
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 38, 2013, 489–514

REGULARITY AND IRREGULARITY OF
FIBER DIMENSIONS OF NON-AUTONOMOUS

DYNAMICAL SYSTEMS

Volker Mayer, Bartłomiej Skorulski and Mariusz Urbański

Université de Lille I, UFR de Mathématiques, UMR 8524 du CNRS
59655 Villeneuve d’Ascq Cedex, France; volker.mayer@math.univ-lille1.fr

Universidad Católica del Norte, Departamento de Matemáticas
Avenida Angamos 0610, Antofagasta, Chile; bskorulski@ucn.cl

University of North Texas, Department of Mathematics
Denton, TX 76203-1430, U.S.A.; urbanski@unt.edu

Abstract. This note concerns non-autonomous dynamics of rational functions and, more
precisely, the fractal behavior of the Julia sets under perturbation of non-autonomous systems.
We provide a necessary and sufficient condition for holomorphic stability which leads to Hölder
continuity of dimensions of hyperbolic non-autonomous Julia sets with respect to the l∞-topology
on the parameter space. On the other hand we show that, for some particular family, the Hausdorff
and packing dimension functions are not differentiable at any point and that these dimensions are
not equal on an open dense set of the parameter space still with respect to the l∞-topology.

1. Introduction

Let F =
{
fτ ; τ ∈ Λ0

}
be a holomorphic family of rational functions depending

analytically on a parameter τ ∈ Λ0, Λ0 being some open and connected subset of Cd,
d ≥ 2. We investigate the dynamics of functions

fλn ◦ fλn−1 ◦ · · · ◦ fλ1 , n ≥ 1,

where each fλj
is an arbitrarily chosen function of the family F . Such a dynamical

system is usually called non-autonomous. They generalize deterministic dynamics
(where all the functions fλj

equal one fixed rational map) and random dynamics
(where the functions fλj

are chosen according to some probability law) that first
have been considered by Fornaess and Sibony [FS91]. Non-autonomous maps are
also deeply related with the skew-products studied by Jonsson [Jon99, Jon00], Sester
[Ses99] and Sumi [Sum01].

If λ = (λ1, λ2, . . . ) ∈ ΛN
0 , then it is convenient to denote

fn
λ = fλn ◦ fλn−1 ◦ · · · ◦ fλ1 .

Like in deterministic dynamics, the normal family behavior of (fn
λ )n splits the sphere

into two subsets. The Fatou set Fλ, i.e. the set of points for which (fn
λ )n is normal on

some neighborhood, and its complement the Julia set Jλ. We are going to investigate
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the fractal nature of the Julia set Jλ and, more precisely, the dependence of the fractal
dimensions of Jλ on the parameter λ ∈ ΛN

0 .
The deterministic hyperbolic case is completely understood by now. Indeed in

1979, Bowen [Bow79] showed that the Hausdorff dimension of the Julia set can be
expressed by the zero of a pressure function. The picture was completed by Ru-
elle [Rue82] who showed that this dimension depends real analytically on the func-
tion. More recently, random dynamics became an active area and both Bowen’s
formula and Ruelle’s real analyticity result have its counterparts in random dynam-
ics. Bowen’s formula has been established for various random dynamical systems (see
e.g. [MUS11] and the corresponding references in this monograph) and Rugh [Rug]
established real analyticity for random repellers. We will see in this note that the
situation is completely different in the non-autonomous setting.

Bowen’s and Ruelle’s results are valid for hyperbolic deterministic functions and
hyperbolic functions are so called stable functions of the parameter space. There
are several notions of stability. We consider holomorphic stability that is based on
the concept of holomorphic motions and the λ-Lemma, which has its origin in the
fundamental paper [MSS83] by Mané, Sad and Sullivan. Let Λ ⊂ ΛN be a complex
Banach manifold. A parameter η ∈ Λ is called holomorphically stable if there exists
a family of holomorphic motions {hσn(λ)}n over some neighborhood Vη ⊂ Λ of η such
that the following diagram commutes. In here, σ(λ1, λ2, . . . ) = (λ2, λ3, . . . ) is the
usual shift map.

(1.1) Jη

hλ

��

fη1 // Jσ(η)

hσ(λ)

��

fη2 // Jσ2(η)

fη3 //

hσ2(λ)

��

Jσ3(η) . . .

hσ3(λ)

��
Jλ

fλ1 // Jσ(λ)

fλ2 // Jσ2(λ)

fλ3 // Jσ3(λ) . . .

Comerford in [Com08] proved stability for certain hyperbolic non-autonomous poly-
nomial maps. We establish the following characterization of holomorphic stability.
We would like to mention that the usual theory developed by Mané, Sad and Sulli-
van [MSS83] is based on the stability of repelling periodic points. Such points do not
exist at all in the non autonomous setting. Another remark is that the parameter
space ΛN

0 is infinite dimensional.
As usual we denote by Cg = {g′ = 0} the critical set of a function g. The

definition of topological exactness is given in Definition 2.2.

Theorem 1.1. Suppose that Λ ⊂ ΛN
0 is a complex Banach manifold. Let fη,

η ∈ Λ, have perfect Julia sets and suppose that fλ is topologically exact for λ in a
neighborhood of η. Then, the map fη is holomorphically stable if and only if there
exist an open neighborhood V of η and three holomorphic functions αn

i : V → Ĉ,
i = 1, 2, 3, such that

αn
i (λ) ∈ Jσn(λ) and αn

i (λ) ̸= αn
j (λ) for all λ ∈ V and i ̸= j.(1.2)

fn
λ

(
Cfn

λ

)
∩ {αn

1 (λ), α
n
2 (λ), α

n
3 (λ)} = ∅ for all λ ∈ V and n ≥ 1.(1.3)

If αn+k
i (λ) = fk

σn(λ)(α
n
j (λ)) for some λ ∈ V ,(1.4)

then this equality holds for all λ ∈ V .

Remark 1.2. The dynamical assumptions perfectness of the Julia set and topo-
logical mixing are necessary in order to exclude some pathological examples. In
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general these are very natural and mild assumptions since they hold in most cases.
Indeed, Sumi [Sum01] improving Jonsson [Jon00] has shown that Jλ is perfect if
{fλj

}j is a equicontinuous family on Ĉ ([Sum06] even contains a uniformly perfect-
ness result). Details on the mixing property are in Section 2.

Remark 1.3. Throughout the whole scope of this paper we could have chosen in
each fiber j ≥ 0 the map fλj

in a different family Fj of rational maps. In particular,
Theorem 1.1 and the whole Section 3 on holomorphic stability does hold without any
restrictions on these families Fj, j ≥ 0. Only starting from Section 4 we need some
further control like, for example, a uniform bound on the degree of the functions.
We do not insist for such a generalization simply because the notations are already
involved enough.

This characterization is in the spirit of the stability of critical orbits in the de-
terministic case, i.e. the stability of orbits

cλ 7→ fλ(cλ) 7→ · · · 7→ fn
λ (cλ) 7→ · · ·

where cλ is a critical point of fλ. By Montel’s Theorem, such an orbit is stable if it
avoids three values αn

1 (λ), α
n
2 (λ), α

n
3 (λ) depending holomorphically on λ and staying

some definite spherical distance apart. Such a condition appears in Lyubich’s paper
[Lyu86] which itself is based on the previous work by Levin [Lev81]. It turns out
that this is the right point of view for generalizing the characterization of stability
to the non-autonomous setting.

Hyperbolic random and non-autonomous polynomials have been studied by Com-
erford [Com06], Jonsson [Jon00], Sester [Ses99] and Sumi [Sum01, Sum06, Sum10b].
H. Sumi also considered in [Sum97] related hyperbolic semi-groups. The definition
of hyperbolicity is based on a uniform expanding property, and this is the reason
why we will call such maps uniformly hyperbolic. We will consider hyperbolic and
uniformly hyperbolic non-autonomous maps. Later in the course of the paper we
will see that they have normal critical orbits and are therefore holomorphically sta-
ble provided we equip the parameter space with the l∞-topology. Using standard
properties of quasiconformal mappings we get the following Hölder continuity result
of the dimensions.

Theorem 1.4. For every uniformly hyperbolic map fη there is a neighborhood
V of η in l∞(Λ0) such that the functions

λ 7→ HD(Jλ) and λ 7→ PD(Jλ)

(in fact all fractal dimensions) are Hölder continuous on V with Hölder exponent
α(λ) → 1 if λ converges to the base point η.

As already mentioned before, in deterministic as well as in random dynamics one
has much more, namely, real analytic dependence of the dimension [Rue82, Rug].
Surprisingly it turned out that in the non-autonomous setting the Hölder continuity
obtained in Theorem 1.4 is best possible. Indeed we show the following.

Theorem 1.5. Consider the quadratic family

F =
{
fτ (z) = τ/2(z2 − 1) + 1, τ ∈ Λ0

}
where Λ0 = {|τ | > 40}
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and let Λ be the interior of ΛN
0 ∩ l∞(Λ0) for the l∞–topology. Then Λ = ΛuHyp (see

Definition 4.2 ) and the functions

λ 7→ HD(Jλ) and λ 7→ PD(Jλ)

are not differentiable at any point η ∈ Λ when equipped with the l∞-topology.

In order to prove this result we first produce conformal measures, introduce
and study fiber pressures and establish an appropriate version of Bowen’s formula.
Considering the family F in greater detail we also show that generically the different
fractal dimensions are not identical.

Theorem 1.6. Let F and Λ be like in Theorem 1.5. Then, there exists an open
and dense set Ω ⊂ Λ such that

HD(Jλ) < PD(Jλ) for every λ ∈ Ω.

The authors whish to thank the referee of our paper who provided us with a
very detailed report containing important remarks, comments and suggestions. In
particular, this influenced the final formulation of Theorem 3.6.

2. Non-autonomous dynamics

Rational functions are holomorphic endomorphisms of the Riemann sphere Ĉ and
the spherical geometry is the natural setting to work with. Therefore, all distances,
disks and derivatives will be understood with respect to the spherical metric. For
example, D(z, r) will be the spherical disk centered at z ∈ Ĉ and of radius r > 0.

We always assume that Λ0 is an open and connected subset of Cd for some d ≥ 2
and that F =

{
fτ ; τ ∈ Λ0

}
is a holomorphic family of rational functions which

means that fτ is a rational function for every τ ∈ Λ0 and that (τ, z) 7→ fτ (z) is a
holomorphic map from Λ0 × Ĉ to Ĉ. We are interested in the dynamics of

fλn ◦ · · · ◦ fλ2 ◦ fλ1 , n ≥ 1

where the fλj
∈ F or, equivalently, the λj ∈ Λ0 are arbitrarily chosen.

Let π : ΛN
0 → Λ0 be the canonical projection on the first coordinate and let

σ : ΛN
0 → ΛN

0 be the shift map σ(λ1, λ2, . . . ) = (λ2, λ3, . . . ). To λ = (λ1, λ2, . . . ) ∈ Λ
we associate a non-autonomous dynamical system by first identifying fλ with fπ(λ) =
fλ1 and then by setting

fn
λ = fσn−1(λ) ◦ · · · ◦ fσ(λ) ◦ fλ := fλn ◦ · · · ◦ fλ2 ◦ fλ1 , n ≥ 1.

A straightforward generalization of the deterministic case leads to the following def-
initions. The Fatou set of (fn

λ )n is

F(fλ) =
{
z ∈ Ĉ ; (fn

λ )n is a normal family near z
}

and the Julia set J (fλ) = Ĉ \ F(fλ). Most often there will be only one non-
autonomous map fλ associated to the parameter λ. Then we will use the simpler
notations Fλ and Jλ. For these sets we have the invariance property

(2.1) f−1
λj

(Jσj+1(λ)) = Jσj(λ) and f−1
λj

(Fσj+1(λ)) = Fσj(λ), j ≥ 1.

The critical set of fλ is Cfλ = {f ′
λ = 0}.

Lemma 2.1. The Julia set Jλ of a non-autonomous map fλ is either infinite or
there exists N ≥ 0 such that Jσn(λ) consists in at most two points for every n ≥ N .
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Proof. From the invariance property (2.1) it is clear that either all the sets Jσn(λ),
n ≥ 0, are simultaneously infinite or finite and that the sequence nλ = #Jσn(λ) is
decreasing hence stabilising when finite. Suppose that #Jλ < ∞ and let N be the
first integer such that

nλ = (n+ 1)λ for every n ≥ N.

Since, by assumption, the functions of F are not injective, it follows that every point
of JσN (λ) is a totally ramified point of fσN (λ). Therefore we are done since a rational
map of degree at least two has at most two such points. �

As usually, Jλ is called perfect if it does not have isolated points. In the case
where Jλ is an infinite set then it is automatically perfect provided the map satisfies
the following mixing property.

Definition 2.2. A map fλ is topologically exact if, for every open set U that
intersects Jλ, there exists N ≥ 1 such that fN

λ (U) ⊃ JσN (λ).

As we will see in Example 2.3, non-autonomous maps need not be topologically
exact. However, this mixing property is satisfied in most natural settings and is
a mild natural dynamical condition. Büger [Büg97] showed that polynomial non-
autonomous maps with bounded coefficients are topologically mixing. This results
suggest most likely that fλ is topologically exact if {λj}j is pre-compact in Λ0.

Non-autonomous maps are very general and many of the basic properties valid
in the deterministic case are no longer true here. For example, in the deterministic
case a point is in the Julia set if no subsequence of the iterates is normal. Also,
deterministic Julia sets are known to be perfect sets. Both these properties are
no longer true in the non-autonomous setting. To illustrate this and some other
particularities we provide here two simple examples.

Example 2.3. Let f(z) = z2 and hj(z) = αjz for some αj > 0, j ≥ 0. There
are numbers λj > 0 such that for every j ≥ 1

(2.2) hj ◦ f = fλj
◦ hj−1 where fλj

(z) = λjz
2.

In other words, the deterministic map f is conjugated by the similarities (hj)j to the
non-autonomous map fλ. The numbers αj can be chosen such that fn

λ (z) = fn(z) =
z2

n for even n and fn
λ (z) = rnf

n(z) = rnz
2n for odd n. In here the coefficients rn

are chosen to decrease to zero so fast that the sequence (fn
λ )n odd is normal at every

finite point z ∈ C. Notice that then (fn
λ )n odd is not normal at infinity from which

easily follows that
Jλ = S1 ∪ {∞}.

In particular, this example shows that the conjugation (2.2) does not preserve the
Julia sets. Also, the initial system is perfect and topologically exact whereas the new
non-autonomous map has neither of these properties.

Example 2.4. Consider f a hyperbolic rational function such that the Fatou set
of f has infinitely many distinct connected components U1, U2, . . . . For example, one
might take f(z) = z2 + c where c = −0.123 + 0.745i and where the associated Julia
set J (f) is Douady’s rabbit. Now, similarly to the first example, we will modify this
deterministic map by conjugating it to a non-autonomous map fλ where

fλn = Mn+1 ◦ f ◦M−1
n .
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This times, Mn = Id for odd n and, for even n, Mn is a Möbius transformation of
the Riemann sphere such that Mn(Un) ⊃ Ĉ \D(0, rn) where rn → 0.

Notice that f 2
σ2k(λ)

= fλ2k+2
◦ fλ2k+1

= f 2 for every k ≥ 0. It follows that the
deterministic set J (f) is a subset of the non-autonomous set Jλ. On the other hand,
it is easy to see that F(f) ⊂ Fλ. Therefore, both systems have the same Julia set
J (f) = Jλ.

In this example, the conjugation preserves the Julia and Fatou sets. However,
although we started from a hyperbolic hence expanding function f , for the non-
autonomous map fλ we have that

|(f 2k+1
λ )′| → 0 on Jλ

provided the numbers r2k → 0 sufficiently fast.

Further examples with pathological properties can be found e.g. in [Brü01] and
especially in the very interesting papers [Sum10a, Sum10b, Sum11] by Sumi.

Both above examples are obtained in conjugating a deterministic map. The
reason why in both cases the resulting dynamics differ from the original ones is
the the lack of equicontinuity of the conjugating family of similarities or Möbius
transformations respectively. Given this observation it is natural to introduce the
following definition.

Definition 2.5. Two non-autonomous maps fλ and fµ are conjugated if there
are homeomorphisms hj : Ĉ → Ĉ, j ≥ 1, such that

(2.3) hj+1 ◦ fλj
= fµj

◦ hj holds on Ĉ for every j ≥ 1 .

If in addition the families {hj}j and {h−1
j }j are equicontinuous then fλ and fµ

are called bi-equicontinuous conjugated. In the case the homeomorphisms hj be-
ing (quasi)-conformal then we say that the maps are (quasi)-conformally conjugated
or (quasi)-conformally bi-equicontinuous conjugated.

The notion of bi-equicontinuous conjugation is consistent with the notion of affine
conjugations used by Comerford in [Com03].

Often it is necessary to consider conjugations that do only hold on the Julia sets.
But, in order to do so, it is necessary to first ensure that the conjugating maps do
identify the Julia sets. Clearly, bi-equicontinous conjugations have this property.

Lemma 2.6. If the non-autonomous maps fλ and fµ are bi-equicontinuously
conjugated, then the conjugating homeomorphisms identify the corresponding Julia
sets.

Proof. Suppose that hj : Ĉ → Ĉ, j ≥ 1, are the homeomorphisms such that (2.3)
holds and such that {hj}j and {h−1

j }j are equicontinuous. Then fn
λ = h−1

n+1 ◦ fn
µ ◦ h1

for every n ≥ 1 which implies that h−1
1 (F(fµ)) ⊂ F(fλ) or, equivalently, F(fµ) ⊂

h1(F(fλ)). On the other hand, fn
µ = hn+1 ◦ fn

λ ◦ h−1
1 for every n ≥ 1 from which

follows that h1(F(fλ)) ⊂ F(fµ). �
As we have seen in Example 2.3, general conjugations may not identify Julia sets.

Nevertheless, in some special cases like in the Example 2.4 Julia sets are preserved.
Here is a more general statement where this also holds.

Lemma 2.7. (Rescaling Lemma) Suppose that fλ is a topologically exact non-
autonomous map such that all the Julia sets J (fσn(λ)), n ≥ 0, contain at least three
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distinct points. Suppose that hn are homeomorphisms of Ĉ such that 0, 1,∞ ∈
hn+1(J (fσn(λ))) and such that (hn)n conjugates fλ to the non-autonomous map gλ.
Then

J (gσn(λ)) = hn+1(J (fσn(λ))) for every n ≥ 0.

Proof. It suffices to establish the required identity for n = 0, i.e. we have to show
that J (gλ) = J̃λ if J̃λ = h0(J (fλ)). Let αn

1 , α
n
2 , α

n
3 ∈ Jσn(λ) be the points that are

mapped by hn onto 0, 1,∞ respectively. If z̃ ̸∈ J̃λ then it is easy to see from the
conjugations that z̃ has an open neighborhood U such that gnλ(U) does not contain
any of the points 0, 1,∞. Therefore, Montel’s Theorem yields that Ĉ \ J̃λ ⊂ F(gλ)
or, equivalently, that J (gλ) ⊂ J̃λ.

Suppose now that there exists z̃ ∈ J̃λ ∩ F(gλ). Then there exists an open
neighborhood U of z̃ such that (gnλ)n is normal on U . Let φ be the limit on U of
a convergent subsequence of (gnλ)n. Shrinking U if necessary, we may assume that
one of the points 0, 1,∞ is not in φ(U). Let W̃ be an open neighborhood of z̃
such that W̃ is relatively compact in U . Since z = h−1

0 (z̃) ∈ J (fλ), the open set
W = h−1

0 (W̃ ) intersects J (fλ). By assumption, the map fλ is topologically exact.
Therefore, there is N > 0 such that fn

λ (W ) ⊃ Jσn(λ) for every n ≥ N . It follows
that gnλ(W̃ ) ⊃ {0, 1,∞} for every n ≥ N . But then we get the contradiction that
{0, 1,∞} ⊂ φ(U). We showed that J̃λ ⊂ J (gλ) and thus both sets coincident. �

3. Stability and normality of critical orbits

In this section we study holomorphic stability and establish, in particular, The-
orem 1.1. We would like to mention that Comerford in [Com08] has a partial re-
sult in this direction. He shows holomorphic stability for certain polynomial non-
autonomous systems provided they are hyperbolic. Our result is an if and only if
condition for the stability of a general non-autonomous rational map. The condi-
tion relies on the dynamics of the critical orbits and, due to the great generality of
non-autonomous systems, we are lead to consider two different conditions of nor-
mal critical orbits. In the Proposition 3.5 and in Theorem 3.6 we relate them to
holomorphic stability and they yield Theorem 1.1.

In the following we assume that Λ ⊂ ΛN
0 is a complex Banach manifold. The

most relevant example is the l∞-topology. Given any function ω : N →]0,∞[, let
Λ := l∞ω (Λ0) be the interior of ΛN

0 ∩ l∞ω (Cd) in l∞ω (Cd) (remember that Λ0 ⊂ Cd)
where the weighted sup-norm is given by ∥λ∥ω,∞ := supj |ω(j)λj|. Then a sequence
λ ∈ ΛN

0 belongs to l∞ω (Λ0) if and only if (ω(1)λ1, ω(2)λ2, . . .) is a bounded sequence
such that infj ω(j) dist(λj, ∂Λ0) > 0.

Starting from Section 4 we most often deal with uniform hyperbolic maps (see
Definition 4.2). Then the natural associated parameter space is Λ = l∞(Λ0), i.e. the
space l∞ω (Λ0) with weight function ω ≡ 1.

3.1. Holomorphic motions. Since this section relies on quasiconformal map-
pings and holomorphic motions, we start by summarizing some facts from this theory.
Let η ∈ Λ be a base point.

Definition 3.1. A holomorphic motion of a set E ⊂ Ĉ over Λ is a mapping
h : Λ× E → Ĉ having the following three properties.
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• hη = idE,
• for every λ ∈ Λ, the map z 7→ hλ(z) is injective on E and
• for every z ∈ E, λ 7→ hλ(z) is a holomorphic map on Λ .

As already mentioned in the introduction, Mané, Sad and Sullivan [MSS83] ini-
tially established a λ-Lemma stating that any holomorphic motion of a set E ⊂ Ĉ
over the unit disk of C can be extended to a holomorphic motion of the closure of
E. Since then, this λ-Lemma has been extensively studied and generalized. Most
notably, Slodkowski [Slo95] showed that every holomorphic motion over the unit disk
is the restriction of a holomorphic motion of the whole sphere. Hubbard [Hub76]
discovered that this is false for holomorphic motions over higher-dimensional param-
eter spaces and [JM07] contains a simpler example. Nevertheless, we dispose in the
following λ-Lemma due to Mitra [Mit00] and Jiang–Mitra [JM07].

Theorem 3.2. (λ-Lemma) A holomorphic motion h of a set E ⊂ Ĉ over a
simply connected complex Banach manifold V with basepoint η ∈ V extents to a
holomorphic motion H of E over V such that

(1) for every λ ∈ V , the map Hλ is a global quasiconformal map of Ĉ with
dilatation bounded by exp(2ρV (η, λ)) where ρV is the Kobayashi pseudometric
on V ,

(2) the map (λ, z) 7→ Hλ(z) is continuous.

3.2. Holomorphic stability and normal critical orbits. Here is the precise
definition of the stability we use. Notice that, in this definition, the conjugating maps
hσn(λ) are not necessarily bi-equicontinuous. We therefore have to include here that
the conjugating maps identify the Julia sets.

Definition 3.3. A map fη, η ∈ Λ, is holomorphically stable if there is an open
neighborhood V ⊂ Λ of η and a family of holomorphic motions {hσn(λ)}n of {Jσn(η)}n
over V such that, for every λ ∈ V , hσn(λ)(Jσn(η)) = Jσn(λ) and

hσn+1(λ) ◦ fσn(η) = fσn(λ) ◦ hσn(λ) on Jσn(η) for every n ≥ 0.

The set of holomorphic stable parameters is denoted by Λstable.

In the theory by Mané, Sad and Sullivan [MSS83] and, independently, Lyu-
bich [Lyu86], showing in particular density of stable parameters in any deterministic
holomorphic family of rational functions, appear several equivalent characterizations
of stability. Most of this theory relies heavily on the stability of repelling cycles
which, in the present non-autonomous setting, do not exist at all. There is one cri-
terion of stability in [Lyu86] which turns out to be appropriate for generalization
to the present setting. This criterion exploits the dynamics of the critical orbits
cλ 7→ fλ(cλ) 7→ . . . 7→ fn

λ (cλ) 7→ . . . under perturbation of λ. Indeed, stability
coincides with the normality of these orbits and, as already mentioned in the in-
troduction, Montel’s Theorem implies that such an orbit is stable if it avoids three
values αn

1 (λ), α
n
2 (λ), α

n
3 (λ) depending holomorphically on λ and staying some definite

distance apart. It is therefore natural to make the following definition.

Definition 3.4. A map fη has normal critical orbits if there exists an open
neighborhood V of η, κ > 0 and, for each n ≥ 0, three holomorphic functions
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αn
i : V → Ĉ, i = 1, 2, 3, such that

distS(α
n
i (λ), α

n
j (λ)) ≥ κ for all λ ∈ V and i ̸= j.(3.1)

fn
λ

(
Cfn

λ

)
∩ {αn

1 (λ), α
n
2 (λ), α

n
3 (λ)} = ∅ for all λ ∈ V and n ≥ 1.(3.2)

If αn+k
i (λ) = fk

σn(λ)(α
n
j (λ)) for some λ ∈ V ,(3.3)

then this equality holds for all λ ∈ V .

Notice that (3.2) is precisely (1.3) and the compatibility condition (3.3) is also
exactly the condition (1.3) of Theorem 1.1. Only the first condition (3.1) differs from
the corresponding one in Theorem 1.1. It is a normalized version of condition (1.2)
in which we allow the functions αn

j to have values not only in the corresponding Julia
set but in the whole Riemann sphere. If, in this definition, the condition (3.1) is
replaced by (1.2), then we will say that fη has normal critical orbits in the sense of
Theorem 1.1 on V .

Proposition 3.5. Suppose that η ∈ Λstable is a holomorphic stable parameter
and that Jη is a perfect set. Then fη has normal critical orbits in the sense of
Theorem 1.1.

Proof. Consider first the map fη and let us define the points αn
j (η) by induction.

Since Jη is perfect, there exist three distinct points α0
1(η), α

0
2(η), α

0
3(η) ∈ Jη. Suppose

that all the points αk
j (η) are defined for 0 ≤ k < n. The set Jσn(η) is also perfect and

so there are distinct points

αn
1 (η), α

n
2 (η), α

n
3 (η) ∈ Jσn(η) \

[
fn
η

(
Cfn

η

)
∪

n−1∪
k=0

fn−k
σk(η)

(αk
j (η))

]
.

By assumption there are holomorphic motions {hσn(λ)}n such that Definition 3.3 is
satisfied. It suffices now to set

αn
j (λ) := hσn(λ)(α

n
j (η)) for every λ ∈ V and all n, j. �

The following main result of this section goes in the opposite direction.

Theorem 3.6. Suppose that U is an open subset of Λ such that, for every λ ∈ U ,
fλ is topologically exact and

lim sup
n→∞

diamJσn(λ) > 0.

Suppose that η ∈ U such that fη has normal critical orbits. Then fη is holomor-
phically stable, i.e. η ∈ Λstable. Moreover, the corresponding family of holomorphic
motions is bi-equicontinuous; it gives rise to a bi-equicontinuous conjugation on the
Julia sets.

Before giving a proof of it, let us first explain how Theorem 1.1 results.

Proof of Theorem 1.1. Given Proposition 3.5 we only have to show that normal-
ity of critical orbits in the sense of Theorem 1.1 implies holomorphic stability. Let fη
be a map such that there exist functions αn

1 , α
n
2 , α

n
3 defined and holomorphic on some

neighborhood V of η such that the conditions (1.2), (1.3) and (1.4) are satisfied. Let
Mσn(λ) be a Möbius transformation sending the points αn

j (λ), j = 1, 2, 3, to 0, 1,∞
and consider f̃σn(λ) defined by

(3.4) f̃σn(λ) ◦Mσn(λ) = Mσn+1(λ) ◦ fσn(λ) for every λ ∈ V and n ≥ 0.
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By assumption, fλ is topologically exact near η, say on V . Therefore, Lemma 2.7
applies and yields that

J (f̃σn(λ)) = Mσn(λ)

(
J (fσn(λ))

)
for all λ, n.

Since the functions λ 7→ αn
j (λ) are holomorphic on V , it suffices to establish holomor-

phic stability of f̃η. This new function f̃η has normal critical orbits (with functions
α̃n
j constant 0, 1 or ∞) and so we would like to conclude by applying Theorem 3.6.

However, on every fiber the map f̃σj(λ), j ≥ 0, belongs to a different holomorphic
family Fj = {f̃σj(λ) ; λ ∈ V }. But, as already mentioned in Remark 1.3, the whole
paper and especially Theorem 3.6 does hold in this generality with the same proof.
Therefore f̃η is holomorphically stable. �

The remainder of this section is devoted to the proof of Theorem 3.6. In order
to do so, we now suppose that the conditions of Theorem 3.6 are satisfied and that,
in particular, η ∈ U ⊂ Λ is such that fη has normal critical orbits: there are V ⊂ U ,
an open neighborhood of η, and holomorphic functions αn

j such that the conditions
of Definition 3.4 are satisfied. We can and will suppose that V is simply connected.
Consider the sets

Eσj(λ),n = f
−(n−j)

σj(λ)

(
{αn

1 (λ), α
n
2 (λ), α

n
3 (λ)}

)
, j ≤ n

and

(3.5) Eσj(λ) =
∪
n≥j

Eσj(λ),n, λ ∈ V and j ≥ 0.

Proposition 3.7. For every j ≥ 0, there are holomorphic motions hσj(λ) : Eσj(η)

→ Eσj(λ) over V such that

hσj(λ)(α
j
i (η)) = αj

i (λ) for all λ ∈ V and i ∈ {1, 2, 3}, and(3.6)
hσj+1(λ) ◦ fσj(η) = fσj(λ) ◦ hσj(λ) on Eσj(η), λ ∈ V .(3.7)

Proof. We explain how to obtain the motions in the case j = 0. The general case
is proven exactly the same way.

Let zη ∈ Eη and let n ≥ 0 be minimal such that zη ∈ Eη,n. A point zη ∈ Eη,n if
fn
η (zη) = αn

i (η) for some i ∈ {1, 2, 3}. Hence, we have to consider the equation

(3.8) fn
λ (z) = αn

i (λ).

We want to apply the implicit function theorem to this equation and get z as a
function of λ. This is possible as long as (fn

λ )
′(z) ̸= 0. If (fn

λ )
′(z) = 0, then the point

αn
i (λ) is a critical value of fn

λ . However, the assumption (3.2) implies that this is
not the case for λ ∈ V . The set V being simply connected it follows that there is
a uniquely defined holomorphic function λ 7→ zλ, λ ∈ V , starting at the given point
zη, if λ = η, and such that (λ, zλ) is solution of (3.8). Therefore, we can define

hλ(zη) = zλ, λ ∈ V.

If ever zλ ∈ Eλ,k ∩ Eλ,n for some λ ∈ V and 1 ≤ k ≤ n, then there are i, j ∈
{1, 2, 3} such that αn

i (λ) = fn−k
σk(λ)

(αk
j (λ)). But then the compatibility condition (3.3)

implies that the last equation holds for all λ ∈ V and that it does not matter for the
definition of the function λ 7→ zλ if we start with αn

i (η) or with αk
j (η).
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The normalization (3.6) and the conjugating relation (3.7) are clearly satisfied
simply by the way we constructed the holomorphic motions. Hence, the proof is
complete. �

End of the proof of Theorem 3.6. We are now able to conclude the proof of The-
orem 3.6 by using Mitra’s version of the λ-Lemma. Indeed, Theorem 3.2 asserts that
the motions hσj(λ) extend to holomorphic motions of the closure Eσj(λ). We continue
to denote these extended motions by hσj(λ). These maps hσj(λ) are global quasicon-
formal homeomorphisms with dilatation bounded by exp(2ρV (η, λ)). Therefore, for
every fixed λ ∈ V the family (hσj(λ))j is uniformly quasiconformal and normalized by
(3.6). Since the points αj

i (λ), i = 1, 2, 3, are at definite spherical distance (see Condi-
tion (3.1)), it results from standard properties of families of uniformly quasiconformal
mappings that the conjugation by {hσj(λ)}j is bi-equicontinuous.

Up to now we showed that Theorem 3.6 holds but with the Julia sets Jσj(λ)

replaced by the sets Eσj(λ). However, it is not hard to see that Jσj(λ) ⊂ Eσj(λ).
Indeed, for every open set U ⊂ Ĉ \ Eσj(λ) we have that

fn
σj(λ)(U) ∩

{
αj+n
1 (λ), αj+n

2 (λ), αj+n
3 (λ)

}
= ∅ for every n ≥ 0.

Hence, Montel’s Theorem along with Condition (3.1) imply that U ⊂ Fσj(λ). Conse-
quently, Jσj(λ) ⊂ Eσj(λ) for every j ≥ 0.

It remains to show that

hσj(λ)(Jσj(η)) = Jσj(λ) for every j ≥ 0 and λ ∈ V.

This would be immediate (see Lemma 2.6) if the maps {hσj(λ)}j where global conju-
gacies since they form a bi-equicontinuous family.

It suffices to consider the case j = 0. Let λ ∈ V . We show by contradiction that
hλ(Jη) ⊂ Jλ. The proof of the converse inclusion is the same. Suppose that there
is zη ∈ Jη such that zλ = hλ(zη) ∈ Fλ ∩ Eλ. Let r0 > 0 such that (fn

λ )n is normal
on D(zλ, r0). For 0 < r ≤ r0, consider the neighborhood Ur = h−1

λ (D(zλ, r)) of zη.
Since fη is topologically exact there exists, for every 0 < r ≤ r0, an integer Nr such
that fn

η (Ur) ⊃ Jσn(η), n ≥ Nr. We even have

Jσn(η) ⊂ fn
η (Ur ∩ Eη) = h−1

σn(λ) ◦ f
n
λ (Ur ∩ Eη), n ≥ Nr.

But then it follows from (3.7) with Eσj(η) replaced by Eσj(η), from normality of (h−1
σn(λ)◦

fn
λ )n on D(zλ, r) and by letting r → 0, that

lim
n→∞

diamJσn(η) = 0

contrary to the assumptions of Theorem 3.6. The proof is complete. �
From this study of holomorphic stability we get first informations concerning our

initial problem, namely the behavior of the variation of the Julia sets and of their
dimensions.

Corollary 3.8. Suppose that Λ ⊂ ΛN
0 is a complex Banach manifold and let

η ∈ Λstable. Then, in some neighborhood of η in Λ, the function λ 7→ Jλ is continuous
and λ 7→ HD(Jσj(λ)) as well as λ 7→ BD(Jσj(λ)) are Hölder continuous with Hölder
constants depending on λ only.
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Proof. The assertion on the Hölder continuity directly results from known prop-
erties of quasiconformal mappings along with the fact that the distortions of the
quasiconformal mappings hσj(λ) do only depend on λ and not on j ≥ 0. Concerning
the continuity of the Julia sets, this is a consequence of the continuity of the function
(λ, z) 7→ hσj(λ)(z) (see property (2) of Theorem 3.2). �

4. Hyperbolic non-autonomous systems

In deterministic dynamics a hyperbolic function is stable. But if we perturb
a deterministic hyperbolic function to a non-autonomous map then the stability
depends on the topology we use on the parameter space. As an illustration we first
consider the simple Tychonov convergence and explain that, for this topology, every
map is unstable (see Proposition 4.1).

Then we investigate non-autonomous hyperbolic and uniform hyperbolic func-
tions and will see that the later are stable provided the parameter space is Λ = l∞(Λ0).
In order to prove their stability it suffices to use Theorem 3.6. Indeed, the normal
critical orbits condition is best appropriated since it is easy to check for hyperbolic
maps.

4.1. Stability and Tychonov topology. Up to here, the parameter space Λ
was equipped with any arbitrary complex manifold structure. Let us first consider
the case when the space Λ = ΛN

0 is equipped with the Tychonov topology.

Proposition 4.1. Suppose that F contains at least two deterministic hyperbolic
maps having Julia sets with different Hausdorff dimension. Suppose further that
Λ = ΛN

0 and that Λ is equipped with the Tychonov topology induced by the simple
convergence. Then the function λ 7→ HD(Jλ) is discontinuous at every point of Λ.

Proof. Let η ∈ Λ and set δ = HD(Jη). By hypothesis there exists fλ0 ∈ F a
deterministic hyperbolic map with δ′ = HD(J (fλ0) ̸= δ. Consider then

λ(n) = (η1, η2, . . . , ηn, λ0, λ0, λ0, . . . ).

On the one hand we have that λ(n) → η point wise. On the other hand we have
HD(Jλ(n)) = δ′ for every n ≥ 1 and hence HD(Jλ(n)) ̸→ HD(Jη) as n → ∞. �

4.2. Hyperbolicity. Hyperbolic random systems have been studied in various
papers (see e.g. [Com06, Ses99, Sum01] and also [Sum97] where hyperbolic semi-
groups are considered). In these papers, normalized most often polynomial families
are considered and the definitions of hyperbolicity rely on uniform conditions. We
therefore call such functions uniformly hyperbolic.

In the following we make the standard convention that all the derivatives are
taken with respect to the spherical metric.

Definition 4.2. A map fλ is uniformly hyperbolic if the family
{
fλj

; j ≥ 1
}

is
equicontinuous (which, for example, is the case if {λj, j ≥ 1} is relatively compact
in Λ0 or, equivalently, if λ ∈ l∞(Λ0)), if #Jσj(λ) ≥ 2 and if there exist c > 0 and
γ > 1 such that for every j ≥ 0 we have

(4.1) |(fn
σj(λ))

′(z)| ≥ cγn for all z ∈ Jσj(λ) and n ≥ 1.

The set of parameters of uniformly hyperbolic random maps is denoted by ΛuHyp.
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For general families of non-autonomous maps this definition is not entirely satis-
factory. For instance, in the Example 2.4 we have conjugated a deterministic hyper-
bolic function by Möbius maps. The resulting non-autonomous map does not satisfy
the requirements of Definition 4.2 although it shares many properties of maps that
should be called hyperbolic. It is uniformly expanding “up to a conformal change of
coordinates”. Moreover, it is topologically exact which, as we will see (Lemma 4.8),
is a property that uniform hyperbolic maps always have.

A natural candidate for the class of hyperbolic maps is to take all the maps that
are Möbius conjugate to uniform hyperbolic maps. However, one has to be careful
since the map given in Example 2.3, obtained by conjugation by similarities of a
deterministic hyperbolic function, should really not be called hyperbolic. Given these
examples and Lemma 2.7 which ensures that the Julia sets are identified provided the
dynamics are topologically exact, it is natural to introduce the following definition.

Definition 4.3. A non-autonomous map fλ is hyperbolic if it is topologically
exact, if #Jσj(λ) ≥ 2 for all j ≥ 0 and if there are Möbius transformations conjugating
fλ to a uniformly hyperbolic map.

We now consider uniform hyperbolicity greater in detail. Let Vδ(E) = {z ; dist(z,
E) < δ} be the δ-neigborhood of the set E.

Lemma 4.4. The map fλ is uniformly hyperbolic if and only if the family{
fλj

; j ≥ 1
}

is equicontinuous and there exist δ > 0, N ≥ 1 and τ > 1 such that

(4.2) |(fN
σj(λ))

′(z)| ≥ τ > 1 for all z ∈ Vδ(Jσj(λ)) and j ≥ 0.

In particular, if fλ is uniformly hyperbolic then there exist δ > 0 such that for all
n ≥ 1, j ≥ 0 and z ∈ Jσn+j(λ) all holomorphic inverse branches of fn

σj(λ) are well
defined on D(z, δ) have uniform distortion and are uniformly contracting.

Proof. Suppose that fλ is uniformly hyperbolic and fix N ≥ 1 such that cγN > 1.
Suppose that (4.2) does not hold. More precisely, suppose that for any δ > 0 and
any 1 < τ < cγN there exist w = wδ,τ ∈ Vδ

(
Jσj(λ)

)
for some j = jδ,τ ≥ 0 such that

|(fN
σj(λ))

′(w)| ≤ τ.

Let zδ,τ ∈ Jσj(λ) such that |zδ,τ − wδ,τ | < δ. Due to the equicontinuity of the family{
fN
σj(λ) , j ≥ 0

}
we can choose sequences δn → 0, τn → 1 such that the corresponding

functions fN
σj(n)(λ)

→ φ and points wδn,τn → ξ, zδn,τn → ξ converge as n → ∞. But
then it is easy to see that |φ′(ξ)| ≤ 1 and, in the same time, |φ′(ξ)| ≥ cγN > 1. This
contradiction shows that uniform hyperbolicity implies (4.2). The other assertion
results now from standard arguments. �

In the case of deterministic iteration of rational functions there are several equiv-
alent conditions for hyperbolicity. One of them is the expanding condition, another
condition demands that critical orbits are captured by attracting domains. Here is a
version in the non-autonomous case which in fact is an adaption of [Ses99].1

1The paper [Ses99] seems to be inspired by [Jon99] and in [Sum01] are more general results in
this direction. All these papers deal with fibered maps or skew-products which are deeply related
to our non-autonomous setting in the following sense. To a non-autonomous map fλ, λ ∈ Λ, one
can associate F : Λ× Ĉ → Λ× Ĉ defined by F (λ, z) = (σ(λ), fλ1(z)). This is a skew-product in the
sense of the papers mentionned excepted that the base space Λ is not necessarily compact. However,
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Proposition 4.5. A map fλ is uniformly hyperbolic if and only if the family
{fλj

}j is equicontinuous and if there exist m0 > 0 and open sets Uj such that, for
every j ≥ 0,

(1) fσj(λ)(Uj) ⊂ Uj+1 and distS(fσj(λ)(Uj), ∂Uj+1) ≥ m0,
(2) D(z,m0) ∩ Uj = ∅, for every z ∈ Jσj(λ), and
(3) the critical points of fσj(λ) are contained in Uj.

Proof. Since most of the proof is standard we only give a brief outline of it.
Especially, finding the sets Uj knowing that fλ is uniformly hyperbolic is a straight-
forward adaption of Sester’s arguments [Ses99, pp. 414–415] which themselves are
based on the deterministic case. The main idea is to build a metric in which all the
functions fσj(λ) have a derivative greater than some constant γ > 1 on Vδ(Jσj(λ)) for
some δ > 0.

The proof of the opposite implication is based on hyperbolic geometry. Suppose
the sets Uj are given, set Vj+1 = fσj(λ)(Uj) and Ũj = f−1

σj(λ)
(Vj+1). Then fσj(λ) : Ũj →

Vj+1 is a proper map and, the critical orbits being captured by the domains Uj (see
(3)), fσj(λ) : ωj → Ωj+1 is a covering map where ωj,Ωj+1 is the complement of the
closure of Ũj, Vj+1 respectively. Therefore this map is a local hyperbolic isometry with
respect to the hyperbolic distances of these domains. Property (1) implies that there
is 0 < c < 1 such that the inclusion map i : ωj+1 → Ωj+1 is a hyperbolic c–contraction
for all j ≥ 0. Combining these properties it follows that fσj(λ) is a 1/c–expansion on
Jσj(λ) ⊂ ωj ∩ f−1

σj(λ)
(ωj+1) with respect to the hyperbolic distances of ωj and ωj+1.

Finally, it results from property (2) that it is possible to compare the hyperbolic and
spherical distance for points in Jσj(λ) ⊂ ωj, j ≥ 0, and to conclude. �

The topological characterization of Propositon 4.5 and especially the uniform
control due to the constant m0 implies the following.

Corollary 4.6. Uniform hyperbolicity is an open condition for the l∞-topology
on Λ (but not for the Tychonov topology). Moreover, if η ∈ Λhyp, then there is
an open neighborhood V ⊂ Λhyp of η such that the open sets Uj and the number
δ = δ(λ) > 0 given by Lemma 4.4 can be chosen to be the same for all the maps fλ,
λ ∈ V .

This result immediatley implies the following continuity property of non-auto-
nomous Julia sets which, in various versions, is well known to the specialists (see for
example [Brü00, Ses99, Sum01, Com06]).

Proposition 4.7. Every η ∈ ΛuHyp has an open neighborhood V ⊂ l∞(Λ0) such
that the map

λ 7−→ Jλ

from (V, Tychonov topology) into (K(Ĉ), Hausdorff topology) is continuous.

Proof. Let η ∈ ΛuHyp and let the open neighborhood V of η be sufficiently small
in Λ with respect to the l∞-topology and chosen according to Corollary 4.6, i.e. there
are open sets Uj such that every map fλ, λ ∈ V , satisfies the conditions (1), (2) and
(3) of Proposition 4.5 with these sets Uj. Denote

Ũj = {z ∈ Uj ; distS(z, ∂Uj) > m0/2}.

one is in the setting of [Jon99, Ses99, Sum01] if one restricts the base space. For example, if one
replaces Λ by KN equipped with the Tychonov topology where K is any compact subset of Λ0.
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Shrinking the neighborhood V if necessary and replacing m0 by a smaller constant
we may assume that the open sets Ũj satisfy also the conditions (1), (2) and (3)
of Proposition 4.5 for every λ ∈ V . Moreover, all inverse branches exist and are
uniformly contracting on the complement of Ũj, j ≥ 1.

Define

An
λ = {z ∈ Ĉ ; fn

λ (z) ̸∈ Un} and Ãn
λ = {z ∈ Ĉ ; fn

λ (z) ̸∈ Ũn}.

Clearly Jλ ⊂
∩

n An
λ ⊂

∩
n Ãn

λ. On the other hand, since all inverse branches exists
and are uniformly contracting on the complement of Ũj, j ≥ 1, we have first of all
that Jλ =

∩
n An

λ =
∩

n Ãn
λ and, secondly, that for every ε > 0 there exist n = nε ≥ 1

such that An
λ ⊂ Ãn

λ ⊂ Vε(Jλ) for every λ ∈ V .
Fix ε > 0 and let n = nε. Notice that the sets An

λ and Ãn
λ do only depend on the

n functions fλ1 , . . . , fλn . A standard compactness argument shows now that there
exists δ = δ(ε) > 0 such that

An
λ ⊂ Ãn

′ for every λ, ′ ∈ V such that sup
i=1,...,n

|λi − ′
i| < δ.

Therefore, for every λ, ′ ∈ V such that supi=1,...,n |λi − ′
i| < δ we have that

Jλ ⊂ An
λ ⊂ Ãn

′ ⊂ Vε(J′)

This proves the proposition. �
We conclude the discussion on uniform hyperbolicity with the following uniform

mixing property.

Lemma 4.8. Let λ ∈ ΛuHyp and let δ = δ(λ). Then, for every r1 > 0 and
0 < r2 ≤ δ, there exist N = N(r1, r2) such that for all j ≥ 0, z1 ∈ Jσj(λ) and
z2 ∈ Jσj+N (λ) we have that

fN
σj(λ)

(
D(z1, r1)

)
⊃ D(z2, r2) .

In particular, fλ is (uniformly) topologically exact: for every r1 > 0 there exist N =
N(r1) such that for j ≥ 0 and z1 ∈ Jσj(λ) we have that fN

σj(λ)

(
D(z1, r1)

)
⊃ Jσj+N (λ).

Proof. Suppose to the contrary that there exist r1 > 0 and 0 < r2 ≤ δ and, for
every N , jN ≥ 0, z1,N ∈ Jσj(λ) and z2,N ∈ JσjN+N (λ) such that

(4.3) D(z2,N , r2) \ fN
σjN (λ) (D(z1,N , r1)) ̸= ∅.

Consider then φN(z) = fN
σjN (λ)

(r1z+z1,N), z ∈ D. Since fλ is expanding on the Julia
set the family (φN)N is not normal at the origin. Therefore there are infinitely many
N such that

(4.4) φN(D(0, 1/2)) ∩D(z2,N , r2) ̸= ∅.

Since r2 ≤ δ, all inverse branches of fN
σjN (λ)

are well defined and have bounded
distortion on D(z2,N , r2). It suffices then to choose N big enough and to deduce from
expanding along with (4.4) that

f−N
σjN (λ),∗ (D(z2,N , r2)) ⊂ D(z1,N , r1)

where f−N
σjN (λ),∗ is some well chosen inverse branch. This contradicts (4.3). �
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4.3. Hyperbolicity and stability. The definition of hyperbolic map is based
on uniform controls, e.g. the iterated maps fn

σj(λ) are expanding uniformly in j. With
respect to this and in order to deal with perturbations of hyperbolic functions it is
natural to equip the parameter space Λ with the sup-norm, i.e. to work with the
space Λ = l∞(Λ0). Throughout the rest of this paper we suppose that Λ is this
particular Banach manifold.

As already mentioned, in order to establish stability of uniformly hyperbolic
maps, the condition of normal critical orbits as defined in Definition 3.4 is perfectly
adapted since easy to verify for such functions.

Proposition 4.9. If fη is a uniform hyperbolic map, then fη has normal singular
orbits on some open neighborhood V ⊂ Λ of η.

Proof. By Corollary 4.6, there is an open neighborhood V ⊂ Λ such that the
open sets Un in Proposition 4.5 can be chosen independently on λ ∈ V . Since we
know that

distS(fλn(Un), ∂Un+1) ≥ m0,

we can find three points a0i ∈ U0 and, if if n > 0,

ani ∈ Un \
∪
λ∈V

fλn−1(Un−1)

such that distS(a
n
i , a

n
j ) ≥ c0 for some c0 > 0 and for all n ≥ 0 and i ̸= j. Since

Cfλj ⊂ Uj, j ≥ 1, we have the inclusion fn
λ (Cfn

λ
) ⊂ fλn(Un−1) ⊂ Un. The constant

functions λ 7→ αn
i (λ) = zni , λ ∈ V , therefore satisfy the conditions (1) and (2) of

Definition 3.4 and appropriate perturbations of these constant functions if necessary
yield that Condition (3) of this definition is also satisfied. Therefore, fλ has normal
critical orbits on V . �

The following statement follows now from Theorem 3.6.

Corollary 4.10. ΛuHyp ⊂ Λstable when equipped with the l∞-topology.

5. Conformal measures, pressure and dimensions

In this section we consider a single non-autonomous uniformly hyperbolic map
fλ, λ = (λ1, λ2, . . . ) ∈ ΛuHyp. Remember that all the derivatives are taken with
respect to the spherical metric. Since {λn}n is relatively compact in the set Λ0 and
since the rational maps are Lipschitz with respect to the spherical metric [Bea91,
Theorem 2.3.1], there is a constant A < ∞ such that |f ′

σj(λ)(z)| ≤ A for all z ∈ Ĉ

and j ≥ 1. Combining this with uniform hyperbolicity and setting a = cγ we get

(5.1) a ≤ |f ′
σj(λ)(z)| ≤ A for all z ∈ Jσj(λ) and j ≥ 1.

5.1. Conformal measures. Denote by C(J ) the set of continuous functions
φ : J → R. Let t ≥ 0 and consider the operators Lσj(λ),t : C(Jσj(λ)) → C(Jσj+1(λ))
defined by

(5.2) Lσj(λ),tg(w) =
∑

f
σj(λ)

(z)=w

|f ′
σj(λ)(z)|−tg(z), w ∈ Jσj+1(λ).

For n ≥ 1, we denote Ln
σj(λ),t = Lσj+n−1(λ),t ◦ · · · ◦ Lσj(λ),t.



Regularity and irregularity of fiber dimensions of RDS 505

Proposition 5.1. For every t ≥ 0 there exist a sequence of probability measures
mσj(λ),t supported on Jσj(λ) and positive numbers ρσj(λ),t such that

(5.3) L∗
σj(λ),t(mσj+1(λ),t) = ρσj(λ),tmσj(λ),t for all j ≥ 0.

Moreover, there exist a sequence Nk → ∞ and points wk ∈ JσNk (λ) such that

(5.4) ρσj(λ),t = lim
k→∞

LNk−j
σj(λ),t

11(wk)

LNk−j−1
σj+1(λ),t

11(wk)
for all j ≥ 0.

Measures, actually a sequence of measures, satisfying (5.3) are called t-conformal.
To simplify the notations we will use often in this section the following shorthands

mj,t = mσj(λ),t and ρj,t = ρσj(λ),t.

This does not lead to confusions since the parameter λ ∈ ΛuHyp is fixed.

Proof. Choose for every N ≥ 0 arbitrarily a point wN ∈ JσN (λ) and consider the
probability measures

mN
j = βN

j

(
LN−j

σj(λ),t

)∗
δwN

where βN
j =

(
LN−j

σj(λ),t
11(wN)

)−1

, 0 ≤ j ≤ N.

Observe that

(5.5) L∗
σj(λ),t(m

N
j+1) =

LN−j
σj(λ),t

11(wN)

LN−j−1
σj+1(λ),t

11(wN)
mN

j for all 0 ≤ j ≤ N − 1.

Let Nk → ∞ be a sequence such that all the measures mNk
j converge weakly as

k → ∞ and denote mj,t = limk→∞ mNk
j . It follows then from (5.5) that, for every

j ≥ 0, the limit (5.4) also exists and that we have (5.3). �

Remark 5.2. It is a standard observation (see [DU91]) that (5.3) is equivalent
with

(5.6) dmj+1,t ◦ fλj
= ρj,t|f ′

λj
|tdmj,t.

The explicit expression (5.4) for the generalized eigenvalue ρσj(λ),t leads to the
following very useful bounds.

Lemma 5.3. With the notations of Proposition 5.1 and of (5.1), we have for
every j ≥ 0 and t ≥ 0 that

A−t deg(fλ) ≤ ρj,t ≤ a−t deg(fλ).

Proof. Since LNk−j
σj(λ),t

11(wk) = LNk−j−1
σj+1(λ),t

(
Lσj(λ),t11

)
(wk) and since by (5.1)

(5.7) A−t deg(fλ) ≤ Lσj(λ),t11(z) ≤ a−t deg(fλ) for all z ∈ Jσj+1(λ)

the lemma follows from the expression (5.4). �
Remember that δ = δ(λ) is such that all inverse branches are well defined and

have bounded distortion on disks of radius δ centered on Julia sets.

Lemma 5.4. For every t ≥ 0, there exist a constant Ct ≥ 1 such that for every
t-conformal measure mj,t and associated ρj,t and for all r > 0 and z ∈ Jσj(λ) we have

C−1
t ρ−n

j,t ≤ mj,t(D(z, r))

rt
≤ Ctρ

−n
j,t
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where ρnj,t = ρj,tρj+1,t . . . ρj+n−1,t and ρ−n
j,t =

(
ρnj,t
)−1 and where n ≥ 1 is maximal

such that |(fn
σj(λ))

′(z)|−1 ≥ r
δ
.

Proof. First of all, since fλ is expanding we have a lower bound of the derivatives
|f ′

σj(λ)
| on Julia sets. Together with the Lipschitz estimation (5.1) it follows that

there is a > 0 such that

(5.8) a ≤ |f ′
σj(λ)(z)| ≤ A for all z ∈ Jσj(λ) and j ≥ 1 .

Therefore, if z ∈ Jσj(λ) and if we put rn = |fn
σj(λ)(z)|−1 then for every r > 0 there

exist n such that

(5.9) r ≍ rn

which signifies that r
rn

is bounded below and above by implicit constants that do not
depend on z, j. Therefore it suffices to establish Lemma 5.4 for radii of the form
r = rn = |fn

σj(λ)(z)|−1. But this follows from a standard zooming argument along
with the conformality of the measures. More precisely from formula (5.6) provided
we can prove the following claim.

Claim 5.5. There is a constant c > 0 such that for every sequence of t–conformal
measures mj,t we have that

(5.10) mj,t(D(z, δ)) ≥ c for all j ≥ 0 and z ∈ Jσj(λ).

In order to establish this lower bound we first make the following general ob-
servation. The sphere having finite spherical volume and the number δ being fixed,
there is an absolute number M such that every Julia set Jσn(λ) can be covered by
no more than M disks of radius δ. Consequently there exist, for every n ≥ 0, a disk
Dn = D(z, δ), z ∈ Jσn(λ), having measure mn,t(Dn) ≥ 1/M .

The mixing property of Lemma 4.8 with r1 = r2 = δ asserts that there is a
number N = N(δ) such that

(5.11) fN
σj(λ)(D(z, δ)) ⊃ Dj+N for every j ≥ 0 and z ∈ Jσj(λ).

Therefore, there is Ω ⊂ D(z, δ) such that fN
σj(λ) : Ω → Dj+N is a conformal bijection

with bounded distortion. With ξ ∈ Ω an arbitrarily chosen point we get

mj,t(D(z, δ)) ≥ mj,t(Ω) ≍ |(fN
σj(λ))

′(ξ)|−tρ−N
j,t mj+N,t(Dj+N) ≥ A−tNρ−N

j /M

with ρj,t the eigenvalues associated to mj,t by (5.3).
It remains to estimate ρNj,t. But this has already been done in Lemma 5.3 from

which follows that ρNj,t ≤ a−Nt deg(fλ)
N . Therefore, we get the final estimation

mj,t(D(z, δ)) ≥ 1

M

( a
A

)tN
deg(fλ)

−N for all j ≥ 0 and z ∈ Jσj(λ).

�
As a first consequence of the previous result we get the following key estimation.

Here and in the following we use the symbol 11 for the function that is constant equal
to 1.

Lemma 5.6. For every t ≥ 0, there exists a constant Dt ≥ 1 such that
1

Dt

≤ ρ−n
j,t Ln

σj(λ),t11(w) ≤ Dt for every j ≥ 0, n ≥ 1 and w ∈ Jσj+n(λ).
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Proof. Let again δ = δ(λ) and remember from the previous proof that there is
an absolute number M such that, for every j, n, the Julia set Jσj+n(λ) can be covered
by at most M disks Di = D(zi, δ), i = 1, . . . ,M , of radius δ. Let j ≥ 0, n ≥ 1
and let Ui,k be the components of f−n

σj(λ)
(Di). Notice that {Ui,k}i,k is a Besicovitch

covering of Jσj(λ), i.e. z ∈ Ui,k can happen for at most M indices (i, k). Together
with conformality of the measures we get that

1 ≍
∑
i,k

mj,t(Ui,k) ≍ ρ−n
j,t

∑
i,k

|(fλ)′(zi,k)|−tmj+n,t(Di)

where zi,k ∈ Ui,k is such that fn
λ (zi,k) = zi. Now, by Claim 5.5 we have that

mj+n,t(Di) ≍ 1 from which follows that

1 ≼ ρ−n
j,t M max

w∈J
σj+n(λ)

Ln
σj(λ),t11(w) and(5.12)

1 ≽ ρ−n
j,t Ln

σj(λ),t11(zi) for every i = 1, . . . ,M,(5.13)

where here and in the following ≼, ≽ stands for the corresponding inequality up to
a multiplicative universal constant. The right-hand inequality of the lemma follows
now easily from Koebe’s distortion theorem and (5.13). For the other inequality we
proceed as follows. Let again N = N(δ) be an integer such that the mixing property
(5.11) holds. For all n < N the required estimation is true (see (5.7) and Lemma 5.3).
Let n ≥ N and j ≥ 0. Denote then wmax ∈ Jσj+n−N (λ) a point such that

Ln−N
σj(λ),t

11(wmax) = ∥Ln−N
σj(λ),t

11∥∞.

Then (5.12) yields Ln−N
σj(λ),t

11(wmax) ≽ ρn−N
j,t . Let w ∈ Jσj+n(λ) be any point. The

choice of N implies that there exists b ∈ D(wmax, δ) ∩ f−N
σj+n−N (λ)

(wmax). Therefore

Ln
σj(λ),t11(w) ≥

∣∣(fN
σj+n−N (λ)

)′
(b)
∣∣−tLn−N

σj(λ),t
11(b).

Applying Koebe’s Distortion Theorem yields Ln−N
σj(λ),t

11(b) ≍ Ln−N
σj(λ),t

11(wmax) ≽ ρn−N
j,t .

Since, by Lemma 5.3, ρNj+n−N,t ≤ a−Nt deg(fλ)
N and since

∣∣(fN
σj+n−N (λ)

)′
(b)
∣∣ ≤ AN we

finally get

Ln
σj(λ),t11(w) ≽

( a
A

)Nt

deg(fλ)
−Nρnj,t

which is the required inequality. �
We have not shown yet unicity of conformal measures. If m̃j,t are some other

conformal measures and ρ̃j,t are the corresponding eigenvalues from (5.3) then they
are uniformly close to the eigenvalues ρj,t of mj,t in the following sense.

Lemma 5.7. For every t ≥ 0, there exist a constant Bt ≥ 1 such that for all
j ≥ 0 and n ≥ 1 we have

1

Bt

≤
ρ̃nj,t
ρnj,t

≤ Bt .

Proof. With the above notations we get from Lemma 5.4 that

mj,t(D(z, r)) ≍ rtρ−n
j,t and m̃j,t(D(z, r)) ≍ rtρ̃−n

j,t

for every z ∈ Jσj(λ) and r = r(z, n) = |(fn
σj(λ))

′(z)|−1. Fix n ≥ 1. Taking a Besi-
covitch covering of Jσj(λ) by disks Dk = D(zk, r(zk, n)) centered on Jσj(λ) we get
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that

1 ≍
∑
k

mj,t(Dk) ≍
∑
k

ρ−n
j,t

m̃j,t(Dk)

ρ̃−n
j,t

=
ρ̃nj,t
ρnj,t

∑
k

m̃j,t(Dr,k) ≍
ρ̃nj,t
ρnj,t

for all j ≥ 0 and n ≥ 1. �
5.2. Pressure. To every λ ∈ Λhyp and t ≥ 0 we associate the lower and upper

topological pressure

(5.14) P λ(t) = lim inf
n→∞

1

n
log ρnλ,t ≤ lim sup

n→∞

1

n
log ρnλ,t = P λ(t),

where we used the already introduced notation ρnλ,t = ρλ,tρσ(λ),t . . . ρσn−1(λ),t. Notice
that these definitions do not dependent on the choice of conformal measures because
of Lemma 5.7.

Since we have good estimations (Lemma 5.6) for the iterated operator Ln
λ,t we

also have the following expression for the pressures.

(5.15) P λ(t) = lim inf
n→∞

1

n
logLn

λ,t11(wn) ≤ lim sup
n→∞

1

n
logLn

λ,t11(wn) = P λ(t)

for any arbitrary choice of points wn ∈ Jσn(λ).
The pressures, seen as functions of t, have the following properties.

Proposition 5.8. P λ(0) = P λ(0) = log(deg(fλ)) and both pressures are contin-
uous and strictly decreasing. More precisely, if 0 ≤ t1 < t2, then

(5.16) −(t2 − t1) logA ≤ P λ(t2)− P λ(t1) ≤ −(t2 − t1) log γ

and the same relation is true for the upper pressure P λ.

Proof. The statement about the evaluation of the pressures at zero is clear
directly from (5.15). For the remaining part, in fact the proof of (5.16), we consider
t 7→ P λ(t), the case of the upper pressure function is analogous.

Let 0 ≤ t1 < t2 and set pi = P λ(ti), i = 1, 2. If mλ,ti is a ti-conformal measure
then Lemma 5.4 yields that for every z ∈ Jλ and n ≥ 1

mλ,ti(D(z, r)) ≍ rtiρ−n
λ,ti

where r = |(fn
λ )

′(z)|−1.

The expanding property implies r ≼ γ−n. Therefore,

mλ,t2(D(z, r)) ≍ rt2−t1
ρnλ,t1
ρnλ,t2

mλ,t1(D(z, r)) ≼ γ−(t2−t1)n
ρnλ,t1
ρnλ,t2

mλ,t1(D(z, r)).

Choose now a sequence nj → ∞ such that 1
nj

log ρ
nj

λ,t1
→ P λ(t1) = p1. Then, for

every ε > 0,
ρ
nj

λ,t1
≤ enj(p1+ε) and ρ

nj

λ,t2
≥ enj(p2−ε)

provided j is sufficiently large. For such j and with rj = |(fnj

λ )′(z)|−1 we get

mλ,t2(D(z, rj))

mλ,t1(D(z, rj))
≼ exp

{
nj

(
p1 − (t2 − t1) log γ − p2 + 2ε

)}
.

If p2 > p1 − (t2 − t1) log γ then there is ε > 0 sufficiently small such that for some
sequence rj → 0 we get limj→∞

mλ,t2
(D(z,rj))

mλ,t1
(D(z,rj))

= 0. This holds for every z ∈ Jλ.
Therefore it would follow from Besicovitch’s covering theorem that mt2(Jλ) = 0, a
contradiction. Therefore, p2 ≤ p1 − (t2 − t1) log γ.
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The second inequality can be proven in the same way replacing the estimation
r ≼ γ−n by

r = |(fn
λ )

′(z)|−1 ≥ A−n. �
5.3. Dimensions. Given the properties of the pressure functions in Proposi-

tion 5.8, there are uniquely defined zeros hλ and hλ of P λ and P λ respectively. With
these numbers we get the following formula of Bowen’s type.

Theorem 5.9. hλ = HD(Jλ) and hλ = PD(Jλ).

Proof. Given Lemma 5.4, the expression (5.14) of the pressures along with the
properties of the pressure functions (Proposition 5.8) the proof of the theorem is
by now a standard application of the Frostman type lemma Theorem 7.6.1 in [PU].
For more details we refer the reader to Chapter 7 of [PU] or to the, parallel but
technically more involved, proof of Theorem 5.2 in [MUS11]. �

6. Irregularity of pressure and dimensions

Considering a particular family of quadratic polynomials greater in detail, we
now establish that the Hölder-continuity of dimensions obtained in Theorem 1.4 is
almost best possible, i.e. we prove Theorem 1.5. The key point is to show non-
differentiability of the pressure functions. As a byproduct we get that generically
there is a gap between the Hausdorff and the packing dimension as described in
Theorem 1.6. We recall that these results concern the family of functions

(6.1) F =
{
fl(z) = l/2(z2 − 1) + 1, l ∈ Λ0

}
where Λ0 = {|l| > 40}.

Note that for fl ∈ F we have f ′
l (z) = lz. The inverse branches of fl have the form

f−1
l (w) = ±

√
1 +

2(w − 1)

l
.

Let
U0 = {z ∈ C : |z − 1| < 1/3} and U1 = {z ∈ C : |z + 1| < 1/3}

and denote U := U0 ∪U1. A simple calculation shows that fl(Ui) ⊃ D(0, 2) and that
moreover f−1

λ (U) ⊂ U for every i = 0, 1 and λ ∈ Λ = ΛN
0 . Consequently, the Julia

set Jλ is a Cantor set

(6.2) Jλ =
∞∩
n=0

f−n
λ (U) ⊂ U

and all critical orbits of (fn
λ )n, l ∈ ΛN

0 , do not intersect the set U . This last property
means that every λ ∈ l∞(Λ0) gives rise to a uniformly hyperbolic map and that, in
particular, λ is a stable parameter. Let, in the following, Λ = l∞(Λ0). We have
Λ = ΛuHyp = Λstable.

Let η ∈ Λ and let {hσn(λ)}n be a family of holomorphic motions over V neigh-
borhood of η such that (1.1) holds. We first investigate the speed of these motions.

Lemma 6.1. Let η ∈ Λ and let Vη and {hσn(λ)}n be as above. Then, with
∆ = supk≥1

|λk−ηk|
|ηk|

,

e−∆/6 ≤
|hσn(λ)(z)|

|z|
≤ e∆/6 for every z ∈ Jσn(η) and n ≥ 0.
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Proof. We give a proof for the case n = 0, the general case follows exactly in
the same way. Since z, hλ(z) ∈ U , a simple calculation shows that it is sufficient to
establish

(6.3)
∣∣z − hλ(z)

∣∣ ≤ ∆

9
for every z ∈ Jη.

For the sake of proving this inequality we recall that the holomorphic motions
are first constructed on the set Eη defined in (3.5) and that the Julia set Jη is in the
closure of Eη. Consequently, it suffices to establish (6.3) for all points z ∈ Eη.

For points z ∈ Eη the holomorphic motion hλ is given by

(6.4) hλ(z) = f−n
λ (αn

i )

for some i ∈ {1, 2, 3} and n ≥ 0 and where f−n
λ is a certain inverse branch of fn

λ

which has been determined by the implicit function theorem in (3.8). Therefore, we
now consider in detail the behavior of these inverse branches under variation of the
parameter λ.

Fix i ∈ {0, 1} and k ≥ 1 and consider inverse branches f−1
λk

, f−1
ηk

both sending the
euclidean disk D(0, 2) into Ui. Our first step is to show that for every w1, w2 ∈ Ui

with |w1 − w2| ≤ ∆
9

we have

(6.5) |f−1
λk

(w1)− f−1
ηk

(w2)| ≤
∆

9
.

Since

(6.6) |f−1
λk

(w1)− f−1
ηk

(w2)| ≤ |f−1
λk

(w1)− f−1
ηk

(w1)|+ |f−1
ηk

(w1)− f−1
ηk

(w2)|,
it suffices to estimate separately these two terms. Concerning the first one, observe
that

(6.7)
∣∣∣df−1

l (w)

dl

∣∣∣ = |w − 1|∣∣√1 + 2(w−1)
l

∣∣ 1

|l2|
≤ 3

|l|2

for all w ∈ U and |l| ≥ 40. It follows that for |λk − ηk| < 1, λk, ηk ∈ Λ0,

|f−1
λk

(w1)− f−1
ηk

(w1)| ≤
3

(|ηk| − 1)2
|λk − ηk| ≤

3

(|ηk| − 1)

40

39
∆.

Concerning the second term, we have that

|f−1
ηk

(w1)− f−1
ηk

(w2)| ≤
|w1 − w2|√
5/6(|ηk| − 1)

≤ 1

(|ηk| − 1)
∆.

Adding both estimations and using again that |ηk| − 1 ≥ 39 we obtain (6.5).
It suffices now to proceed by induction and to get, with the notation of (6.4),

that
|hλ(z)− z| = |f−n

λ (αn
i )− f−n

η (αn
i )| ≤

∆

9
. �

Having analyzed the speed of holomorphic motions we now use this tool in or-
der to study the variation of the lower and upper pressure P λ(t), P λ(t) defined in
(5.15). In order to do so, fix η ∈ Λ. We will choose later on for every t > 0
an element (s0, s1 . . .) ∈ {−1, 1}N and consider, for x ∈ (−r, r), the parameter
λ(x) = (λ1(x), λ2(x), . . . ) defined by

λk(x) = exskηk, k ≥ 1.
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Since η ∈ Λ = l∞(Λ0), there is a number r ∈ (0, 1] such that λ(x) ∈ Λ for all x ∈
(−r, r). Moreover, the map x 7→ λ(x) is differentiable from (−r, r) into Λ. Clearly,
λ(0) = η. Hence, for every t > 0, we consider a particular choice of perturbation of
fη ∈ F .

Proposition 6.2. For every t > 0 there is a choice of numbers sj = sj(t) ∈
{−1, 1} such that, with the preceding notation, we have for every x ∈ (−r, r)

(6.8) P λ(x)(t) ≥ P η(t) +
t

2
|x|

and

(6.9) P λ(x)(t) ≤ P η(t)−
t

2
|x|.

In particular, the functions λ 7→ P λ(t) and λ 7→ P λ(t) are not differentiable at any
point η ∈ Λ.

Proof. The particular choice of the functions in the family F leads to the following
expressions. First of all, for every n ≥ 1,

(
fn
η

)′
(z) =

n∏
k=1

ηkf
k−1
η (z).

Now, using again holomorphic stability and the notation zx = hλ(x)(z), z ∈ Jη, we
also have that(

fn
λ(x)

)′
(zx) =

n∏
k=1

λk(x)f
k−1
λ(x)(zx) =

n∏
k=1

exskηkhσk−1(λ(x)) ◦ fk−1
η (z).

If we now apply Lemma 6.1 then we get the estimation

∣∣(fn
λ(x))

′(zx)
∣∣ ≤ n∏

k=1

exsk |ηk|e∆/6|fk−1
η (z)| = en∆/6

(
n∏

k=1

exsk

)∣∣(fn
η )

′(z)
∣∣

and, similarly,

∣∣(fn
λ(x))

′(zx)
∣∣ ≥ e−n∆/6

(
n∏

k=1

exsk

)∣∣(fn
η )

′(z)
∣∣ for every z ∈ Jη.

For the particular perturbation we have chosen we have

∆ = ∆(x) = sup
k≥1

|λk(x)− ηk|
|ηk|

= sup
k≥1

∣∣eskx − 1
∣∣ ≤ e sup

k≥1
|skx| = e|x|.

Replacing ∆ by this estimation in the preceding inequalities leads to

e−tn|x|/2

(
n∏

k=1

e−txsk

)∣∣(fn
η )

′(z)
∣∣−t ≤

∣∣(fn
λ(x))

′(zx)
∣∣−t ≤ etn|x|/2

(
n∏

k=1

e−txsk

)∣∣(fn
η )

′(z)
∣∣−t

for every z ∈ Jη and t > 0.
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The operators Lλ,t have been defined in (5.2). The previous inequality yields

e−tn|x|/2

(
n∏

k=1

e−txsk

)
Ln

η,t11(w) ≤ Ln
λ(x),t11(wx)

≤ etn|x|/2

(
n∏

k=1

e−txsk

)
Ln

η,t11(w)

(6.10)

for every n ≥ 0, w ∈ Jσn(η) and with wx = hσn(λ(x))(w). Avoiding long notation, we
have just shown this inequality for the first fiber. But it is clear that one can replace
here the parameters η and λ(x) by their images by σj, j ≥ 1, and one still has the
corresponding estimation.

We can now study the behavior of the pressures. Let us recall that we have
the expression (5.15) of P λ(t) and of P λ(t) in terms of the iterated operators Ln

λ,t11.
Inequality (6.10) implies that, for all x ∈ (−r, r) and t > 0,

−t
|x|
2

+
1

n
logLn

λ(x),t11(wx) ≤
1

n
logLn

η,t11(w)− t
x

n

n∑
k=1

sk

≤ t
|x|
2

+
1

n
logLn

λ(x),t11(wx).

(6.11)

For the conclusion of the proof let t > 0 again be fixed. There are a sequence
nj → ∞ such that P η(t) = limj→∞

1
nj

logLnj

η,t11(wnj
) and a sequence mj → ∞ such

that P η(t) = limj→∞
1
mj

logLmj

η,t 11(wmj
) Choose now numbers sk = sk(t) ∈ {−1, 1}

such that

lim inf
j

1

nj

nj∑
k=1

sk = −1 and lim sup
j

1

nj

nj∑
k=1

sk = 1.

There is then a sequence nj → ∞ such that P η(t) = limj→∞
1
nj

logLnj

η,t11(wnj
).

Choose now the numbers sk = sk(t) ∈ {−1, 1} such that

lim inf
j

1

nj

nj∑
k=1

sk = −1, lim sup
j

1

nj

nj∑
k=1

sk = 1,

lim inf
j

1

mj

mj∑
k=1

sk = −1 and lim sup
j

1

mj

mj∑
k=1

sk = 1.

This choice makes that either lim supj −tx
n

∑nj

k=1 sk = t|x| or lim infj −tx
n

∑nj

k=1 sk =
t|x|. It follows now from (6.11) that

P η(t) +
t

2
|x| ≤ P λ(x)(t)

which is exactly (6.8). Inequality (6.9) follows in the same way and they both together
imply that the pressures are not differentiable at η. �

Proof of Theorem 1.5. We first consider Hausdorff dimension. Let hη > 0 be
the unique zero of t 7→ P η(t) and suppose that the sk ∈ {−1, 1} in Proposition 6.2
are chosen for t = hη. It follows then from (6.9) in Proposition 6.2 that

P λ(x)(hη) ≤ P η(hη)−
hη

2
|x| = −

hη

2
|x| < 0.
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We look for hx zero of t 7→ P λ(x)(t) since, by Theorem 5.9, this number equals
the Hausdorff dimension of Jλ(x). The pressures being stricly decreasing, hx < hη.
Therefore, Proposition 5.8 yields

0 = P λ(x)(hx) ≤ Pλ(x)(hη) + (hη − hx) logA ≤ −
hη

2
|x|+ (hη − hx) logA

from which follows that

(6.12) hx ≤ hη

(
1− |x|

2 logA

)
.

Therefore, x 7→ hx = HD(Jλ(x)) is not differentiable.
Similarly to (6.12) one obtains, with obvious notations,

(6.13) hx ≥ hη

(
1 +

|x|
2 logA

)
and the non-differentiability of the packing dimension follows. �

Proof of Theorem 1.6. In any family F the set Ω = {λ ∈ Λ, HD(Jλ) < PD(Jλ)}
is open in l∞(Λ) because of Theorem 1.4.

Density of Ω for the particular quadratic family of this section can be shown as
follows. If η ∈ Λ\Ω then it follows immediately from (6.12) and (6.13) together with
Bowen’s formula (Theorem 5.9) that there are arbitrarily small perturbations of η
that are in Ω. �

References

[Bea91] Beardon, A. F.: Iteration of rational functions. - Grad. Texts in Math. 132, Springer-
Verlag, New York, 1991.

[Bow79] Bowen, R.: Hausdorff dimension of quasicircles. - Inst. Hautes Études Sci. Publ. Math.
50, 1979, 11–25.

[Brü00] Brück, R.: Connectedness and stability of Julia sets of the composition of polynomials
of the form z2 + cn. - J. London Math. Soc. (2) 61:2, 2000, 462–470.

[Brü01] Brück, R.: Geometric properties of Julia sets of the composition of polynomials of the
form z2 + cn. - Pacific J. Math. 198:2, 2001, 347–372.

[Büg97] Büger, M.: Self-similarity of julia sets of the composition of polynomials. - Ergodic
Theory Dynam. Systems, 17, 1997, 1298–1297.

[Com03] Comerford, M.: Conjugacy and counterexample in random iteration. - Pacific J. Math.
211:1, 2003, 69–80.

[Com06] Comerford, M.: Hyperbolic non-autonomous Julia sets. - Ergodic Theory Dynam.
Systems 26:2, 2006, 353–377.

[Com08] Comerford, M.: Holomorphic motions of hyperbolic nonautonomous Julia sets. - Com-
plex Var. Elliptic Equ. 53:1, 2008, 1–22.

[DU91] Denker, M., and M. Urbański: On the existence of conformal measures. - Trans.
Amer. Math. Soc. 328:2, 1991, 563–587.

[FS91] Fornæss, J. E., and N. Sibony: Random iterations of rational functions. - Ergodic
Theory Dynam. Systems 11:4, 1991, 687–708.

[Hub76] Hubbard, J. H.: Sur les sections analytiques de la courbe universelle de teichmüller. -
Mem. Amer. Math. Soc. 166, 1976, 1–137.

[JM07] Jiang, Y., and S. Mitra: Some applications of universal holomorphic motions. - Kodai
Math. J. 30:1, 2007, 85–96.



514 Volker Mayer, Bartłomiej Skorulski and Mariusz Urbański

[Jon99] Jonsson, M.: Dynamics of polynomial skew products on C2. - Math. Ann. 314:3, 1999,
403–447.

[Jon00] Jonsson, M.: Ergodic properties of fibered rational maps. - Ark. Mat. 38:2, 2000, 281–
317.

[Lev81] Levin, G.M.: Irregular values of the parameter of a family of polynomial mappings. -
Uspekhi Mat. Nauk 36:6(222), 1981, 219–220.

[Lyu86] Lyubich, M.Yu.: Dynamics of rational transformations: topological picture. - Uspekhi
Mat. Nauk 41:4(250), 1986, 35–95, 239.

[Mit00] Mitra, S.: Teichmüller spaces and holomorphic motions. - J. Anal. Math. 81, 2000,
1–33.

[MSS83] Mañé, R., P. Sad, and D. Sullivan: On the dynamics of rational maps. - Ann. Sci.
Éc. Norm. Supér. (4) 16:2, 1983, 193–217.

[MUS11] Mayer, V., M. Urbański, and B. Skorułski: Distance expanding random mappings,
thermodynamic formalism, Gibbs measures, and fractal geometry. - Lecture Notes in
Math. 2036, Springer, New York, 2011.

[PU] Przytycki, F., and M. Urbański: Conformal fractals – Ergodic theory methods. -
Cambridge Univ. Press (to appear), available on www.math.unt.edu/∼urbanski.

[Rue82] Ruelle, D.: Repellers for real analytic maps. - Ergodic Theory Dynam. Systems 2:1,
1982, 99–107.

[Rug] Rugh, H.H.: On the dimension of conformal repellors. Randomness and parameter
dependency. - Ann. of Math. (2) 168:3, 2008, 695–748.

[Ses99] Sester, O.: Hyperbolicité des polynomes fibrés. - Bull. Soc. Math. France 127:3, 1999,
393–428.

[Slo95] Slodkowski, Z.: Extensions of holomorphic motions. - Ann. Sc. Norm. Super. Pisa Cl.
Sci. (4) 22:2, 1995, 185–210.

[Sum97] Sumi, H.: On dynamics of hyperbolic rational semigroups. - J. Math. Kyoto Univ. 37:4,
1997, 717–733.

[Sum01] Sumi, H.: Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew
products. - Ergodic Theory Dynam. Systems 21:2, 2001, 563–603.

[Sum06] Sumi, H.: Semi-hyperbolic fibered rational maps and rational semigroups. - Ergodic
Theory Dynam. Systems 26:3, 2006, 893–922.

[Sum10a] Sumi, H.: Cooperation principle, stability and bifurcation in random complex dynamics.
- 2010.

[Sum10b] Sumi, H.: Dynamics of postcritically bounded polynomial semigroups III: classification
of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not
quasicircles. - Ergodic Theory Dynam. Systems 30:6, 2010, 1869–1902.

[Sum11] Sumi, H.: Random complex dynamics and semigroups of holomorphic maps. - Proc.
Lond. Math. Soc. (3) 102:1, 2011, 50–112.

Received 23 March 2012 • Accepted 21 September 2012


