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Abstract. We study the spectral problem of the linearised theory of water-waves, in a bounded
domain with cuspidal edge. We show that the continuous spectrum of the problem is the set of
non-negative real numbers, if the sharpness exponent is large.

1. Introduction and the main result

1.1. Preface. In the linearised theory of water-waves the wave solutions are
described by velocity potentials which satisfy a mixed boundary value problem for
the Laplace equation. In particular Steklov spectral boundary condition is posed on
the horizontal water surface (see (1.2)–(1.4) below, and [19, 5, 6] for the physical
background), and the spectral parameter is proportional to the frequency of the
wave. In unbounded domains the continuous spectrum of this linearised water-wave
problem is typically non-empty, a fact which is related to the existence of propagating
waves.

In this paper we study the continuous spectrum of the linearised water-wave
problem in bounded domains. Our domains will have cuspidal edge at the shoreline,
which causes the continuous spectrum to appear. We show that if the sharpness
exponent m is greater than 2, then the continuous spectrum is maximal in the sense
that it consists of the whole set of non-negative real numbers.

Previously this problem has been studied in similar domains, but with different
values of the sharpness exponent. In [16] it was shown that for m < 2 the spectrum
is discrete, and for two-dimensional water-wave problem the discreteness of the spec-
trum was proved for the first time in [3]. In the case m = 2 the spectrum contains
an interval [c,∞) for certain c > 0. This result was proved in [8] and an analogous
result for a domain with submerged object touching the water-surface at one point,
was proved in [16] (see also the remarks at the end of this paper for further details).

1.2. Formulation of the problem. In the sequel we denote a point x ∈ R3

as x = (y1, y2, z) in order to make a distinction between vertical and horizontal
coordinates.

Let Λ be a domain in the horizontal plane {x ∈ R3 : z = 0}, and let the closed
simple C2-contour γ be the edge of Λ. Let also Σ be a C2-surface in the lower half-
space R3

− = {x ∈ R3 : z < 0} with the same edge γ, and let Ω ⊂ R3 be the interior
domain bounded by Λ ∪ Σ ∪ γ.
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In the δ-neighbourhood Uδ ⊂ Π of the contour γ ⊂ Π we introduce the natural
system of the curvilinear coordinates (ν, τ), where ν is the oriented distance to γ,
ν > 0 inside Λ, and τ is the curve length on γ. We assume that in the vicinity of
γ ⊂ R3 the domain Ω is given by the inequalities

−νmg(ν, τ) < z < 0, ν > 0,(1.1)

where m > 1 and g is a positive C2-function on [0, δ]× γ.
In the domain Ω we consider the linearised water-wave problem

−∆xΦ(x) = 0, x ∈ Ω,(1.2)
∂nΦ(x) = 0, x ∈ Σ,(1.3)
∂zΦ(x) = λΦ(x), x ∈ Λ.(1.4)

where ∆x is the Laplacian, ∂n is the derivative along the outward normal n, and
Φ denotes the velocity potential and λ is the spectral parameter proportional to
the square of the frequency of harmonic oscillations. The condition (1.4) is called a
Steklov spectral boundary condition.

To give exact meaning to spectral concepts, such as continuous spectrum, we
will formulate the problem (1.2)–(1.4) as a standard spectral problem for a certain
operator KΩ.

1.3. The operator formulation of the problem. We define the Hilbert space
H(Ω; Λ), as the completion of the space C∞

c (Ω \ γ) of compactly supported smooth
functions with respect to the norm ∥Φ;H(Ω; Λ)∥ := ⟨Φ,Φ⟩1/2Ω , where

⟨Φ,Ψ⟩Ω = (∇xΦ,∇xΨ)Ω + (Φ,Ψ)Λ

and (·, ·)Ω and (·, ·)Λ are the intrinsic inner products in the spaces L2(Ω) and L2(Λ),
respectively.

One particular property of the space H(Ω; Λ) is that the trace on L2(Λ), denoted
by Ψ(·, 0), exists for all Ψ ∈ H(Ω; Λ). In the sequel the trace Ψ(·, 0) will be often
abbreviated simply as Ψ.

If λ > 0 and m > 1, then a classical solution of (1.2)–(1.4) must vanish on γ for
(1.3) and (1.4) to hold simultaneously, since the z-direction is parallel to the normal
direction of Σ on γ if m > 1. Also, the first Green formula implies that

(∇xΦ,∇xΨ)Ω = λ(Φ,Ψ)Λ, Ψ ∈ C∞
c (Ω \ γ),

if Φ is a classical solution of the problem (1.2)–(1.4) and Ψ ∈ C∞
c (Ω \ γ) is arbitrary.

Thus it is natural to define a weak solution of (1.2)–(1.4) to be a function Φ ∈ H(Ω; Λ)
for which

(∇xΦ,∇xΨ)Ω = λ(Φ,Ψ)Λ for all Ψ ∈ H(Ω; Λ).(1.5)

This leads us to the operator formulation of the spectral problem (1.2)–(1.4).
Namely, we define the operator KΩ from the space H(Ω; Λ) to itself by the formula

⟨KΩΦ,Ψ⟩Ω = (Φ,Ψ)Λ, Φ,Ψ ∈ H(Ω; Λ).

This operator is symmetric, bounded and therefore self-adjoint. Adding the term
(Φ,Ψ)Λ to both sides of the equation (1.5) and multiplying them by µ = (1 + λ)−1,
we see that the problem (1.5) is equivalent to the equation

KΩΦ = µΦ, Φ ∈ H(Ω; Λ).
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The spectrum of the problem (1.2)–(1.4) and the spectrum of the operator KΩ are
now related in the following way. Let λ ∈ C; then λ is in the spectrum of the problem
(1.2)–(1.4) if and only if µ = (1 + λ)−1 is in the spectrum of KΩ. The same relation
holds also for discrete, continuous and essential spectra.

Since the operator KΩ is positive and ∥KΩ∥ ≤ 1, its spectrum is real valued
and contained in the interval [0, 1]; thus the spectrum of the problem (1.2)–(1.4) is
contained in the interval [0,∞).

1.4. The main result. The definitions of continuous and essential spectra
differ in different books, we use those introduced in [2]. Namely, the point spectrum
of an operator A is denoted by σp(A), the continuous spectrum is the set

σc(A) = {λ ∈ C : R(A− λI) ̸= R(A− λI)}

where R denotes the range of given operator, and the essential spectrum is the set

σe(A) = σc(A) ∪ σ∞
p (A)

where σ∞
p (A) is the set of eigenvalues with infinite multiplicity. It should be noted,

that with these definitions it is possible that σp(A) ∩ σc(A) ̸= ∅.
We are now ready to state our main result.

1.6. Theorem. If m > 2, then the continuous spectrum of the problem (1.2)–
(1.4) constitutes the whole spectrum, and it is the half-line [0,∞).

2. Preliminaries and outline of the proof

2.1. Preliminaries. We now present shortly some concepts and theorems which
will be used in the proof of Theorem 1.6.

2.1. Definition. A sequence (Ψj)
∞
j=1 is called singular for the self-adjoint oper-

ator A at a point λ, if the following conditions are satisfied:

i) inf
j
∥Ψj∥ > 0, ii) Ψj

w→ 0, iii) (Ψj)
∞
j=1 ⊂ D(A), iv) (A− λ)Ψj → 0.

If A is a self-adjoint operator, then the following two theorems are valid for A
(proofs of these theorems can be found from [2]).

2.2. Theorem. A point λ belongs to σe(A) if and only if there exists a singular
sequence for A at λ.

2.3. Theorem. σc(A) is the set of non-isolated points of σ(A).

2.2. Outline of the proof. We proceed in proving Theorem 1.6 by constructing
a singular sequence at an arbitrary given point µ = (1+λ)−1 ∈ (0, 1) for the operator
KΩ, and then conclude by using Theorem 2.2 that (0, 1) ⊂ σe(KΩ). After this, since
σ(KΩ) is closed, Theorem 2.3 shows us that [0, 1] ⊂ σc(KΩ), which in turn implies
that the continuous spectrum of the problem (1.2)–(1.4) is the set [0,∞).

3. Construction of the singular sequence

3.1. Overview. In this chapter we construct a sequence (Ψj)
∞
j=1 ⊂ H(Ω; Λ),

and prove it to be singular at a given point µ = (1 + λ)−1 ∈ (0, 1) for the operator
KΩ. The construction will be done by first defining a sequence (Φj)

∞
j=1 of functions

depending on the boundary distance coordinates ν and τ .
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Concerning the notation of this paper, C, C ′, c and so on denote positive con-
stants which may vary from place to place and which are independent of the functions
and variables in the given expressions; whit the index j ∈ N+ also considered as a
variable. We will also use the notation f(·) ≍ g(·) to indicate that C < f(·)/g(·) < C ′

for some C < C ′, on a given set X. The set X, in which this relation holds will be
always mentioned; except in the case of sequences, when the relation will be naturally
assumed to hold for all j ∈ N+.

Furthermore, we will use abbreviated notation ζ := (ν, τ) for the boundary dis-
tance coordinates; in order to make some lengthy formulas more concise. Some other
notations will be introduced later, when needed.

3.2. Local change of coordinates. We denote by α our unit speed parametri-
sation1

τ 7→ y(τ) ∈ γ

of the contour γ. For the sake of convenience we extend its domain of definition to
the whole R as a periodic map. We assume that the parametrisation α is positively
oriented, (0, 0) ∈ γ and α(0) = (0, 0); this can be done without loss of generality.

We now begin to study the whole boundary distance coordinate parametrisation

ζ 7→ y(ζ) ∈ Uδ

of the δ-neighbourhood Uδ of γ. We will denote this map in the sequel by φ.
Since α is unit speed parametrisation of γ, the interior unit normal vector of ∂Λ

at the point y = α(τ) is given as

ein(y) = (−α′
2(τ), α

′
1(τ));

because this vector is perpendicular to α′(τ), points into interior domain due to our
choice of positive orientation, and has unit norm. Hence the map φ is given by the
formula

φ(ζ) = (φ1(ζ), φ2(ζ)) = (α1(τ)− να′
2(τ), α2(τ) + να′

1(τ)).

One can also show that if δ is small enough, which is assumed to be the case, then
any point y ∈ Uδ has unique representation

y = y′ + νein(y
′),

where y′ ∈ γ and ν is the distance of y to γ.
For the derivatives of φ we obtain

|∂τφ(ζ)| =
(
(α′

1(τ)− να′′
2(τ))

2 + (α′
2(τ) + να′′

1(τ))
2
)1/2(3.1)

=
(
1 + 2

(
α′
2(τ)α

′′
1(τ)α

′
1(τ)α

′′
2(τ)

)
ν + |α′′(τ)|2ν2

)1/2
,

|∂νφ(ζ)| =
(
(−α′

2(τ))
2 + (α′

1(τ))
2
)1/2 ≡ 1,(3.2)

since α has unit speed. These identities will be used later.
We now begin to estimate the Jacobian of the map φ, denoted by |Jφ| in the

sequel. We have
∂τφ1(ζ) = α′

1(τ)− να′′
2(τ), ∂νφ1(ζ) = −α′

2(τ),
∂τφ2(ζ) = α′

2(τ) + να′′
1(τ), ∂νφ2(ζ) = +α′

1(τ).

1Curve length parametrisation of a simple C1-curve is always unit speed parametrisation of that
curve.
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Hence

|Jφ| =
(
α′
1(τ)− να′′

2(τ)
)
α′
1(τ)−

(
− α′

2(τ)
)(
α′
2(τ) + να′′

1(τ)
)

and since
(
α′
1(τ)

)2
+
(
α′
2(τ)

)2 ≡ 1, we have

|Jφ| = 1 + ν
(
α′
2(τ)α

′
1(τ)− α′

1(τ)α
′
2(τ)

)
=: 1 + ω(ζ).(3.3)

Thus |Jφ| ≍ 1 on the set {ζ ∈ R2 : |ν| < ε, τ ∈ R} if

ε <
(
sup
τ∈R

|α′
2(τ)α

′
1(τ)− α′

1(τ)α
′
2(τ)|

)−1

.

Hence one can verify that φ defines a C2-diffeomorphism

φ : Qε → φ(Qε),(3.4)

where Qε = {ζ ∈ R2 : |ν| < ε, |τ | < ε}, by using the inverse function theorem; if
ε > 0 is small enough, which is also needed for φ to to be injective. (See appendix
on [4] for similar construction with more details).

3.3. Construction of the sequence. In the sequel we denote

h(ζ) := νmg(ν, τ)(3.5)

where g is as in (1.1) in the definition of the domain Ω. We will also use the notation

h(y) := h(φ−1(y))

for the same function expressed in the y-coordinate system.
We will assume that the diffeomorphism (3.4) exists for some ε > e−1; this can

be done without loss of generality, and we will come back to this assumption when
we have defined the sequence (Ψj)

∞
j=1.

We now define the following sets in the (ζ, z)-coordinate space

V = {ζ ∈ R2 : 0 < ν < e−1, |τ | ≤ κν1/2},(3.6)

V = {(ζ, z) ∈ R3 : ζ ∈ V, −h(ζ) < z < 0};

and the following sets in the x-coordinate space

V = φ(V ), V = {(y, z) ∈ R3 : − h(y) ≤ z ≤ 0, y ∈ V}.

Let F := φ× id be the map (ζ, z) 7→ (φ(ζ), z). We denote

Φ := Ψ ◦ F if Ψ ∈ C∞
c (V \ 0̄),

where 0̄ := (0, 0, 0). Same notation will be also used in the following way

Φ := Ψ ◦ φ if Ψ ∈ C∞
c (V \ 0̄),

where 0̄ := (0, 0).
We now define space H(V;V) to be completion of the space C∞

c (V \ 0̄), with
respect to similar norm as in H(Ω; Λ); but Ω and Λ replaced by V and V . We
also define space H(V;V ) to be similar completion of the space C∞

c (V \ 0̄); with the
obvious exception been that in the definition of the norm all derivatives and integrals
are taken over (ζ, z)-coordinates.
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Since |Jφ| ≍ 1 on the set V , it holds that |JF | ≍ 1 on the set V, and one can
show that the map Ψ 7→ Φ, from C∞

c (V \ 0̄) to C∞
c (V \ 0̄), can be extended to an

isomorphism

LF : H(V;V) → H(V;V ), Ψ 7→ Φ;

where Φ = Ψ ◦ F is defined almost everywhere in V (see Theorem 3.41 in [1] for
details).2 Inverse operator L−1

F = LF−1 is defined in the obvious way. Existence of
the isomorphism LF is equivalent to the fact that

∥Ψ;H(V;V)∥ ≍ ∥Φ;H(V;V )∥(3.7)

on the whole space H(V;V). Similarly, the map Ψ 7→ Φ, from C∞
c (V\0̄) to C∞

c (V \0̄),
can be extended to an isomorphism

Lφ : L
2(V) → L2(V ), Ψ 7→ Φ;

where Φ = Ψ◦φ is defined almost everywhere in V . The existence of this isomorphism
is equivalent to similar relation as in (3.7) between the L2-norms on V and V .

In the sequel we will denote

Φ := LFΨ|V for any Ψ ∈ H(Ω; Λ);

where Ψ|V ∈ H(V;V) is the restriction of Ψ to domain V, defined almost everywhere.
And again, the same notation will be used also in the following sense

Φ := LφΨ|V for any Ψ ∈ L2(Λ);(3.8)

where Ψ|V ∈ L2(Λ) is the restriction of Ψ to domain V , defined almost everywhere.
The later notation will be used for traces Ψ(·, 0) of functions Ψ ∈ H(Ω; Λ); which
justifies the use of this notation in two seemingly different ways.

Next we will fix the sequence (Φj)
∞
j=1, which will give us the singular sequence

(Ψj)
∞
j=1 via the transformation L−1

F .
For this purpose, we will seek for an approximate solution to the differential

equation

−∂ν(g0ν
m∂νf(ν)) = λf(ν)(3.9)

on the interval (0,∞]; where

g0 := g(0, 0)

and g is as in (3.5), this abbreviation will be used in the sequel.
Let

U(ν) := exp

(
i
√

λg−1
0 ν−m/2+1

−m/2 + 1

)
,(3.10)

then

(3.11) U ′(ν) = i

√
λg−1

0 ν−m/2 exp

(
i
√

λg−1
0 ν−m/2+1

−m/2 + 1

)
= i

√
λg−1

0 ν−m/2U(ν)

2Theorem 3.41 in [1] considers only Sobolev spaces, but can be easily modified to our case.
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and

U ′′(ν) =

(
− i

m

2

√
λg−1

0 ν−m/2−1 − λg−1
0 ν−m

)
exp

(
i
√

λg−1
0 ν−m/2+1

−m/2 + 1

)
=

(
− i

m

2

√
λg−1

0 ν−m/2−1 − λg−1
0 ν−m

)
U(ν)(3.12)

In particular,

−∂ν(g0ν
m∂νU(ν)) = λU(ν) + i

m− 2

2

√
λg−1

0 g0ν
m/2−1U(ν),(3.13)

where

i
m− 2

2

√
λg−1

0 g0ν
m/2−1U(ν) → 0, as ν → 0,

since m > 2. Thus U is a approximate solution of (3.9) on the interval (0,∞], in
vicinity of the point ν = 0.

We are now ready to start constructing our sequence. We set

Φj(ζ, z) := Φj(ζ) := ajU(ν)Xj(ζ),(3.14)

where aj is a normalization constant to be fixed later and

Xj(ζ) = χ(− ln ν − 2j)χ(2j+1 + ln ν)χ(lnκ− 2j + ln |τ |),

whit χ been any smooth non-negative cut-off function, such that

χ(t) =

{
1, for t ≥ 1,

0, for t ≤ 0.

In particular Xj is chosen to satisfy, for k = 1, 2,

|∂k
νXj(ζ)| ≤ Cν−k and |∂k

τXj(ζ)| ≤ C|τ |−k.(3.15)

With this definition supp(Φj) is included in the domain Bj with the base Bj, where

Bj = {(ζ, z) ∈ R3 : − h(ζ) ≤ z ≤ 0, ζ ∈ Bj},

Bj = {ζ ∈ R2 : e−2j+1 ≤ ν ≤ e−2j , −κe−2j ≤ τ ≤ +κe−2j}.(3.16)

We also denote

Cj = {ζ ∈ R2 : e−2j+1+1 ≤ ν ≤ e−2j−1, −κe−2j ≤ τ ≤ +κe−2j},

Dj = {ζ ∈ R2 : e−2j+1 ≤ ν ≤ e−2j , −κe−2j−1 ≤ τ ≤ +κe−2j−1}.

Notice that then

mes2Bj ≍ exp(−2j+1).(3.17)

and

mes2(Cj ∩Dj) ≍ exp(−2j+1).

The sets Bj, Cj and Dj are contained in the set V . By Taylor expanding the
function g in the definition on h and using the relation |τ | ≤ κν1/2 in the definition
of the set V , we get

|h(ζ)− g0ν
m| ≤ Cνm+1/2 on the set V .
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We can now define functions

Ψj(x) := Ψj(y) := Φj(φ
−1(y)).

Which are the functions Φj expressed in the (y, z)-coordinate system. Clearly

supp(Ψj) ⊂ φ(Bj) ⊂ V for all j

(or supp(Ψj) ⊂ V, if considered as a function of x). A similar structure of a singular
sequence was used in [12] for the Steklov problem in peak-shaped domains.

We now come back to our assumption that the diffeomorphism (3.4) exists for
some ε > e−1. If this would not be the case, then any ε > 0 for which the diffeo-
morphism (3.4) exists, satisfies the inequality ε > e−2n for some n ∈ N, n > 1. In
this case, we would choose e−2n instead of e−1 in the definition (3.6) of the set V ,
and define functions Φj as before, but only for values j ≥ n. After this we would
define Ψ̃j(x) := Ψ̃j(y) := Φj+n−1(φ

−1(y)) for all j ∈ N+. The proof that (Ψ̃j)
∞
j=1 is a

singular sequence, would be almost the same as the proof we are about to begin, we
would just have to take into account the change of indexing at every step. For this
reason we can assume without loss generality that the diffeomorphism (3.4) exists
for some ε > e−1.

In order to show that (Ψj)
∞
j=1 is a singular sequence, we need to estimate the

norms ∥Ψj;H(Ω; Λ)∥. This will be more conveniently done in the (ζ, z)-coordinates
by using functions Φj.

Due to (3.1) and (3.2) the gradient vector ∇xΨ(x) is represented in the (ζ, z)-
coordinates as

(3.18) ∇xΨ(x) = ∇xΨ(φ(ζ), z) =
1

|∂τφ(ζ)|
∂τΦ(ζ, z)eτ+∂νΦ(ζ, z)eν+∂zΦ(ζ, z)ez

since the unit vectors

eτ :=
∂τφ(ζ)

|∂τφ(ζ)|
, eν :=

∂νφ(ζ)

|∂νφ(ζ)|
and ez

form a orthonormal basis at the point x = (φ(ζ), z) (see chapter 7 in [18]); hence
for any two functions Ψ, Ψ̃ ∈ H(Ω,Λ) with local representations Φ, Φ̃ in the (ζ, z)-
coordinate system, the relation

(∇xΨ(x),∇xΨ̃(x)) = (∇xΨ(φ(ζ), x),∇xΨ̃(φ(ζ), z))

=
∂τΦ(ζ, z)∂τ Φ̃(ζ, z)

|∂τφ(ζ)|2
+ ∂νΦ(ζ, z)∂νΦ̃(ζ, z) + ∂zΦ(ζ, z)∂zΦ̃(ζ, z)

holds for almost every x ∈ Ω with y ∈ Q+. Thus, if Ψ(x) = Ψ(y) and Ψ̃(x) = Ψ̃(y),
then

(3.19) (∇xΨ,∇xΨ̃)Ω =

ˆ

V

h(ν)

(
∂τΦ(ζ)∂τ Φ̃(ζ)

|∂τφ(ζ)|2
+ ∂νΦ(ζ)∂νΦ̃(ζ)

)
dζ,

if either supp(Ψ) ⊂ V or supp(Ψ̃) ⊂ V .
Now

1

|∂τφ(ζ)|2
= 1−

2
(
α′
2(τ)α

′′
1(τ)− α′

1(τ)α
′′
2(τ)

)
ν + |α′′(τ)|2ν2

1 + 2
(
α′
2(τ)α

′′
1(τ)− α′

1(τ)α
′′
2(τ)

)
ν + |α′′(τ)|2ν2

=: 1−G(ζ).(3.20)
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Hence, due to definition (3.16)

(3.21) |G(ζ)| ≤ Cν

|∂τφ(ζ)|2
≤ C exp(−2j)

|∂τφ(ζ)|2

on the sets Bj.
We calculate some estimates for the functions (3.14). Since |U(ν)| ≡ 1, |Xj(ζ)| ≤

1 and |Jφ| ≍ 1 on the set V , we get

∥Ψj;L
2(Λ)∥2 ≤ a2j

ˆ

Bj

|Jφ|dζ ≤ Ca2j mes2Bj ≤ Ca2j exp(−2j+1),

and since Xj(ζ) = 1 for all ζ ∈ Cj ∩Dj, similar calculation shows that

∥Ψj;L
2(Λ)∥2 ≥ a2j

ˆ

Bj∩Cj

|Jφ|dζ ≥ Ca2j exp(−2j+1).

Moreover, using (3.15), (3.19) and h(ν) ≤ Cνm on V , we get

∥∇xΨj;L
2(Ω)∥2 ≤ Ca2j

ˆ

Bj

νm

(
|∂νXj(ζ)|2 + |∂τXj(ζ)|2 + ν−m

)
|Jφ| dζ

≤ C ′a2j

(ˆ
Bj

(νm−2 + 1) dζ +

ˆ

Bj\Dj

|τ |−2νm dζ

)

since ∇xΨj = ∇yΨj, supp(∇yΨj) ⊂ φ(Bj) ⊂ V , supp(∂τXj) ⊂ Bj \Dj and

1

|∂τφ(ζ)|2
≤ C on the set V .

Thus, due to (3.17)

∥∇xΨj;L
2(Ω)∥2 ≤ Ca2j

(
mes2Bj + 2

+κ exp(−2j)ˆ

+κ exp(−2j−1)

τ−2dτ

exp(−2j)ˆ

exp(−2j+1)

νm dν

)
≤ Ca2j

(
exp(−2j+1) + exp(+2j) exp(−(m+ 1)2j)

)
≤ C ′a2j exp(−2j+1)

since m > 2. Hence, putting

aj := exp(+2j)(3.22)

we have

∥Ψj;H(Ω; Λ)∥ ≍ 1.

Thus the sequence (Ψj)
∞
j=1 satisfies the conditions i) and iii) in the Definition 2.1,

since KΩ is defined on the whole H(Ω; Λ). Moreover, since supp(Ψj)∩ supp(Ψk) = ∅
for j ̸= k, the sequence (Ψj)

∞
j=1 is orthogonal. Hence

Ψj
w→ 0 as j → ∞,

due to the Lemma 3.23 below, so the condition ii) in the Definition 2.1 is also satisfied.
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3.23. Lemma. If (Ψj)
∞
j=1 is an orthogonal sequence in a Hilbert space H and

∥Ψj;H∥ ≍ 1,(3.24)

then Ψj
w→ 0 as j → ∞.

Proof. Let Υj := ∥Ψj;H∥−1Ψj, then the sequence (Υj)
∞
j=1 is orthonormal and

can be extended to a orthonormal base (ek)
∞
k=1 of H; where ekj = Υj for some

subsequence (kj)
∞
j=1 ⊂ N+. Since every Ψ ∈ H has a representation

Ψ =
∞∑
k=1

(Ψ, ek)ek,

(where (·, ·) is the inner product of H) it must be true that

(Ψ, ekj) = (Ψ,Υj) → 0 as j → ∞.

The claim now follows from (3.24) and the definition of functions Υj. �
To conclude that (Ψj)

∞
j=1 is a singular sequence at the given point µ = (1+λ)−1 ∈

(0, 1), we still need to show that also the condition iv) in the Definition 2.1 holds for
(Ψj)

∞
j=1. It will be done by verifying that the norm

∥KΩΨj − (1 + λ)−1Ψj;H(Ω; Λ)∥ = sup
Ψ∈S

|⟨(KΩ − (1 + λ)−1Ψj,Ψ⟩Ω|,

where S denotes the unit sphere in H(Ω; Λ), tends to zero as j → ∞. For this purpose
we will estimate the expression

|⟨(KΩ − (1 + λ)−1Ψj,Ψ⟩Ω|

from above, for arbitrary Ψ with ∥Ψ;H(Ω; Λ)∥ = 1.
We set

Ψ(y) := h(y)−1

0ˆ

−h(y)

Ψ(y, z) dz and Φ(ζ) := h(ζ)−1

0ˆ

−h(ζ)

Φ(ζ, z) dz.

Clearly, if Ψ ∈ L2(V) and Φ is as in (3.8), then the equalities

Φ(ζ) = Ψ(φ(ζ)) and Ψ(y) = Φ(φ−1(y))

are valid for almost every ζ ∈ V and almost every y ∈ V , respectively.
Since the functions Ψj do not depend on z, we have

(∇xΨj,∇xΨ)Ω − λ(Ψj,Ψ(·, 0))Λ = (h∇yΨj,∇yΨ)V − λ(Ψj,Ψ(·, 0))V

= ((h− g0ν
m)∇yΨj,∇yΨ)V +

(
(g0ν

m∇yΨj,∇yΨ)V − λ(Ψj,Ψ)V

)
+ (h∇yΨj,∇yΨ−∇yΨ)V − λ(Ψj,Ψ(·, 0)−Ψ)V

=: I0 + I1 + I2 − λI3.

Next we will conclude that Ik → 0 as j → ∞, for any Ψ with ∥Ψ;H(Ω; Λ)∥ = 1,
and for all k = 0, 1, 2, 3; which finishes the proof.

3.4. Estimate for I3. In our estimation of the term I3 we will need the
Lemma 3.25 below.
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3.25. Lemma. The following inequalities hold true:

∥h−1/2
(
Ψ(·, 0)−Ψ

)
;L2(V)∥ ≤ C∥∂zΨ;L2(V)∥,(3.26)

∥h−1/2
(
Ψ(·,−h(·))−Ψ

)
;L2(V)∥ ≤ C∥∂zΨ;L2(V)∥;(3.27)

where Ψ(·, 0) is the trace of Ψ on the surface Λ and Ψ(·,−h(·)) is the trace of Ψ on
the surface Σ ∩V.

Proof. Integrating by parts yields

h(y)−1

0ˆ

−h(y)

(h(y) + z)∂zΨ(y, z) dz = Ψ(y, 0)−Ψ(y).

Thus, by the Cauchy-Schwartz inequality

|Ψ(y, 0)−Ψ(y)|2 ≤
0ˆ

−h(y)

∣∣∣h(y) + z

h(y)

∣∣∣2 dz 0ˆ

−h(y)

|∂zΨ(y, z)|2 dz ≤ C

0ˆ

−h(y)

|∂zΨ(y, z)|2 dz.

Hence,
ˆ

V

|h(y)−1/2
(
Ψ(y, 0)−Ψ(y)

)
|2 dy ≤ C

ˆ

V

0ˆ

−h(y)

|∂zΨ(y, z)|2 dz dy,

which is the inequality (3.26).
Similarly, integration by parts implies

Ψ(y)−Ψ(y,−h(y)) = h(y)−1

0ˆ

−h(y)

z∂zΨ(y, z) dz

and same type of estimation as above gives us also the inequality (3.27). �
We have

(3.28) |I3| ≤ C∥Ψj;L
2(Λ)∥∥Ψ(·, 0)−Ψ;L2(Λ)∥ ≤ C ′∥h1/2h−1/2(Ψ(·, 0)−Ψ);L2(Λ)∥

due to the Cauchy–Schwartz inequality, since

∥Ψj;H(Ω; Λ)∥ ≍ 1 and 1 ≡ h(y)1/2h(y)−1/2

on the set Λ.
Now, by applying the Cauchy–Schwartz inequality again, and the Lemma 3.25

to the last expression in (3.28), we obtain

|I3| ≤ ∥h1/2;L2(Λ)∥∥h−1/2(Ψ(·, 0)−Ψ);L2(Λ)∥
≤ C exp(−m2j/2)∥h−1/2(Ψ(·, 0)−Ψ);L2(Λ)∥
≤ C ′ exp(−m2j−1)∥∂zΨ;L2(V)∥ ≤ C ′ exp(−m2j−1),

since ∥Ψj;L
2(Λ)∥ ≍ 1 and ∥∂zΨ;L2(V)∥ ≤ ∥Ψ;H(Ω; Λ)∥ = 1. Thus I3 → 0 as

j → ∞.

3.5. Estimate for I2. We begin our estimation for the term I2 by stating and
proving the Lemma 3.29 below.
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3.29. Lemma. The inequality

∥νh−1/2(∇yΨ−∇yΨ);L2(V)∥ ≤ C∥∂zΨ;L2(V)∥

holds true for all Ψ ∈ H(Ω,Λ).

Proof.

∇yΨ(y) = ∇y

(
h(y)−1

0ˆ

−h(y)

Ψ(y, z) dz

)
= −∇yh(y)

h(y)2

0ˆ

−h(y)

Ψ(y, z) dz

+ h(y)−1

(
Ψ(y,−h(y))∇yh(y) +

0ˆ

−h(y)

∇yΨ(y, z) dz

)
.

Thus

∇yΨ−∇yΨ = h(y)−1∇yh(y)
(
Ψ(y)−Ψ(y,−h(y))

)
.(3.30)

Now

∇yh(y) = ∇yh(φ(ζ)) =
∂τh(ζ)

|∂τφ(ζ)|
eτ + ∂νh(ζ)eν

and since h(ζ) = g(ζ)νm, we get for all ζ ∈ V ,

|∇yh(φ(ζ))| =
∣∣∣∂τh(ζ)
∂τφ(ζ)

∣∣∣+ |
(
∂νg(ζ)

)
νm + g(ζ)mνm−1| ≤ Cνm−1.

Since h ≍ νm on V , we have

|h(y)−1∇yh(y)| ≤ Cν−1(y) for all y ∈ V .(3.31)

Using (3.30), (3.31) we get

∥νh−1/2(∇yΨ−∇yΨ);L2(V)∥ ≤ C∥h−1/2
(
Ψ−Ψ(·,−h(·))

)
;L2(V)∥

≤ C ′∥∂zΨ;L2(V)∥,

where the last inequality is the inequality (3.27) from the Lemma 3.25 . �
By use of the Lemma 3.29 and the equation

ν2(y) = h(y)|ν(y)h(y)−1/2|2

we see that

|I2| ≤ C∥νm−1∇yΨj;L
2(V)∥∥νh−1/2(∇yΨ−∇yΨ);L2(V)∥

≤ C ′∥νm−1∇yΨj;L
2(V)∥∥∂zΨ;L2(V)∥

≤ C ′′ exp(−(m− 2)2j)∥Ψ;H(Ω; Λ)∥ ≤ C ′′ exp(−(m− 2)2j),

since ∥∂zΨ;L2(V)∥ ≤ ∥Ψ;H(Ω; Λ)∥ = 1; using the estimate

ν2m−2(y) ≤ C exp(−2(m− 2)2j) for all y ∈ φ(Bj),
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we get

∥νm−1∇yΨj;L
2(V )∥ =

( ˆ
φ(Bj)

ν2m−2(y)|∇yΨj|2 dy
)1/2

≤ C exp(−(m− 2)2j)

( ˆ
φ(Bj)

νm(y)|∇yΨj|2 dy
)1/2

≤ C ′ exp(−(m− 2)2j)∥∇yΨj;L
2(Ω)∥.

Hence I2 → 0 as j → ∞.

3.6. Estimate for I1. Due to (3.18) and (3.20)

(g0ν
m∇yΨj,∇yΨ)Λ =

ˆ

Bj

g0ν
m
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)
|Jφ| dζ

−
ˆ

Bj

g0ν
mG(ζ)∂τΦj(ζ)∂τΦ(ζ)|Jφ| dζ =: I ′ − I ′′.

We have

|I ′′| ≤
ˆ

Bj

g0ν
m|G(ζ)∂τΦj(ζ)∂τΦ(ζ)||Jφ| dζ

≤
(ˆ

Bj

g0ν
m|G(ζ)||∂τΦj(ζ)|2||Jφ| dζ

)1/2(ˆ
Bj

g0ν
m|G(ζ)||∂τΦ(ζ)|2|Jφ| dζ

)1/2

by using the Cauchy–Schwartz inequality with respect to weighted L2-norm

∥f ;L2(Bj;w1)∥ :=

(ˆ
Bj

|f(ζ)|2w1(ζ) dζ

)1/2

, w1(ζ) := G(ζ)g0ν
m|Jφ|.

From (3.21) we get(ˆ
Bj

g0ν
m|G(ζ)||∂τΦ(ζ)|2||Jφ| dζ

)1/2

≤ C exp(−2j−1)

(ˆ
Bj

νm 1

|∂τφ(ζ)|2
|∂τΦ(ζ)|2||Jφ| dζ

)1/2

.

Hence, since

∥h1/2∇yΨ;L2(φ(Bj))∥ =

(ˆ
Bj

h(ζ)

(
1

|∂τφ(ζ)|2
|∂τΦ(ζ)|2 + |∂νΦ(ζ)|2

)
|Jφ| dζ

)1/2

and h ≍ νm on V , we see that

|I ′′| ≤ C exp(−2j)∥h1/2∇yΨj;L
2(φ(Bj))∥∥h1/2∇yΨ;L2(φ(Bj))∥.
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Now

∥h1/2∇yΨj;L
2(φ(Bj))∥ =

( ˆ
φ(Bj)

h(y)|∇yΨj(y)|2 dy
)1/2

= ∥∇xΨj;L
2(Ω)∥,

since ∇xΨj = ∇yΨj and supp(∇yΨj) = φ(Bj). And on the other hand

∥h1/2∇yΨ;L2(φ(Bj))∥ ≤ ∥h1/2∇yΨ;L2(φ(Bj))∥
≤ ∥∇xΨ;L2(V)∥ ≤ ∥∇xΨ;L2(Ω)∥,

due to the Lemma 3.32 below.

3.32. Lemma. The inequality

∥h1/2∇yΨ;L2(V)∥ ≤ C∥∇xΨ;L2(V)∥
is valid for all Ψ ∈ H(Ω; Λ).

Proof. If Ψ ∈ H(Ω; Λ), then∣∣∣ 0ˆ

−h(ζ)

∇yΨ(y, z) dz
∣∣∣2 = ∣∣∣ 0ˆ

−h(y)

h(y)−1/2h(y)1/2∇yΨ(y, z) dz
∣∣∣2

≤
0ˆ

−h(y)

h(y)−1 dz

0ˆ

−h(y)

h(y)|∇yΨ(y, z)|2 dz

= h(y)

0ˆ

−h(y)

|∇yΨ(y, z)|2 dz

by the Cauchy–Schwartz inequality. Applying this we get
ˆ

V

h(y)−1

∣∣∣∣
0ˆ

−h(y)

∇yΨ(y, z) dz

∣∣∣∣2 dy ≤
ˆ

V

0ˆ

−h(y)

|∇yΨ(y, z)|2 dy dz =

ˆ

V

|∇yΨ(y, z)|2 dx.

In particular, we have

∥h1/2∇yΨ;L2(V)∥ =
( ˆ

V

h(y)−1
∣∣∣ 0ˆ

−h(y)

∇yΨ(y, z) dz
∣∣∣2 dy)1/2

≤ ∥∇yΨ;L2(V)∥.(3.33)

Since

h1/2(y) ≤ Cν(y)h−1/2(y) for all y ∈ V ,
we have

∥h1/2∇yΨ;L2(V)∥ ≤ C∥νh−1/2(∇yΨ−∇yΨ);L2(V)∥+ ∥h1/2∇yΨ;L2(V)∥
and the claim follows from the Lemma 3.29 and the inequality (3.33), since

∥∇yΨ;L2(V)∥ ≤ ∥∇xΨ;L2(V)∥ and ∥∂zΨ;L2(V)∥ ≤ ∥∇xΨ;L2(V)∥
for all Ψ ∈ H(Ω; Λ). �
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Thus

|I ′′| ≤ C exp(−2j)∥∇xΨj;L
2(Ω)∥∥∇xΨ;L2(Ω)∥ ≤ C ′ exp(−2j),

since ∥Ψj;H(Ω; Λ)∥ ≍ 1 and ∥Ψ;H(Ω; Λ)∥ = 1. This shows that I ′′ tends to zero as
j → ∞.

Since I1 = I ′ + I ′′ − λ(Ψj,Ψ)V , we still need to show that the term

I ′ − λ(Ψj,Ψ)Λ =: I ′ − λI−.

tends to zero as j → ∞.
We have

I ′ =

ˆ

Bj

g0ν
m
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)
|Jφ| dζ

=

ˆ

Bj

g0ν
m
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)
dζ

+

ˆ

Bj

g0ν
m
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)
ω(ζ) dζ =: I◦ + I◦◦,(3.34)

since |Jφ| = 1 + ω(ζ), as in (3.3).
Now

|I◦◦| ≤
ˆ

Bj

∣∣∣g0νm
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)∣∣∣|ω(ζ)| dζ
≤ C exp(−2j)

ˆ

Bj

∣∣∣g0νm
(
∂τΦj(ζ)∂τΦ(ζ) + ∂νΦj(ζ)∂νΦ(ζ)

)∣∣∣dζ,(3.35)

since

|ω(ζ)| ≤ Cν ≤ C ′ν|Jφ| ≤ C ′′ exp(−2j)|Jφ|
on the sets Bj. From the expression (3.1) we see that

1 ≤ 2

|∂τφ(ζ)|
if

|ν| ≤ min{1, sup
τ∈R

∣∣2α′
2(τ)α

′′
1(τ)α

′
1(τ)α

′′
2(τ) + |α′′(τ)|2

∣∣}.(3.36)

Hence, since νm ≍ h on V , it follows that

|I◦◦| ≤ C exp(−2j)

ˆ

Bj

h(ζ)
( |∂τΦj(ζ)∂τΦ(ζ)|

|∂τφ(ζ)|2
+ |∂νΦj(ζ)∂νΦ(ζ)|

)
|Jφ| dζ,

for all large enough values of j; for which (3.36) holds on Bj. Now by using the
Cauchy–Schwartz inequality with respect to weighted L2-norm

∥f ;L2(Bj;w2)∥ :=

(ˆ
Bj

|f(ζ)|2w2(ζ) dζ

)1/2

, w2(ζ) := h(ζ)|Jφ|,

and the Lemma 3.32 similar way as in I ′′ estimate, we obtain
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|I◦◦| ≤ C exp(−2j)∥∇xΨj;L
2(Ω)∥∥∇xΨ;L2(Ω)∥ ≤ C exp(−2j),

for all large enough values of j. Since ∥Ψj;H(Ω; Λ)∥ ≍ 1 and ∥Ψ;H(Ω; Λ)∥ = 1. This
shows that I ′ tends to zero as j → ∞.

Same way as in (3.34), we have

I− =

ˆ

Bj

Φj(ζ)Φ(ζ) dζ +

ˆ

Bj

Φj(ζ)Φ(ζ)ω(ζ) dζ =: I• + I••

and similar estimation as in (3.35) shows that

|I••| ≤ C exp(−2j).

Thus I•• → 0 as j → ∞.
We are left with the term I◦ − λI•. Now integration by parts yields

I◦ − λI• =

ˆ

Bj

(−∇ζ · g0νm∇ζΦj(ζ))Φ(ζ) dζ − λ

ˆ

Bj

Φj(ζ)Φ(ζ) dζ.

Furthermore, since

∂ν
(
g0ν

m∂νΦj(ζ)
)
= aj

(
∂ν
(
g0ν

m∂νU(ν)
)
Xj(ζ) +mg0ν

m−1U(ν)∂νXj(ζ)

+ g0ν
mU ′′(ν)Xj(ζ) + g0ν

mU ′(ν)∂νXj(ζ) + g0ν
mU(ν)∂2

νXj(ζ)
)

=: aj
(
Y 0
j (ζ) + Y 1

j (ζ) + Y 2
j (ζ) + Y 3

j (ζ)
)

and

∂τ
(
g0ν

m∂τΦj(ζ)
)
= ajg0ν

mU(ν)∂2
τXj(ζ) =: ajZj(ζ),

we obtain, by using the identity (3.13), that

I◦ − λI• = aj

(ˆ
Bj

(Wj(ζ),Φ(ζ)) dζ +

ˆ

Bj

(Zj(ζ),Φ(ζ)) dζ

)
(3.37)

where

Wj(ζ) := Y 1
j (ζ) + Y 2

j (ζ) + Y 3
j (ζ) + i

m− 2

2

√
λg−1

0 g0ν
m/2−1U(ν)Xj(ζ)

Now (3.10), (3.11), (3.12) and the estimates (3.15) imply

|Y 1
j (ζ)| ≤ Cνm−2, |Y 2

j (ζ)| ≤ Cνm/2−1, |Y 3
j (ζ)| ≤ Cνm−2

for all j. Thus, since m/2− 1 < m− 2 and 0 < ν < 1 on V , we have

|Wj(ζ)| ≤ Cνm/2−1 for all j.

Also, by use of (3.10) and (3.15), we see that

|Zj(ζ)| ≤ Cνm|τ |−2 for all j,

where supp(Zj) ⊂ Bj \ Dj. Hence, by applying the Cauchy–Schwartz inequality to
both terms of (3.37) separately, yields

(3.38) |I◦ − λI•| ≤ Caj

((ˆ
Bj

νm−2 dζ

)1/2

+

( ˆ

Bj\Dj

ν2m|τ |−4 dζ

)1/2
)
∥Φ;L2(V )∥,
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Now
ˆ

Bj

νm−2 dζ =

exp(−2j)ˆ

exp(−2j+1)

νm−2 dν

+κ exp(−2j)ˆ

−κ exp(−2j)

dτ

≤ C exp(−(m− 1)2j) exp(−2j) = C exp(−m2j)

and
ˆ

Bj\Dj

ν2m|τ |−4 dζ = 2

exp(−2j)ˆ

exp(−2j+1)

ν2m dν

+κ exp(−2j)ˆ

+κ exp(−2j−1)

τ−4 dτ

≤ C exp(−(2m+ 1)2j) exp(+3 · 2j) = C exp(−(m− 1)2j+1).

Substituting (3.22) in to (3.38) and using the estimates above, we get

|I◦ − λI•| ≤ C exp(+2j)
(
exp(−m2j−1) + exp(−(m− 1)2j)

)
≤ C exp(−(m/2− 1)2j);

since −m2j−1 > −(m− 1)2j for all j because m > 2, and

∥Φ;L2(V)∥ =

(ˆ
V

|Φ(ζ)|2 dζ
)1/2

≤ C

(ˆ
V

|Φ(ζ)|2|Jφ| dζ
)1/2

= C

(ˆ
V

|Ψ(y)|2 dy
)1/2

= C∥Ψ;L2(V)∥ ≤ C ′∥Ψ;H(Ω; Λ)∥ ≤ C ′

due to the inequality 1 ≤ C|Jφ| and the Lemma 3.39 bellow. This yields that I1 → 0
as j → ∞, since m > 2.

3.39. Lemma. The inequality
∥Ψ;L2(V)∥ ≤ C∥Ψ;H(Ω; Λ)∥

is valid for all Ψ ∈ H(Ω; Λ).

Proof. We have

∥Ψ;L2(V)∥ ≤ ∥Ψ−Ψ(·, 0);L2(V)∥+ ∥Ψ(·, 0);L2(V)∥.
By Cauchy–Schwartz

∥Ψ−Ψ(·, 0);L2(V)∥ ≤ ∥h1/2;L2(V)∥∥h−1/2
(
Ψ−Ψ(·, 0)

)
;L2(V)∥.

Hence the inequality (3.26) from the Lemma 3.25 gives

∥Ψ;L2(V)∥ ≤ C
(
∥∂zΨ;L2(V)∥+ ∥Ψ(·, 0);L2(V)∥

)
≤ C ′∥Ψ;H(Ω; Λ)∥. �

3.7. Estimate for I0. First,
|I0| = |((h− g0ν

m)∇yΨj,∇yΨ)V |

≤
ˆ

φ(Bj)

|h(y)− g0ν
m(y)||(∇yΨj(y),∇yΨ(y))| dy

≤ ∥|h− g0ν
m|1/2∇yΨj;L

2(φ(Bj))∥∥|h− g0ν
m|1/2∇yΨ;L2(φ(Bj))∥

by the Cauchy–Schwartz inequality.
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Now |h(y) − g0ν
m(y)| ≤ Cνm+1/2(y) on the set V , and since h ≍ νm on V , it

follows that

|h(y)− g0ν
m(y)| ≤ Cν1/2(y)h(y) on the set V ,

so

∥|h− g0ν
m|1/2∇yΨj;L

2(φ(Bj))∥ ≤ C exp(−2j−2)∥h1/2∇yΨj;L
2(V)∥

and

∥|h− g0ν
m|1/2∇yΨ;L2(φ(Bj))∥ ≤ C exp(−2j−2)∥h1/2∇yΨ;L2(V)∥,

since ν(y) ≤ C exp(−2j) on φ(Bj).
Now, since ∥h1/2∇yΨj;L

2(V)∥ = ∥∇xΨj;L
2(Ω)∥ and the lemma 3.32 holds for

all Ψ ∈ H(Ω; Λ), we get

|I0| ≤ C exp(−2j−2)∥∇xΨj;L
2(Ω)∥ exp(−2j−2)∥∇xΨ;L2(Ω)∥ ≤ C ′ exp(−2j−1),

since ∥Ψj;H(Ω; Λ)∥ ≍ 1 and ∥Ψ;H(Ω; Λ)∥ = 1. Thus I0 → 0 as j → ∞.

4. Remarks

4.1. A sharper form of the previous results. In [8] a result is stated that
interval [c,∞) is contained in the essential spectrum of the linearised water-wave
problem, when m = 2 and c > 0 is a parameter depending on the geometry of the
domain. A similar result for a domain with a submerged object touching the water
surface at one point, is obtained in [16]. In both cases the Theorem 2.3 can be
applied, so the results hold even in a sharper form. Namely, the intervals are in fact
contained in the continuous spectrum of the problem.

4.2. Open problems. It is unknown whether or not there exists points in
the point spectrum, which are berried inside the continuous spectrum, for the prob-
lem (1.2)–(1.4) when m ≥ 2. In the linearised theory of water-waves these type of
solutions are often called trapped modes.

Another open problem, concerning the spectrum of the problem (1.2)–(1.4), is
that whether or not the lower bound for the continuous spectrum in the case m = 2
(which was obtained in [8]) is optimal or not.
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