, 1]. Since
(µ× L)(E × F ) = µ(E)L(F ) = 0, we get E × F ̸∈ VF, a contradiction.

Claim 2. E ∈ MF =⇒ E × F ∈ MF.

Since E ∈ MF, for every K > 1 there is a µ ∈ DK([0, 1]) such that µ(E) = 0.
From Lemma 7 we have µ×L ∈ DK([0, 1]

2) with (µ×L)(E × F ) = µ(E)L(F ) = 0.
It follows that E × F ∈ MF. �

5. Proof of Theorem 4

Let E be the uniform Cantor set of data {nk} and {ck} and F the uniform Cantor
set of data {mk} and {dk}, with |E| > 0 and |F | > 0. Since Theorem 3 has been
proved, it suffices to show the following two claims.

Claim 1. Both E and F ∈ VF =⇒ E × F ∈ VF.

Let K ≥ 1 and µ ∈ DK([0, 1]
2). Let C(K, δ) be the constant in Lemma 8. Let

α = log2(1 + C(K, 3)−1). Since both E and F are very fat, by Lemma 4, we have
∞∑
k=1

(nkck)
α < ∞ and

∞∑
k=1

(mkdk)
α < ∞.

Let k0 be an integer such that

(12) max

{
∞∑

k=k0

(nkck)
α,

∞∑
k=k0

(mkdk)
α

}
≤ 1

16
.

Let Ek be the family of component intervals of level k and Gk be the family of gaps
of level k of E. Let Fk be the family of component intervals of level k and Vk be
the family of gaps of level k of F . By (12), for both E and F the length of a gap is
smaller than the length of a component interval at the same level k, whenever k ≥ k0.

To show µ(E×F ) > 0, it suffices to prove µ(S∩ (E×F )) > 0 for some rectangle
S ⊂ [0, 1]2. Let Ik0 ∈ Ek0 and Ĩk0 ∈ Fk0 . Without loss of generality, suppose
|Ik0 | ≤ |Ĩk0 |. Then we have a unique integer k∗ ≥ k0 such that

(13) |Ĩk∗+1| < |Ik0 | ≤ |Ĩk∗ |,
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where Ĩk∗ ∈ Fk∗ and Ĩk∗+1 ∈ Fk∗+1. Let Ik0 and Ĩk∗ be fixed as above. The rectangle
S is chosen to be

S = Ik0 × Ĩk∗ .

Let A = Ĩk∗ ∩ ∪∞
k=k∗+1 ∪J∈Vk

J and B = Ik0 ∩ ∪∞
k=k0+1 ∪J∈Gk

J . Then A is the
union of gaps of F lying in Ĩk∗ and B is the union of gaps of E lying in Ik0 . We easily
see that

(14) S ∩ (E × F ) = S \ ((Ik0 × A) ∪ (B × Ĩk∗)).

Next we estimate µ(Ik0 × A) and µ(B × Ĩk∗). We first estimate µ(Ik0 × A). Let
k ≥ k∗ be given. Let I ∈ Fk be a given component interval of F lying in Ĩk∗ .
Let J1, J2, · · · , Jmk+1

∈ Vk+1 be the mk+1 gaps lying in I. Partition I into mk+1

subintervals of equal length and denote them by J∗
1 , J

∗
2 , · · · , J∗

mk+1
. Suppose these

gaps and intervals have been arranged in ascending order. Then we have for each
1 ≤ i ≤ mk+1

Ji ⊂ Ji
∗ and

|Ji|
|Ji∗|

= mk+1dk+1.

Since, as mentioned, the length of a gap of F is smaller than the length of a component
interval at the level k+1, by (13), one has |Ji| ≤ |Ĩk∗+1| < |Ik0 |, and so |Ji∗| ≤ 3|Ik0 |.
It follows from Lemma 9 that

µ(Ik0 × Ji)

µ(Ik0 × Ji
∗)

≤ 4(mk+1dk+1)
α.

Summing over all i yields
µ(Ik0 × (I ∩ ∪J∈Vk+1

J))

µ(Ik0 × I)
≤ 4(mk+1dk+1)

α.

Summing over all I ∈ Fk lying in Ĩk∗ yields

µ(Ik0 × (Ĩk∗ ∩ ∪J∈Vk+1
J))

µ(Ik0 × (Ĩk∗ ∩ Fk))
≤ 4(mk+1dk+1)

α,

which gives
µ(Ik0 × (Ĩk∗ ∩ ∪J∈Vk+1

J)) ≤ 4µ(S)(mk+1dk+1)
α.

Now, summing over all k ≥ k∗, we get from (12)

(15) µ(Ik0 × A) ≤ 4µ(S)
∞∑

k=k∗

(mk+1dk+1)
α ≤ µ(S)

4
.

Since |Ik0 | ≤ |Ĩk∗ |, by the same argument as that of (15), we have

(16) µ(B × Ĩk∗) ≤
µ(S)

4
.

Finally, it follows from (14), (15), and (16) that

µ(S ∩ (E × F )) ≥ µ(S)− µ(Ik0 × A)− µ(B × Ĩk∗)

≥ µ(S)− µ(S)

4
− µ(S)

4
=

µ(S)

2
> 0.

Claim 2. E × F ∈ MF =⇒ either E or F ∈ MF.
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Suppose that neither E nor F is minimally fat. From Lemma 4 there is a constant
α ∈ (0, 1) such that

(17)
∞∑
k=1

(nkck)
α < ∞ and

∞∑
k=1

(mkdk)
α < ∞.

Choose a positive integer N and a constant K > 1 such that

(18) α ≤ log2(1 + C(K, 3/N)−1) and N− log2(1+C(K,3)−1) log2(N + 1) ≤ 1

32
.

Here C(K, δ) is the constant in Lemma 8 satisfying limδ→0 C(K, δ) = K. To show
E × F ̸∈ MF, it suffices to prove µ(E × F ) > 0 for all µ ∈ DK([0, 1]

2).
Let µ ∈ DK([0, 1]

2) be given. Let k0 be a positive integer such that

(19) max

{
∞∑

k=k0

(nkck)
α,

∞∑
k=k0

(mkdk)
α

}
≤ min{ 1

32
,
1

N
}.

Then for both E and F the length of a gap is smaller than the length of a component
interval at the same level k, whenever k ≥ k0. Let Ik0 ∈ Ek0 and Ĩk0 ∈ Fk0 . Without
loss of generality, we may suppose |Ik0 | ≤ |Ĩk0 |. Let an integer k∗ ≥ k0, a rectangle
S = Ik0 × Ĩk∗ , A = Ĩk∗ ∩ ∪∞

k=k∗+1 ∪J∈Vk
J , and B = Ik0 ∩ ∪∞

k=k0+1 ∪J∈Gk
J be defined

as those in Claim 1. We are going to to show µ(S ∩ (E × F )) > 0.
To estimate µ(Ik0 × A), we divide A into two parts by

A =

(
Ĩk∗ ∩

∞∪
k=k∗∗+1

∪
J∈Vk

J

)
∪

(
Ĩk∗ ∩

k∗∗∪
k=k∗+1

∪
J∈Vk

J

)
:= A1 ∪ A2,

where k∗∗ > k∗ is the biggest integer such that k∗∗ − k∗ ≤ log2(N + 1). This choice
of k∗∗ ensures that

N |Ĩk∗∗| ≤ |Ĩk∗+1| < |Ik0 |
for every Ĩk∗∗ ∈ Fk∗∗ . Now, using Lemma 9 with δ = 3/N , by the same argument as
that of (15) we get from (18) and (19) that

µ(Ik0 × A1) ≤ 4µ(S)
∞∑

k=k∗∗+1

(mkdk)
log2(1+C(K,3/N)−1) ≤ µ(S)

8
.

As for µ(Ik0 ×A2), by using Lemma 9 with δ = 3 and by the same argument as that
of (15) we get from (18) and (19) that

µ(Ik0 × A2) ≤ 4µ(S)
k∗∗∑

k=k∗+1

(mkdk)
log2(1+C(K,3)−1)

≤ 4µ(S)N− log2(1+C(K,3)−1) log2(N + 1) ≤ µ(S)

8
.

Therefore,

µ(Ik0 × A) ≤ µ(S)

4
.

Similarly, we have

µ(B × Ik∗) ≤
µ(S)

4
.
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It follows that

µ(S ∩ (E × F )) ≥ µ(S)− µ(Ik0 × A)− µ(B × Ĩk∗) ≥
µ(S)

2
> 0.

This completes the proof. �
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