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Abstract. In this paper, we give a sufficient condition to ensure that the typical Hausdorff
dimension of slices through a self-similar set in a fixed direction takes the value in Marstrand’s
theorem, i.e., the dimension of the self-similar set minus one.

1. Introduction

The intersections of Borel sets in Rn with (n − m)-dimensional subspaces in
random directions are studied in many publications. The following Marstrand’s the-
orem [8] (also see [9] Chapter 10) is well known: suppose A ⊂ Rn is a Borel set with
0 < Hs(A) < ∞ and m < s < n, then for γn,n−m-almost all (n − m)-dimensional
subspace V and Hs-almost all x ∈ A,

dimH [A ∩ (V + x)] = s−m.

This theorem was first proved by Marstrand [8] for the intersection of planar sets
with lines. Later, Mattila [9] proved its higher-dimensional version. In particular,
when m = 1, we call (s − 1) the Marstrand’s value of Hausdorff dimension for the
slices.

Wen and Xi [11] studied the slices of scaling self-similar set E = ∪i(riE + bi)
(ri ∈ (0, 1)) in Rn, and obtained that for a fixed (n − m)-dimensional subspace V ,
dimH [E ∩ (V + a)] is constant for Hm-almost all a ∈ V ⊥ with E ∩ (V + a) ̸= ∅.

Kenyon and Peres proved in [5] that given two Cantor set X and Y in [0, 1),
invariant under the map x 7→ bx (mod 1), the Hausdorff dimension of (X + t) ∩ Y is
constant almost everywhere.

The following results showed that for some special planar sets, their typical di-
mension of the slices in a fixed direction are strictly less than the Marstrand’s value.
Let L denote the Lebesgue measure on R.

• Hawkes obtained in [3] that
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dimH [(C × C) ∩ {(x, y) : y = x+ b}] = log 2
3 log 3

< dimH [C × C]− 1

for L-almost all b ∈ [−1, 1].
• Benjamini and Peres [2] gave a class of fractal sets in the unit square [0, 1]×
[0, 1] with dimH F = log 3

log 2
and proved that for any F in this class,

dimH{y ∈ [0, 1] : (x, y) ∈ F} ≥ 1/2

for L-almost all x ∈ [0, 1].
• Liu, Xi and Zhao [6] investigated the Sierpinski carpet with dimH E = log 8

log 3
.

Denote by Lk,b the line y = kx+ b. For any fixed k ∈ Q+, they proved that

dimH [E ∩ Lk,b] = dimB[E ∩ Lk,b] = ck

for L-almost all b ∈ [−k, 1], where the constant ck depends only on the rational
slope k and

ck ≤ log 8/ log 3− 1 = dimH E − 1.

They posed a conjecture that ck < log 8/ log 3− 1.
• Manning and Simon [7] proved the conjecture: for any fixed k ∈ Q+,

dimH [E ∩ Lk,b] = dimB[E ∩ Lk,b] = ck < dimH E − 1

for L-almost all b ∈ [−k, 1].
• Bárány, Ferguson and Simon [1] studied the Sierpinski gasket in R2. Let
Eθ,b = E ∩ {(x, y) : y = tan θ · x+ b}, where θ ∈ (0, π

3
) and tan θ =

√
3p

2q+p
with

p, q ∈ N. Then there exists constant α(θ) depending only on θ such that for
L-almost all b ∈ ∆θ,

dimH Eθ,b = dimB Eθ,b = α(θ) < dimH E − 1.

In the above literatures, the typical dimensions of the corresponding slices do not
take the Marstrand’s value. Naturally, we will ask: when slicing the self-similar set,
can we ensure that the typical dimension of the slices takes the Marstrand’s value?

Wu and Xi [12] discussed the intersections of a class of generalized Sierpinski
sponges in Rn with an (n− 1)-dimensional hyperplane of the form

{x ∈ Rn : a · x = b}

where a ∈ Zn\{0} and b ∈ Z. They give a sufficient condition, under which the
Hausdorff dimensions of slices takes the Marstrand’s value.

In this paper, we discuss the slices for b ∈ R. When b ∈ Z, after certain
modification the slices satisfy the graph-directed construction. When b ∈ R, the
nested structure, which the slices have, is different to the graph-directed construction.
Thus we use the method in [5] and [6], and show that the typical Hausdorff dimension
of slices in a suitable fixed rational direction takes the Marstrand’s value.

Let m ≥ 2 be an integer and Ω ⊂ {0, 1, · · · , (m − 1)}n (n ≥ 2). For all v ∈ Ω,
let fv(x) = (x+ v)/m. The self-similar set

(1.1) E =
∪
v∈Ω

fv(E) =
∪
v∈Ω

1

m
(E + v)

is called a self-similar set with initial cubic pattern { 1
m
([0, 1]n+v)}v∈Ω. Then dimH E =

log(#Ω)/ logm (see e.g. [4]).
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Fix a = (a1, a2, · · · , an) ∈ Zn\{0}. For b ∈ R, let Πa,b be the hyperplane in Rn

defined by
Πa,b = {x ∈ Rn : a · x = b},

and the slice Ea,b = E ∩ Πa,b.
Let Tn be the n-dimensional torus and P : Rn → Tn the map defined by

P (x1, · · · , xn) = (y1, · · · , yn) ∈ Tn where yi = {xi} the fractional part of xi for
every i. Set F = P (E), then F is an invariant set with respect to the expansive
mapping τ(y) = my. For b ∈ R, write

Fa,b = F ∩
{
y = (y1, · · · , yn) ∈ Tn :

∑n

i=1
aiyi ≡ b (mod 1)

}
.

The main results of the paper are stated as follows.

Theorem 1. If there exists a positive integer s such that

(⋆) #{v ∈ Ω: a · v ≡ t (mod m)} = s

for all t ∈ {0, 1, · · · ,m− 1}, then
(1) for all b ∈ R,

dimB Fa,b = dimB

(∪
i∈Z

Ea,b+i

)
=

log s

logm
= dimH E − 1;

(2) for L-a.e. b ∈ R,

dimH Fa,b = dimH

(∪
i∈Z

Ea,b+i

)
=

log s

logm
= dimH E − 1.

Remark 1. Under the assumption (⋆), Theorem 1 in [12] showed that for b ∈ Z,

dimB(∪i∈ZEa,b+i) = dimH(∪i∈ZEa,b+i) = dimH E − 1.

When b ∈ R\Z, it is not clear that whether the Hausdorff dimension of slices
∪i∈ZEa,b+i equals to its box dimension or not.

Remark 2. For b ∈ Z, the slices have the graph-directed construction (see [12]).
To compute the box dimension, we only need to evaluate the spectral radius of a fixed
adjacency matrix. When b is not an integer, the slices fail to have the graph-directed
construction. To evaluate the box dimension, we need to compute the Lyapunov
exponent limk→∞

log ||M(b)M(mb)···M(mkb)||
k

, where the matrix M(t) is variable for t (see
Section 3).

Let Λ := {b ∈ R : E∩Πa,b ̸= ∅}. Then Λ is self-similar. We have L(Λ) ≥ 1 under
the assumption (⋆) (see Proposition 4).

Theorem 2. Preserve the assumption of Theorem 1. Then for L-a.e. b ∈ Λ,

dimH Ea,b = dimB Ea,b =
log s

logm
= dimH E − 1.

Remark 3. Under the assumption (⋆), Theorem 2 answer the question on typical
dimension of slices.

For Ω ⊂ {0, 1, · · · ,m − 1}n, n ≥ 2, then the self-similar set E =
∪

v∈Ω
E+v
m

has
Hausdorff dimension dimH E = log#Ω

logm
. Then dimH E > 1 if and only if

#Ω > m.
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From Theorem 2 and the results listed above, we pose the following conjecture.

Conjecture 1. Suppose E =
∪

v∈Ω
E+v
m

with #Ω > m. Let a ∈ Zn\{0} and da
the typical value of dimH Ea,b for L-almost all b ∈ Λ. Then

da = dimH E − 1

if and only if the assumption (⋆) holds for Ω.

In this paper, we face the following difficulty: in the Sierpinski carpet, we have

(1.2) Πa,b ∩ E ̸= ∅ iff Πa,b ∩ [0, 1]n ̸= ∅,

note that [0, 1]n ∩ Πa,b ̸= ∅ iff b ∈ [A−, A+], where

A− =
∑
ai<0

ai, A+ =
∑
ai>0

ai,

and set A− = 0 if {i : ai < 0} = ∅ and A+ = 0 if {i : ai > 0} = ∅. Thus we obtain
that

(1.3) Πa,b ∩ E ̸= ∅ iff b ∈ [A−, A+];

whereas for the self-similar set with initial cubic pattern, the property (1.2) does not
hold as in the following example and thus the claim (1.3) also fails. That means we
do not know when the slice E ∩Πa,b ̸= ∅. We overcome this difficulty by introducing
an equivalent condition ([12, Lemma 1] or Lemma 6 in Section 3) to determine that
when the slice is not empty.

Example 1. Let a = (3,−4) and Πa,b the line 3x− 4y = b.
(1) When m = 3 and Ω = {0, 1, 2}2\{(1, 1)}, E is the Sierpinski carpet and

E ∩ Πa,b ̸= ∅ if Πa,b touches [0, 1]2 (Fig. 1).
(2) When m = 4 and Ω = {(0, 1), (0, 2), (1, 2), (1, 3), (2, 0), (2, 3), (3, 0), (3, 1)}, E

is a self-similar set with initial cubic pattern. In this case, the assumption (⋆)
holds and E ∩ {(x, y) : 3x− y = 0} = ∅ (Fig. 2).

Figure 1. Slices of Sierpinski carpet. Figure 2. The case that empty slices occur.

The rest of the paper is organized as follows. In Section 2, we give some basic
results on discrete structure {b + i : i ∈ Z} ∩ [A−, A+] and images of slices by map
P . In Section 3, we investigate the box dimensions of Fa,b and

∪
i∈Z Ea,b+i to prove

Theorem 1(1). Section 4 is devoted to Theorem 1(2) on Hausdorff dimension. In
Section 5, we discuss the Hausdorff and box dimension of Ea,b for b ∈ Λ and prove
Theorem 2.
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2. Preliminaries

Fix Ω ⊂ {0, 1, · · · ,m− 1}n and

a = (a1, · · · , an) ∈ Zn\{0}

satisfying for every t ∈ {0, 1, · · · , (m− 1)},

#{v ∈ Ω: a · v ≡ t (mod m)} = s.

For all v ∈ Ω, let
fv(x) = (x+ v)/m.

Let Πa,b (b ∈ R) be the hyperplane in Rn defined by

Πa,b = {x ∈ Rn : a · x = b},

and the slice Ea,b = E ∩ Πa,b, the intersection of the self-similar set with the hyper-
plane. For any v ∈ Ω, set

Tv(x) = mx− a · v, Sv(x) = T−1
v (x) = (x+ a · v)/m.

Note that
f−1
v (Πa,b) = Πa,Tv(b).

Using the above formula, we can check that

(2.1) fv1···vk(E) ∩ Πa,z = fv1···vk(E ∩ Πa,Tvk···v1 (z)
).

Recall that

(2.2) A− =
∑
ai<0

ai, A+ =
∑
ai>0

ai,

and set A− = 0 if {i : ai < 0} = ∅ and A+ = 0 if {i : ai > 0} = ∅. Then A+ − A− =
∥a∥1, where the norm of a row vector is given by

∥(x1, · · · , xn)∥1 =
n∑

i=1

|xi|.

It is easy to see that

(2.3) [0, 1]n ∩ Πa,b ̸= ∅ if and only if b ∈ [A−, A+].

We also need the following lemma, for a proof, refer to [12, equation (1.4)].

Lemma 1. [12] For any v ∈ Ω,

Sv([A
−, A+]) ⊂ [A−, A+],(2.4)

Tv([A
−, A+]c) ⊂ [A−, A+]c.(2.5)

2.1. Discrete Structure Γb. Let D = {b ∈ R : mkb /∈ Z for any integer k ≥
0}. Let τ0 : R →R be the map τ0(x) = mx. It is easy to see that for any integer
k ≥ 0,

(2.6) τ k0 (D) ⊂ D and τ k0 (D
c) ⊂ Dc.

For any b ∈ R, let

Γb = {b+ i ∈ [A−, A+] : i ∈ Z} ⊂ [A−, A+].
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Then Γb1 = Γb2 if b1 ≡ b2(mod 1) and

#Γb =

{
A+ − A− + 1, if b ∈ Z,

A+ − A−, otherwise.

In particular,
#Γmkb = A+ − A− for any b ∈ D and k ≥ 0,

and
Γb ≡ {A−, (A− + 1), · · · , A+} for all b ∈ Z.

Given b ∈ R, we arrange the element of Γb in ascending order, i.e.,

Γb(1) < Γb(2) < · · · < Γb(#Γb).

Set
Ii := [A− − 1 + i, A− + i)(1 ≤ i ≤ A+ − A−).

When i ≤ A+ − A−, we have

(2.7) Γb(i) ∈ Ii for all b ∈ R.

Whereas i = A+ − A− + 1 we have

(2.8) Γb(A
+ − A− + 1) = A+ for all b ∈ Z.

Since a · v ∈ Z, we obtain the following lemma.

Lemma 2. If z ∈ Γb and Tv(z) ∈ [A−, A+], then Tv(z) ∈ Γmb.

2.2. Projection from Rn to Tn. Let

Tn = Rn/Zn

be the n-dimensional torus and P the corresponding natural mapping from Rn to
Tn. For y, y′ ∈ Tn, the metric d on Tn is defined as follow

d(y, y′) =

(
n∑

i=1

(min{|yi − y′i|, 1− |yi − y′i|})2
)1/2

= min
P (x)=y
P (x′)=y′

|x− x′|.

Now, we will map the slice Ea,b into Tn. Let τ : Tn → Tn be the map τ(y) = my.
Set

K = P

(∪
v∈Ω

fv([0, 1]
n)

)
⊂ Tn.

Suppose F = {y ∈ Tn : τ k(y) ∈ K, ∀ k ≥ 0}, then

F = P (E)

where E is the self-similar set defined by (1.1).
Recall that a = (a1, · · · , an) ∈ Zn\{0}. For b ∈ R, let

Fa,b = F ∩
{
y = (y1, · · · , yn) ∈ Tn :

n∑
i=1

aiyi ≡ b (mod 1)

}
.

Lemma 3. For any b ∈ R, we have

P

(∪
z∈Γb

Ea,z

)
= Fa,b.
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Proof. For any x ∈
∪

z∈Γb
Ea,z, we have

∑n
i=1 aixi ≡ b (mod 1). Suppose y =

P (x), then y ∈ F and
∑n

i=1 aiyi ≡ b (mod 1). Hence

P

( ∪
z∈Γb

Ea,z

)
⊂ Fa,b.

On the other hand, suppose y ∈ Fa,b with
∑n

i=1 aiyi ≡ b (mod 1). Since P (E) =
F , there exists x ∈ E such that P (x) = y. Then

∑n
i=1 aixi = z ∈ {b+i : i ∈ Z}. Note

that x ∈ E ⊂ [0, 1]n, we have Πa,z ∩ [0, 1]n ̸= ∅, which implies z ∈ [A−, A+] by (2.3),
i.e., z ∈ Γb = {b+ i ∈ [A−, A+] : i ∈ Z}. Hence y = P (x), where x ∈ E ∩Πa,z = Ea,z

with z ∈ Γb. Therefore

Fa,b ⊂ P

( ∪
z∈Γb

Ea,z

)
. �

Notice that E ⊂ [0, 1]n and there exists a constant δ > 0 such that
d(P (x), P (x′)) = |x− x′|

whenever |x− x′| < δ. Therefore, we have the following result.

Lemma 4. For any b ∈ R, we have

dim
∪
z∈Γb

Ea,z = dimFa,b,

where ‘dim’ stands for any one of dimH , dimB and dimBFa,b.

3. Box dimension of sections

The nested structure of the slices {Ea,b}b∈[A−,A+] is characterized in the following
Lemma, which is similar to Proposition 1 in [12].

Lemma 5. For any b ∈ [A−, A+],

(3.1) Ea,b =
∪
v∈Ω

fv(Ea,Tv(b)) =
∪
v∈Ω

Ea,Tv(b) + v

m
.

Further, for k ≥ 1,

E ∩ Πa,b =
∪

v1···vk∈Ωk

fv1···vk(E ∩ Πa,Tvk···v1 (b)
)

=
∪

Tvk···v1 (b)∈Γmkb

fv1···vk(E ∩ Πa,Tvk···v1 (b)
).

(3.2)

Proof. The equation (3.1) follows from Proposition 1 in [12].
For (3.2), using induction, we have

E ∩ Πa,b =
∪

v1···vk∈Ωk

fv1···vk(E ∩ Πa,Tvk···v1 (b)
).

Further, if Tvk···v1(b) ∈ [A−, A+]c, then [0, 1]n ∩ Πa,Tvk···v1 (b)
= ∅ by (2.3), and thus

E ∩ Πa,Tvk···v1 (b)
= ∅.

Combine this fact and Lemma 2, we have

E ∩ Πa,b =
∪

Tvk···v1 (b)∈Γmkb

fv1···vk(E ∩ Πa,Tvk···v1 (b)
). �
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Remark 4. Some Ea,Tv(b) in (3.1) may be empty.

The following lemma describes when the intersection E ∩Πa,b is not empty. This
has been done in [12] for integer b ∈ [A−, A+]. In fact the proof in [12] holds for all
b ∈ [A−, A+].

Lemma 6. [12, Lemma 1] For any b ∈ [A−, A+],

E ∩ Πa,b ̸= ∅ ⇐⇒ ∃ v1 · · · vk · · · ∈ Ω∞, s.t. Tvk···v1(b) ∈ [A−, A+] for all k > 0.

Lemma 5 and Lemma 2 implies the following fact.

Claim 1. For any z ∈ Γb, Ez is composed of some reduced (with ratio 1/m)
copies of Ez′ for some z′ ∈ Γmb.

We record the number of copies with a non-negative integer matrix.
For b ∈ R, the integer matrix M(b) = (ci,j)1≤i≤#Γb,1≤j≤#Γmb

is defined by

(3.3) ci,j = #{v ∈ Ω: Tv(Γb(i)) = Γmb(j)},

where ci,j is the number of reduced copies of EΓmb(j) contained in EΓb(i).
• If b ∈ D, then M(b) is an (A+ − A−)× (A+ − A−) matrix.
• If b ∈ Z, then M(b) is an (A+ − A− + 1)× (A+ − A− + 1) matrix.
• For b ∈ Dc\Z, suppose mkb ∈ Z and mk−1b /∈ Z, then M(mk−1b) is an
(A+ − A−) × (A+ − A− + 1) matrix and M(mtb) is a square matrix for any
non-negative integer t ̸= k − 1.

Let 1b = (1, · · · , 1) be a vector in R#Γb with every coordinate 1.

Lemma 7. For any b ∈ R, every column sum of the matrix M(b) equals to s,
i.e.,

(3.4) 1bM(b) = s1mb.

Proof. For all 1 ≤ j ≤ #Γmb, we need to show that
#Γb∑
i=1

ci,j = s.

By (3.3), we have
#Γb∑
i=1

ci,j =

#Γb∑
i=1

#{v ∈ Ω: Tv(Γb(i)) = Γmb(j)}

= #{v ∈ Ω: ∃ z ∈ Γb, s.t. Tv(z) = Γmb(j)}.

Suppose that z = b+ i′, Γmb(j) = mb+ j′ where i′, j′ ∈ Z. Then

Tv(z) = Γmb(j) =⇒ mb+mi′ − a · v = mb+ j′

=⇒ a · v ≡ −j′ (mod m).

Hence

s = #{v ∈ Ω: a · v ≡ −j′ (mod m)} ≥ #{v ∈ Ω: ∃ z ∈ Γb, s.t. Tv(z) = Γmb(j)}.

Conversely, for any v ∈ Ω satisfying a · v ≡ −j′ (mod m), we have

Sv(Γmb(j)) = Sv(mb+ j′) = b+
j′ + a · v

m
∈ b+ Z.



Dimension of slices through a self-similar set with initial cubic pattern 481

By (2.4), we know that Sv(Γmb(j)) ∈ [A−, A+]. That means

Sv(Γmb(j)) ∈ Γb,

i.e., ∃ z ∈ Γb, s.t. Tv(z) = Γmb(j). Therefore

s = #{v ∈ Ω: a · v ≡ −j′ (mod m)} ≤ #{v ∈ Ω: ∃ z ∈ Γa, s.t. Tv(z) = Γmb(j)}.
This completes the proof. �

Write fv1···vk = fv1 ◦ · · · ◦ fvk . Let

(3.5) Nk(b) =
∑
z∈Γb

#{v1 · · · vk ∈ Ωk : fv1···vk([0, 1]
n) ∩ Πa,z ̸= ∅}.

We also have

(3.6) Nk(b) =
∑
z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ [A−, A+]},

since

fv1···vk([0, 1]
n) ∩ Πa,z ̸= ∅ ⇐⇒ [0, 1]n ∩ Πa,Tvk···v1 (z)

̸= ∅
⇐⇒ Tvk···v1(z) ∈ [A−, A+]

due to (2.1) and (2.3).
The following proposition shows us how to compute Nk(b).

Lemma 8. For any k > 0, we have

(3.7) Nk(b) = ∥1bM(b)M(mb) · · ·M(mk−1b)∥1.
Proof. First, by (3.6), for any k > 0, we have

(3.8) Nk(b) =
∑
z∈Γb

#{v1 · · · vk : Tvk···v1(z) ∈ Γmkb}.

Now we will show that∑
z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ Γmkb} = ∥1bM(b)M(mb) · · ·M(mk−1b)∥1.

Suppose that M(mtb) = (cit+1it+2)it+1,it+2 , then we obtain that

∥1bM(b)M(mb) · · ·M(mk−1b)∥1
=

∑
i1···ik+1

ci1i2ci2i3 · · · cikik+1

=
∑

i1···ik+1

k∏
t=1

#{vt ∈ Ω: Tvt(Γmt−1b(it)) = Γmtb(it+1)}

=
∑

i1···ik+1

#{v1 · · · vk ∈ Ωk : Tvt(Γmt−1b(it)) = Γmtb(it+1) for 1 ≤ t ≤ k}

=
∑
z∈Γb

#{v1 · · · vk ∈ Ωk : Tv1(z) ∈ Γmb, Tv2v1(z) ∈ Γm2b, Tv3v2v1(z) ∈ Γm3b,

· · · , Tvk···v1(z) ∈ Γmkb}

=
∑
z∈Γb

#{v1 · · · vk : Tvk···v1(z) ∈ Γmkb},
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where the last equality follows from (2.5). Therefore

Nk(b) = ∥1bM(b)M(mb) · · ·M(mk−1b)∥1. �
Proposition 1. Every column sum of M(b)M(mb) · · ·M(mk−1b) is sk. Further,

Nk(b) = (#Γmkb)s
k.

Proof. It follows from Lemma 7 that

1bM(b)M(mb) · · ·M(mk−1b) = s(1mbM(mb)) · · ·M(mk−1b) = · · · = sk1mkb.

By Lemma 8, we have

Nk(b) = sk∥1mkb∥1 = (#Γmkb)s
k. �

Although some Ea,b may be empty, the following corollary tells us the union∪
z∈Γb

Ea,z is not empty.

Corollary 1. For any b ∈ R, ∪
z∈Γb

Ea,z ̸= ∅.

Proof. Suppose on the contrary that
∪

z∈Γb
Ea,z = ∅. Then by Lemma 6, there

exists integer k such that

Tvk···v1(z) /∈ [A−, A+] for all z ∈ Γb and v1 · · · vk ∈ Ωk.

It follows from (3.6) that
Nk(b) = 0.

However, by Proposition 1, Nk(b) = (#Γmkb)s
k ≥ (A+ − A−)sk > 0. It is a contra-

diction. �
Let

Vk(b) =
∑
z∈Γb

#{v1 · · · vk ∈ Ωk : fv1···vk(E) ∩ Πa,z ̸= ∅}.

Then we have the following estimate.

Corollary 2. For any b ∈ R and k > 0,

Vk(b) ≥ sk.

Proof. The last corollary implies there exists z ∈ Γb such that E ∩ Πa,z ̸= ∅. In
the same way, there exists z∗ ∈ Γmkb such that E ∩ Πa,z∗ ̸= ∅.

By Lemma 5, we obtain that∪
z∈Γb

E ∩ Πa,z =
∪
z∈Γb

∪
v1···vk∈Ωk

fv1···vk(E ∩ Πa,Tvk···v1 (z)
)

=
∪

z′∈Γ
mkb

∪
z∈Γb

∪
Tvk···v1 (z)=z′

fv1···vk(E ∩ Πa,z′).

Then
fv1···vk(E ∩ Πa,z∗) = fv1···vk(E) ∩ Πa,z ̸= ∅

for any Tvk···v1(z) = z∗ with z ∈ Γb. Denote

αk = #{v1 · · · vk : fv1···vk(E ∩ Πa,z∗) ̸= ∅ with Tvk···v1(z) = z∗ for some z ∈ Γb}.
Hence

Vk(b) ≥ αk.
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For M(b)M(mb) · · ·M(mk−1b), when we consider its column sum with respect to
z∗, by Proposition 1 we have

αk ≥ sk,

which implies Vk(b) ≥ sk. �
Consider the union

∪
z∈Γb

[E ∩ Πa,z] of slices, we have

Proposition 2. For all b ∈ R,

dimB(
∪
z∈Γb

[E ∩ Πa,z]) =
log s

logm
= dimH E − 1.

Proof. Let Uk(b) be the number of m-adic squares of side length m−k intersecting∪
z∈Γb

[E ∩ Πa,z]. By the definition of the box dimension, we have

dimB(
∪
z∈Γb

[E ∩ Πa,z]) = lim sup
k→∞

logUk(b)

k logm
,

dimB(
∪
z∈Γb

[E ∩ Πa,z]) = lim inf
k→∞

logUk(b)

k logm
.

We notice that

(3.9) Uk(b) ≥ V k(b) ≥ sk.

On the other hand, it suffices to verify

(3.10) Uk(b) ≤ mnNk(b) ≤ mn(#Γmkb)s
k ≤ mn(A+ − A− + 1)sk.

In fact, by (3.9) and (3.10), we have

dimB(
∪
z∈Γb

[E ∩ Πa,z]) = lim
k→∞

logUk(b)

k logm
=

log s

logm
.

To verify (3.10), given an m-adic cube of side length m−k intersecting E ∩ Πa,z,
denote by B, then B ∩ E ∩ Πa,z ̸= ∅, i.e.,

B ∩

 ∪
v1···vk∈Ωk

fv1···vk(E)

 ∩ Πa,z ̸= ∅.

Then for some v1 · · · vk ∈ Ωk,

B ∩ fv1···vk(E) ∩ Πa,z ̸= ∅
=⇒ B ∩ fv1···vk(E) ̸= ∅ and fv1···vk(E) ∩ Πa,z ̸= ∅
=⇒ B ∩ fv1···vk([0, 1]

n) ̸= ∅ and fv1···vk([0, 1]
n) ∩ Πa,z ̸= ∅,

which implies
Uk(b) ≤ mnNk(b).

Hence (3.10) holds. �
Using Lemma 4 and the above proposition, we have

Proposition 3. For all b ∈ R,

dimB(Fa,b) =
log s

logm
= dimH E − 1.
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Then Theorem 1(1) follows from Proportions 2 and 3.

4. Proof of Theorem 1(2)

In this section, we will show that the Hausdorff dimension of the slice equals its
box dimension almost everywhere. During the proof we will use the following result
provided by Ledrappier (see [5] Proposition 2.6).

Lemma 9. (Ledrappier) Let Tm denote the endomorphism Tmx = mx (mod 1)
of the (n − 1)-dimensional torus Tn−1, and let S be a continuous transformation of
a metric space Y . Assume that Λ ⊂ Tn−1 × Y is compact and invariant under the
map Tm ×S, and that ν is an S-invariant probability measure on Y . Then for ν-a.e.
y, we have

dimH

[
π−1(y)

]
= dimB

[
π−1(y)

]
,

where π : Λ → Y is the projection onto the second coordinate.

Recall that τ : Tn → Tn is the endomorphism

τ(y) = my (mod 1).

Proof of Theorem 1(2). Suppose a = (a1, · · · , an) ∈ Zn\{0}, without loss of
generality, we may assume

an ̸= 0.

For any fixed b ∈ R, we have

Fa,b = F ∩ {x = (x1, · · · , xn) ∈ Tn : a · x ≡ b (mod 1)}.
Let Tm denote the endomorphism Tmx = mx(mod 1) of the (n− 1)-dimensional

torus Tn−1, S(x) = mx(mod 1) the map on one-dimensional torus T, and g : Tn →
Tn the map

g(x) = (x1, · · · , xn−1, a · x(mod 1)).

Then
τ = Tm × S

and both F and g(F ) are τ -invariant, i.e., F = τ(F ) and

τ(g(F )) = g(τ(F )) = g(F )

since g ◦ τ = τ ◦ g.
Since |an| ≥ 1, for i = 0, · · · , (3|an| − 1), we let

Bi =

{
y ∈

[
i

3|an|
,
i+ 1

3|an|

]
(mod 1)

}
⊂ T.

Let
h(x) = anx

which is defined on the torus T. Then h|Bi
is a bi-Lipschitz map. Set a′ =

(a1, · · · , an−1), we have

g(x, y) = (x, a′ · x+ any) for all x ∈ Tn−1 and y ∈ T.

It is easy to check that

(4.1) g|Tn−1×Bi
is a bi-Lipschitz endomorphism.

Since Tn = ∪i(T
n−1 ×Bi), by (4.1), we obtain that

(4.2) dim g(Fa,b) = dimFa,b,
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where ‘dim’ stands any one of dimH , dimB and dimB.
Now, let Y = T equipped with a normalized Lebesgue measure ν. Since

π−1[b (mod 1)] = g(Fa,b),

then by the previous lemma, for ν-almost all b ∈ T,

dimH g(Fa,b) = dimB g(Fa,b).

Therefore, it follows from (4.2) that for L-almost all b ∈ R,

dimH Fa,b = dimB Fa,b.

This completes the proof of Theorem 1(2). �

5. Proof of Theorem 2

Recall that
Λ = {b ∈ [A−, A+] : E ∩ Πa,b ̸= ∅}.

In this section, we will give the Hausdorff and box dimension of Ea,b for L-almost all
b ∈ Λ.

The following lemma is useful (for details, see [10] and [11]).

Lemma 10. The following functions

g1(b) = dimH [E ∩ Πa,b], g2(b) = dimB[E ∩ Πa,b] and g3(b) = dimB[E ∩ Πa,b]

are Borel measurable.

We will show some properties about Λ.

Proposition 4. Λ is a self-similar set with positive Lebesgue measure, i.e.,

(5.1) Λ =
∪
v∈Ω

Sv(Λ) and L(Λ) ≥ 1.

Further,

(5.2) L({b ∈ Λ: dimH Ea,b =
log s

logm
}) ≥ 1.

Proof. First, we will show that Λ is compact. In fact, we only need to show that
Λ is closed, since Λ ⊂ [A−, A+] is bounded. For any b ∈ Λc, E ∩ Πa,b = ∅, which
implies for sufficiently small ε > 0,

E ∩ {x ∈ Rn : a · x ∈ (b− ε, b+ ε)} = ∅.
That means Λc is open. Hence Λ is closed and thus compact.

By (3.1) in Lemma 5, we know that

E ∩ Πa,b =
∪
v∈Ω

fv(E ∩ Πa,Tv(b)).

Then for any b ∈ Λ, the above formula implies
E ∩ Πa,b ̸= ∅ ⇐⇒ ∃ v ∈ Ω, s.t. E ∩ Πa,Tv(b) ̸= ∅

⇐⇒ ∃ v ∈ Ω, s.t. Tv(b) ∈ Λ
⇐⇒ ∃ v ∈ Ω, s.t. b ∈ Sv(Λ),

which means
Λ =

∪
v∈Ω

Sv(Λ).



486 Zhixiong Wen, Wen Wu and Lifeng Xi

Therefore Λ is a self-similar set.
Now we will show that

L(Λ) ≥ 1.

By Theorem 1(2), we know that

max
z∈Γb

(dimH Ea,b) = dimH

∪
z∈Γb

Ea,b =
log s

logm
for L-a.e. b ∈ [A−, A+].

Hence for L-a.e. b ∈ [A−, A+],

(5.3) ∃ b′ ∈ [A−, A+] ∩ (b+ Z)(=Γb) s.t. dimH Ea,b′ =
log s

logm
.

Let
K := {b ∈ Λ: dimH Ea,b =

log s

logm
}.

Then K is Borel measurable from Lemma 10. We have K ⊂ Λ and

L(K) = L

(
A+−A−∪

i=1

(K ∩ Ii)

)
=

A+−A−∑
i=1

L (K ∩ Ii) .

It follows from (5.3) that

b ∈
(A+−A−)∪

i=1

(A+−A−−i)∪
j=−i+1

(K ∩ Ii + j) for L-a.e. b ∈ [A−, A+].

By the above formula, we obtain that

(A+ − A−) = L([A−, A+]) ≤
(A+−A−)∑

i=1

(A+−A−−i)∑
j=−i+1

L(K ∩ Ii + j)

≤
A+−A−∑

i=1

(A+ − A−)L(K ∩ Ii) ≤ (A+ − A−)L(K)

which implies

(5.4) L(Λ) ≥ L(K) ≥ 1.

This completes the proof. �
We will also use the following key technique in [11].

Lemma 11. [11] If B ⊂ Λ is a Borel measurable set such that∪
v∈Ω

Sv(B) ⊂ B

then L(B) = L(Λ) or 0.

Now we will give the proof of Theorem 2.

Proof of Theorem 2. Let K1 = {b ∈ Λ: g1(b) = dimH Ea,b ≥ log s
logm

}. Then K1 is
Borel measurable with L(K1) ≥ L(K) ≥ 1 due to Lemma 10 and (5.2).

According to Lemma 5, for any v ∈ Ω and b ∈ K1,

E ∩ Πa,Sv(b) ⊃
E ∩ Πa,b + v

m
= fv(E ∩ Πa,b),
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then

dimH(E ∩ Πa,Sv(b)) ≥ dimH(fv(E ∩ Πa,b)) = dimH(E ∩ Πa,b) ≥
log s

logm
,

which implies Sv(b) ∈ K1. Hence Sv(K1) ⊂ K1 for any v ∈ Ω, i.e.,∪
v∈Ω

Sv(K1) ⊂ K1.

Notice that K1 ⊂ Λ. Then it follows from Lemma 11 that
L(K1) = L(Λ).

That means
dimH Ea,b ≥

log s

logm
for L-a.e. b ∈ Λ.

Whereas for all b ∈ R,

dimH Ea,b ≤ dimBEa,b ≤ dimBEa,b ≤ dimB(
∪
z∈Γb

Ea,z) =
log s

logm
,

hence
dimH Ea,b = dimB Ea,b =

log s

logm
for L-a.e. b ∈ Λ. �
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