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Abstract. We give an intrinsic characterization of all subsets of a doubling metric space that
can arise as a member of some system of dyadic cubes on the underlying space, as constructed by
Christ.

1. Introduction

The notion of a cube in the usual Euclidean space does not need much expla-
nation. Dyadic cubes are then certain special cubes with particular coordinate rep-
resentations. The indispensable role of the dyadic cubes in Harmonic Analysis on
Euclidean spaces has also motivated the construction of analogous nested structures
in more general settings, most notably by Christ [2] in doubling metric spaces. How-
ever, this leads to a slight change in the point-of-view: there is no longer a notion
of a ‘cube’ as such, and even a ‘dyadic cube’ barely makes sense as an individual
object; it only becomes meaningful as a member of a system of dyadic cubes with
useful intersection and covering properties reminiscent of those in the Euclidean case.
Nevertheless, it is natural to ask the following question, which was posed to one of
us by Bernicot:

What assumptions on a set do I have to put such that it can be
considered one of the dyadic sets of a suitable dyadic system? [1]

In this note, we give a complete answer to this question, provided that a ‘suitable
dyadic system’ is understood in the sense of the construction by Christ, which seems
to be the most useful one at least for problems of singular integrals, and which we
recall below. But let us first discuss the motivation to understand Bernicot’s question.

First, many common arguments in Euclidean Harmonic Analysis involve the
dyadic sub-cubes of a given (a priori, non-dyadic) cube. While it is quite clear
what this means in the Euclidean space, the notion of a ‘dyadic sub-cube’ seems to
become meaningless in an abstract space, unless we started from a dyadic cube from
the beginning. Our characterization, however, provides an explicit way of testing
whether a set qualifies as a dyadic cube. For such a set E, the existing techniques
may be further pushed to yield a dyadic system D with E ∈ D . After this, the
dyadic sub-cubes of E come as a part of the construction.
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Another situation is the following: After the seminal work of Nazarov–Treil–
Volberg [10], it is now standard to treat singular integrals with respect to a non-
doubling measure on Rn with the help of a random choice of the system of dyadic
cubes. Since any cube of Rn can arise as a random dyadic cube in their construction,
it is necessary to impose certain assumptions, such as the ‘accretivity’∣∣∣ 1

µ(Q)

ˆ
Q

b dµ
∣∣∣ ≥ δ > 0

on the testing function b in the Tb theorem, over the family of all cubes Q ⊂ Rn. The
Tb theorem of Nazarov–Treil–Volberg was generalized to the setting of an abstract
metric space X by Hytönen and Martikainen [5], but there it was left unclear, for
which sets Q ⊂ X exactly it is necessary to impose the above accretivity condition.
The present characterization of all sets that can arise as dyadic cubes gives a clean
form of this condition in the mentioned theorem.

The set-up for our characterization is the following. Let (X, d) be a metric
space. We assume that X has the following (geometric) doubling property : There
exists a positive integer A1 ∈ N such that for every x ∈ X and r > 0, the ball
B(x, r) := {y ∈ X : d(y, x) < r} can be covered by at most A1 balls B(xi, r/2). We
call such metric spaces geometrically doubling.

To state our characterization, we formulate the following notion, which goes back
to Martio–Väisälä [8] (a similar condition was used in [9]):

Definition 1.1. A set E ⊆ X is plump with parameters R > 0 and b ∈ (0, 1) if:

For all y ∈ E and 0 < r ≤ R, there exists z ∈ E such that
B(z, br) ⊆ B(y, r) ∩ E.

(1.2)

It turns out that a set E can arise as a dyadic cube in X if and only if both E
and X \ E are plump, more precisely:

Theorem 1.3. Let (X, d) be a geometrically doubling metric space. Given E ⊆
X, the Christ-type dyadic cubes may be constructed in such a way that Q̃ ⊆ E ⊆ Q̄,
where Q̃ and Q̄ are the interior and closure of some dyadic cube Q, if and only if E
is bounded and both E and X \E are plump with parameters b ∈ (0, 1) (depending
only on the space) and R & diamE.

We will provide a more precise quantitative formulation of the result in Propo-
sition 3.1 and Proposition 3.3. The properties of dyadic cubes will be recalled in
Section 2.1.

Acknowledgements. The authors thank an anonymous referee for very helpful
comments on an earlier version of this paper.

2. Definitions and lemmas

We begin this section by recalling the dyadic structures. After that, we recall
and study the notion of plumpness defined in the Introduction.

2.1. Dyadic cubes. In a geometrically doubling metric space (X, d), a family
of Borel sets Qk

α, k ∈ Z, α ∈ I(k), is called a system of dyadic cubes with parameters
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δ ∈ (0, 1) and 0 < c1 ≤ C1 < ∞ if it has the following properties:

X =
∪

α∈I(k)

Qk
α (disjoint union) ∀ k ∈ Z;(2.2)

if ℓ ≥ k, then either Qℓ
β ⊆ Qk

α or Qk
α ∩Qℓ

β = ∅;(2.3)

B(xk
α, c1δ

k) ⊆ Qk
α ⊆ B(xk

α, C1δ
k) =: B(Qk

α);(2.4)

if ℓ ≥ k and Qℓ
β ⊆ Qk

α, then B(Qℓ
β) ⊆ B(Qk

α).(2.5)

The set Qk
α is called a dyadic cube of generation k with centre point xk

α ∈ Qk
α and side

length δk. The interior and closure of Qk
α are denoted by Q̃k

α and Q̄k
α, respectively.

It follows from the geometric doubling property that the index set I(k) is at most
countable for each value of k ∈ Z, and it can be assumed to be an initial interval in
N.

Definition 2.6. We say that a set {xk
α}k,α ⊆ X is a system of dyadic points with

parameters δ ∈ (0, 1) and 0 < c0 ≤ C0 < ∞ if the following conditions are satisfied
for every k ∈ Z:

(2.7) d(xk
α, x

k
β) ≥ c0δ

k (α ̸= β), min
α

d(x, xk
α) < C0δ

k ∀x ∈ X.

We say that a partial order ≤ among the index pairs (k, α) is a dyadic partial
order for a given system of dyadic points, if it has the following properties:

• Every (k + 1, β) satisfies (k + 1, β) ≤ (k, α) for exactly one value of α.
• For ℓ ≤ k, we have (ℓ, β) ≤ (k, α) if and only if ℓ = k and β = α.
• For ℓ > k, we have (ℓ, β) ≤ (k, α) if and only if there exist ηk = α, ηk+1, . . . ,
ηℓ−1, ηℓ = β such that (j+1, ηj+1) ≤ (j, ηj) for every j ∈ {k, k+1, . . . , ℓ− 1}.

• The relation (k + 1, β) ≤ (k, α) is almost determined by the proximity of the
points in the sense of the two implications

d(xk+1
β , xk

α) <
1

2
c0δ

k ⇒ (k + 1, β) ≤ (k, α) ⇒ d(xk+1
β , xk

α) < C0δ
k.

We recall from [4] the following result, which is a slight elaboration of seminal
work by Christ [2]:

Theorem 2.8. Let (X, d) be a geometrically doubling metric space. Suppose
that there is a system of dyadic points {xk

α}k,α with parameters δ ∈ (0, 1) and 0 <
c0 ≤ C0 < ∞ that satisfy 12C0δ ≤ c0, and a dyadic partial order ≤ among the
index pairs (k, α). Then there exists a system of dyadic cubes Qk

α with parameters
δ, c1 = 1

3
c0, C1 = 2C0, and centre points xk

α ∈ Qk
α. In fact, this system can be

constructed in such a way that

(2.9) Q̃k
α ⊆ Qk

α ⊆ Q̄k
α,

where

(2.10) Q̄k
α = {xℓ

β : (ℓ, β) ≤ (k, α)}

and

(2.11) Q̃k
α = int Q̄k

α =
( ∪

γ ̸=α

Q̄k
γ

)c

.
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If either the system of points or the partial order is not given a priori, their
existence already follows from the assumptions; however, we want to emphasize the
fact that any given system of points and partial order can be used as a starting point.

Remark 2.12. The proof [4] shows that the second inclusion in (2.4) is true
with Qk

α replaced by Q̄k
α.

2.13. Plumpness. We recall from the Introduction that a set E ⊆ X is said to
be plump with parameters R > 0 and b ∈ (0, 1) if E satisfies the following:

(2.14) For all y ∈ E and 0 < r ≤ R, there exists z ∈ E : B(z, br) ⊆ B(y, r) ∩ E.

Remark 2.15. ‘Plumpness’ has a close connection with other geometric no-
tations. It is easily verified that in Rn, being plump is equivalent to satisfying
the corkscrew condition by Jerison–Kenig [6]: A domain E in Rn is said to sat-
isfy the interior (exterior) corkscrew condition if for some R > 0 and b ∈ (0, 1),
and every boundary point y ∈ ∂E and 0 < r < R, there exists z ∈ B(y, r) ∩ E
(z ∈ B(y, r) ∩ (Rn \ Ē)) such that dist(z, ∂E) ≥ br.

Plumpness also resembles the notion of porosity which goes back at least to
Denjoy [3, pp. 195–196] and has been investigated widely by several authors. A set
E in Rn is uniformly lower porous if for some b ∈ (0, 1) and for every y ∈ E and
0 < r < diam(E), the set B(y, r) ∩ (Rn \ E) contains a ball B(z, br). These two
notions are, however, not the same. For example, any ball B(x,R) in Rn and its
complement are plump but neither one is porous.

Examples 2.16. 1. Examples of plump sets in Rn are provided by John do-
mains, first introduced by John [7]: A domain Ω in Rn is (α, β)-John domain if
there exists a point x0 ∈ Ω (‘central point’) such that given any x ∈ Ω, there ex-
ists a rectifiable path γ : [0, ℓ] → Ω which is parametrized by arclength, such that
γ(0) = x, γ(ℓ) = x0, ℓ ≤ β and

dist(γ(t), ∂Ω) ≥ α

ℓ
t ∀ t ∈ [0, ℓ].

Every John domain satisfies the corkscrew condition [9, Lemma 6.3] and thus, is a
plump set.

2. The well established non-tangentially accessible domains (NTA domains),
introduced by Jerison–Kenig [6], satisfy both the interior and exterior corkscrew
condition by definition. Thus, by the main result of the present paper, every bounded
NTA domain in Rn qualifies as a dyadic cube.

We record the following easy observation.

Lemma 2.17. Suppose E is plump with parameters R > 0 and b ∈ (0, 1). Then

(1) E is plump with any parameters R̃ ≤ R and 0 < b̃ ≤ b;
(2) E is plump with any parameters R̃ ≥ R and b̃ ∈ (0, 1) that satisfy R̃b̃ ≤ Rb.

Proof. The first assertion is obvious. For the second assertion, let R̃ ≥ R
and b̃ ∈ (0, 1) be such that R̃b̃ ≤ Rb. Suppose y ∈ E and 0 < r ≤ R̃. Then
0 < rR/R̃ =: t ≤ R so that there exists z ∈ E such that

B(z, b̃r) = B(z,
b̃R̃

R
t) ⊆ B(z, bt) ⊆ B(y, t) ∩ E ⊆ B(y, r) ∩ E. �
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We give next a definition for a dyadically plump set, that better suits our pur-
poses.

Definition 2.18. A set E ⊆ X is dyadically plump (d-plump) with parameters
δ ∈ (0, 1),m ∈ Z and 0 < b0 ≤ B0 < ∞ if E satisfies the following:

(2.19) For all y ∈ E and k ≥ m, there exists z ∈ E : B(z, b0δ
k) ⊆ B(y,B0δ

k) ∩ E.

Qualitatively, set E is plump if and only if E is d-plump. Quantitatively, the
relationship is formulated in the following lemma.

Lemma 2.20. If E is a plump set with parameters R > 0 and b ∈ (0, 1), then
E is d-plump with any parameters δ ∈ (0, 1),m ∈ Z and 0 < b0 ≤ B0 < ∞ that
satisfy b0/B0 ≤ b and B0δ

m ≤ R. Conversely, if E is a d-plump set with parameters
δ ∈ (0, 1),m ∈ Z and 0 < b0 ≤ B0 < ∞, then E is plump with any parameters R > 0
and b ∈ (0, 1) that satisfy b ≤ δb0/B0 and R ≤ B0δ

m−1.

Proof. For the first assertion, let δ ∈ (0, 1), and suppose that 0 < b0 ≤ B0 < ∞
are such that b0/B0 ≤ b. Then pick m ∈ Z that satisfies B0δ

m ≤ R. Let y ∈ E and
k ≥ m. Then, by (2.14) with r = B0δ

k ≤ B0δ
m ≤ R, there exists z ∈ E such that

B(z, b0δ
k) ⊆ B(z, br) ⊆ B(y, r) ∩ E = B(y,B0δ

k) ∩ E,

which shows that E is d-plump.
For the second assertion, suppose that b ∈ (0, 1) and R > 0 are such that

b ≤ δb0/B0 and R ≤ B0δ
m−1. Let y ∈ E and 0 < r ≤ R, and let k ≥ m be an integer

that satisfies B0δ
k < r ≤ B0δ

k−1. Then, by (2.19), there exists z ∈ E such that

B(z, br) ⊆ B(z, b0δ
k) ⊆ B(y,B0δ

k) ∩ E ⊆ B(y, r) ∩ E. �

3. The proof of the main result

In this section we will provide a proof for the quantitative version of our main
result, Theorem 1.3, which is formulated in Propositions 3.1 and 3.3 below.

Proposition 3.1. Suppose that D is a family of dyadic cubes with parameters
δ ∈ (0, 1) and 0 < c1 ≤ C1 < ∞. Let Qm

α ∈ D be a dyadic cube of side length
δm. Then both F ∈ {Qm

α , X \ Qm
α } are d-plump with parameters δ,m, b0 = c1 and

B0 = c1 + C1. In particular, Qm
α is plump with parameters b = δc1/(c1 + C1) and

R =
c1 + C1

2δC1

diam(Qm
α ).

Proof. It suffices to consider the case F = Qm
α and y ∈ Qm

α since otherwise,
y ∈ Qm

β for some β ̸= α, and we argue similarly with α replaced by β.
To this end, suppose y ∈ Qm

α and k ≥ m. By (2.2) and (2.3), y ∈ Qk
β for some

Qk
β ⊆ Qm

α . Thus, by (2.4),

(3.2) d(y, xk
β) < C1δ

k.

We will show that z = xk
β satisfies (2.19). First note that B(xk

β, c1δ
k) ⊆ Qk

β ⊆ Qm
α . We

are left to show that B(xk
β, c1δ

k) ⊆ B(y,B0δ
k). To this end, suppose x ∈ B(xk

β, c1δ
k)

and note that, by (3.2),

d(x, y) ≤ d(x, xk
β) + d(xk

β, y) ≤ c1δ
k + C1δ

k = B0δ
k.
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This shows that E is d-plump with parameters δ,m, b0 = c1 and B0 = c1 + C1. By
Lemma 2.20, Qm

α is plump and we may choose b = δb0/B0 = δc1/(c1 + C1) and
R = B0δ

m−1 = (c1 + C1)δ
m−1. Since diam(Qm

α ) ≤ 2C1δ
m by (2.4), the proof is

completed by Lemma 2.17(1). �

Proposition 3.3. Let E ⊆ X, and suppose both F ∈ {E,X \ E} are d-plump
with parameters δ ∈ (0, 1),m ∈ Z and 0 < b0 ≤ B0 < ∞ where diamE ≤ B0δ

m and
12B0δ ≤ b0. Then the Christ-type dyadic cubes may be constructed in such a way
that E arises as a dyadic cube. More precisely, there exists a dyadic system D with
parameters δ, c1 = b0/3 and C1 = 2B0, and a dyadic cube Q ∈ D of side length δm

such that Q̃ ⊆ E ⊆ Q̄.

The proof of Proposition 3.3 consists of three lemmata.

Lemma 3.4. (Choice of dyadic points) Under the assumptions and with the
fixed values of parameters as in Proposition 3.3, let F ∈ {E,X \E}. Then for every
k ∈ Z, there exists a set {xk

α}α of points with the following properties:

(3.5) d(xk
α, x

k
β) ≥ b0δ

k (α ̸= β), min
α

d(x, xk
α) < B0δ

k ∀ x ∈ X;

If k ≥ m, then moreover

(3.6) min
α:xk

α∈F
d(x, xk

α) < B0δ
k ∀x ∈ F ∈ {E,X \ E};

and

(3.7) dist(xk
α, X \ F ) ≥ b0δ

k ∀ xk
α ∈ F.

If k = m, then there is exactly one α such that xm
α ∈ E.

Proof. We first observe that

(3.8) {x ∈ F : d(x,X \ F ) ≥ b0δ
m} ≠ ∅

for both choices of F . To this end, pick a y ∈ F . We apply (2.19) with k = m, and
find a point z ∈ F such that

B(z, b0δ
m) ⊆ F ∩B(y,B0δ

m),

and thus d(z,X \ F ) ≥ b0δ
m.

For k ≥ m and both choices of F , we pick a maximal set {xk
α}α, of points in F

that satisfies the two conditions

d(xk
α, x

k
β) ≥ b0δ

k (α ̸= β) and dist(xk
α, X \ F ) ≥ b0δ

k.

By (3.8), both these collections are nonempty. We equip them with individual labels
to form one joint collection {xk

α}α. It still satisfies

d(xk
α, x

k
β) ≥ b0δ

k (α ̸= β) :

if both xk
α, x

k
β belong to the same F ∈ {E,X \ E}, this is part of the construction,

and if xk
α ∈ F , xk

β ∈ X \ F , then

d(xk
α, x

k
β) ≥ d(xk

α, X \ F ) ≥ b0δ
k (α ̸= β).

For k = m, we throw away all but one xm
α ∈ E, which we denote by xm

α0
.

We need to check that the points xk
α are B0δ

k-dense in F for both choices of F .
If F = E and k = m, then all x ∈ E satisfy d(x, xm

α0
) ≤ diamE < B0δ

m. Let then
either k > m or k = m and F = X \ E, and consider an arbitrary x ∈ F . We apply
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(2.19), and find a point z ∈ F such that B(z, b0δ
m) ⊆ F ∩B(x,B0δ

m). In particular,
dist(z,X \ F ) ≥ b0δ

m. If also d(z, xm
α ) ≥ b0δ

m for all xm
α ∈ F , then z could have

been added to the collection {xm
α }α, contradicting its maximality. Thus, there exists

xm
α ∈ B(z, b0δ

m) ⊆ F ∩ B(x,B0δ
m); i.e., xm

α ∈ F and d(x, xm
α ) < B0δ

m, which is as
claimed in (3.6).

Finally, for k < m, we pick a maximal set {xk
α}α, of points in X that satisfy

the first condition in (3.5), and then by maximality also the second condition in
(3.5), since B0 ≥ b0. For k > m, there are no further conditions required, so we are
done. �

Note that the point set {xk
α}k,α provided by Lemma 3.4 is, in particular, a system

of dyadic centre points with parameters δ and 0 < b0 ≤ B0 < ∞ that satisfy
12B0δ ≤ b0.

The next step in the construction of dyadic cubes is the choice of a partial
order for the dyadic index pairs (k, α), which will describe the cubes’ child-parent
(descendant-ancestor) relationships.

Lemma 3.9. (Choice of dyadic partial order) Under the assumptions and with
the fixed values of parameters as in Proposition 3.3, there is a dyadic partial order
≤ among the pairs (k, α) with the following additional property:

If k ≥ m and (ℓ, β) ≤ (k, α), then xℓ
β and xk

α belong to the same set
F ∈ {E,X \ E}.

Proof. We define a partial order as follows. Given k ≥ m and a point xk+1
β ∈ F ,

check whether there exists α such that d(xk
α, x

k+1
β ) < b0δ

k/2. If one exists, it is
necessarily unique by (3.5), and moreover, xk

α ∈ F by (3.7). We then decree that
(k + 1, β) ≤ (k, α). If no such good α exists, choose any α for which xk

α ∈ F and
d(xk

α, x
k+1
β ) < B0δ

k, and decree that (k+ 1, β) ≤ (k, α); at least one such α exists by
(3.6). In either case, we decree that (k+1, β) is not related to any other (k, γ). Note
that the additional above property is clear from this construction.

Given k < m and a point (k+1, β), we proceed in the same way as before except
that we drop the requirement xk

α ∈ F . Finally, we extend ≤ by transitivity to obtain
a partial ordering. �

With the dyadic points and the partial order at hand, Theorem 2.8 guarantees the
existence of a system of dyadic cubes Qk

α with parameters δ, c1 = 1
3
b0 and C1 = 2B0.

The proof of Proposition 3.3 is now completed by the following lemma.

Lemma 3.10. If α0 is the unique index with xm
α0

∈ E, we have Q̃m
α0

⊆ E ⊆ Q̄m
α0

.

Proof. Suppose x ∈ E. Then, by (3.6), for every k ≥ m there exists xk
β ∈ E such

that d(xk
β, x) < B0δ

k → 0 as k → ∞. This shows that

x ∈ {xk
β : (k, β) ≤ (m,α0)} = Q̄m

α0
.

To show that Q̃m
α0

⊆ E, it suffices to show that

X \ E ⊆
(
Q̃m

α0

)c

=
∪

α ̸=α0

Q̄m
α .

To this end, suppose x ∈ X \ E. Then, by (3.6), for every k ≥ m there exists
xk
β ∈ X \E such that d(xk

β, x) < B0δ
k → 0 as k → ∞. By Lemma 3.9, for each such
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k we have that (k, β) ≤ (m,α) with some xm
α ∈ X \ E. This implies that xk

β ∈ Q̄m
α

for some α ̸= α0, and hence d(xk
β, x

m
α ) < 2B0δ

m by (2.4); see also Remark 2.12. For
all such α, we have d(xm

α , x) ≤ d(xm
α , x

k
β) + d(xk

β, x) < 2B0δ
m + B0δ

k ≤ 3B0δ
m, and

hence geometric doubling implies that there are only boundedly many relevant xm
α

here. Passing to a subsequence over k, we may assume that all xk
β belong to the same

Q̄m
α1

with α1 ̸= α0. Thus also

x = lim
k→∞

xk
β ∈ Q̄m

α1
⊆

∪
α ̸=α0

Q̄m
α0
. �

This completes the proof of Proposition 3.3, and thereby also the proof of Theo-
rem 1.3.
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