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Abstract. We establish an anisotropic Fuglede inequality for images of balls under homeo-
morphisms with exponentially integrable distortion.

1. Introduction

In the last few years, the so-called quantitative isoperimetric inequalities have
attracted a great interest (see for example [6, 3] and the references therein). In
order to describe these results let us introduce, for any Borel set E in Rn, with
0 < |E| < +∞, the isoperimetric deficit of E

δ(E) =
P (E)

nω
1
n
n |E|n−1

n

− 1 =
P (E)− P (rB)

P (rB)
,

where P is the perimeter (surface measure of the boundary if E is smooth) and r
is the radius of the ball having the same volume of E, i.e. |E| = rnωn. Notice that
δ(E) is non-negative by the isoperimetric inequality, and equals 0 if and only if E is
equivalent to a ball.

Fuglede [4] proved that if E is a convex set with volume ωn, then

min
x∈Rn

distH(E, x + B) ≤ C(n)δ(E)α(n)

where distH(E, x+B) denotes the Hausdorff distance between the sets E and x+B,
and α(n) is a suitable exponent depending on the dimension n. When dealing with
general non convex sets, one cannot expect the validity of inequalities like that proved
by Fuglede, as can be seen by taking sets obtained by gluing thin long “tentacles” to
the unit ball. Fuglede’s result has been generalized to the class of John domains in
[18], see also [5].

Fusco, Maggi and Pratelli [6] gave a sharp estimate for the Fraenkel asymmetry
(see (1.1)) of a set E in terms of its isoperimetric deficit, proving a conjecture by Hall
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[9]. Very recently, an anisotropic version of the result in [6] was established by Figalli,
Maggi and Pratelli in [3]. More precisely, given a convex set E , 0 < |E| < +∞,
containing the origin, and an open set F , 0 < |F | < +∞, with smooth boundary ∂F
oriented by its unit outer normal νF , the anisotropic perimeter of F is defined as

PE(F ) =

ˆ

∂F

||νF (x)||∗ dHn−1(x),

where
||νF ||∗ = sup{y · νF : y ∈ E}.

Note that, when E is the unit ball B, the perimeter PE(F ) coincides with the usual
notion of Euclidean perimeter. It is possible to extend the definition of anisotropic
perimeter also to non-smooth sets, by using the notion of reduced boundary (see [1]
or [3, Section 2.1]). Then, let us introduce the isoperimetric deficit of F , setting

δE(F ) =
PE(F )

n|E| 1n |F | 1
n′
− 1,

and the relative asymmetry of E and F as

(1.1) A(E,F ) = inf
b∈Rn

|E \ (b + κF )|
|E| , κ =

( |E|
|F |

)1/n

,

where κF = {κy : y ∈ F}. Notice that A(E,F ) = A(F,E), A(λE, µF ) = A(E, F )
for every λ and µ > 0 and that if E is the unit ball, the relative asymmetry coincides
with the Fraenkel asymmetry of F .

In [3] it has been proved that, if F is a measurable set with finite perimeter and
finite positive measure, then A(F, E) can be controlled by the isoperimetric deficit.
More precisely, A(F, E) ≤ C

√
δE(F ) for a constant C depending only on n.

The aim of this paper is to prove an anisotropic version of the Fuglede type
inequality in higher dimension, restricting ourselves to the class of domains which are
images of the unit ball under global homeomorphisms with exponentially integrable
distortion. We recall that f : Ω ⊂ Rn → Rn is a mapping of finite distortion, if f ∈
W 1,1

loc (Ω,Rn), the Jacobian determinant Jf ∈ L1
loc(Ω), and if there is a measurable,

almost everywhere finite function Kf such that

|Df(x)|n ≤ Kf (x)Jf (x) for almost every x ∈ Ω.

If E and F are as above, we recall that the Hausdorff distance between ∂E and ∂F
is

distH(∂E, ∂F ) = max{ sup
x∈∂E

inf
y∈∂F

|x− y|, sup
y∈∂F

inf
x∈∂E

|x− y|}.

We define the relative distance distrel(∂E, ∂F ),

distrel(∂E, ∂F ) = inf
b∈Rn

distH(∂E, b + κ∂F )

|E|1/n
,

where κ is the constant in (1.1). Notice that the relative distance is also scaling and
translation invariant.

In [17], it has been proved that the Hausdorff distance between the images of
the unit ball under homeomorphisms with exponentially integrable distortion and
the unit ball can be controlled by their Fraenkel asymmetry. Our main result states
that we can control the relative distance between the images of the unit sphere
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under two homeomorphisms with exponentially integrable distortion with the relative
asymmetry of the images of the unit ball. More precisely, we have

Theorem 1.1. Let f : B2 → fB2 and g : B2 → gB2 be homeomorphisms of
finite distortion satisfying

ˆ

B2

exp(µKf (x)) + exp(µKg(x)) dx = K < ∞

for some µ and K > 0. Then

(1.2) distrel(fS1, gS1)
n+n2/µ ≤ C(n, µ,K)A(fB1, gB1).

As a consequence of Theorem 1.1, we obtain that the relative distance between
the image of the unit sphere under a homeomorphism with exponentially integrable
distortion and the boundary of a convex set can be estimated with the relative asym-
metry between the convex set and the image of the unit ball. Namely, we have

Theorem 1.2. Let f : B2 → fB2 be a homeomorphism of finite distortion sat-
isfying ˆ

B2

exp(µKf (x)) dx = K < ∞

for some µ and K > 0, and let E be a convex domain, B1 ⊂ E ⊂ BΛ. Then

(1.3) distrel(fS1, ∂E)n+n2/µ ≤ C(n, µ,K, Λ)A(fB1, E) ≤ C(n, µ,K, Λ)
√

δE(fB1).

Notice that the second inequality in the previous theorem follows by the result in
[3]. Let E be a convex set with finite positive Lebesgue measure and let B1 ⊂ E ⊂ BΛ.
We notice that the estimate of Theorem 1.2 could blow up when Λ goes to infinity.
In fact, we can take f to be the identity mapping and a sequence of convex sets Ej

converging to a line segment. Then the right hand side of (1.3) tends to infinity while
the left hand side remains bounded.

Theorems 1.1 and 1.2 do not hold in general if f is only defined on B1. Indeed, for
every n ≥ 2 there exist K ≥ 1 and a sequence of K-quasiconformal homeomorphisms
fj : B1 → Ωj such that Ωj is the union of B1 and a truncated cone with vertex
2e1 and opening angle 1/j. This can be seen using the fact that truncated cones
with different opening angles smaller than π/2 are quasiconformally equivalent with
distortion independent of the angles, see [8]. The exponent that appears in estimates
(1.2) and (1.3) cannot be improved, except for the constant n2, as shown in the
example at Theorem 1.2 of [17].

We would like to mention that Theorem 1.2 gives an extension of the main
Theorem 1.1 in [17]. Indeed, this is implied by Theorem 1.2, in case E is assumed
to be a ball. The approach we use to prove Theorems 1.1 and 1.2 is quite similar to
that used in [17] earlier. However, we are able to prove much more general results
because of our new observation that the approach can be applied to give estimates
for the distances of rather general domains (in particular without assuming that one
of them is a ball).

Quantitative isoperimetric inequalities have been applied to prove new distortion
estimates for quasiconformal maps with small distortion, see [15, 16]. More generally,
we expect that Theorems 1.1 and 1.2 can be applied to give estimates for quasicon-
formal maps whose distortions are suitably controlled using a convex domain E.
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2. Notations and preliminary results

We shall denote a ball in Rn with center x and radius r by Br(x), while when the
ball is centered at the origin we shall omit the indication of the center, i.e. Br = Br(0).
The corresponding notations for spheres will be Sr(x) and Sr.

We shall denote by |Df | the operator norm of the differential matrix and by
(Df)] the adjugate of Df which is defined by the formula

(2.1) Df · (Df)] = I · Jf ,

where, as usual, Jf = det Df and I is the identity matrix.
Recall that a homeomorphism f ∈ W 1,1

loc (Ω,Rn) has finite outer distortion if its
Jacobian Jf is strictly positive a.e. on the set where |Df | 6= 0. In case Jf (x) ≥ 0
a.e., we define its outer distortion function as

(2.2) Kf (x) =

{ |Df(x)|n
Jf (x)

for Jf (x) > 0,

1 otherwise.

We note, for a homeomorphism with finite distortion, the following relation:

(2.3) |(Df−1)](y)| = Kf (f
−1(y))

1
n Jf−1(y)

n−1
n a.e. y ∈ f(Ω)

(we refer to [11] for an exhaustive treatment of the mappings with finite distortion).
We shall use following result concerning the modulus of continuity of a homeomor-
phism with exponentially integrable distortion.

Theorem 2.1. [14] Let f be as in Theorem 1.1. If x and y ∈ B5/4, then

|f(x)− f(y)| ≤ C(n, µ,K)

logµ/n 1
|x−y|

|fB1|1/n.

Moreover, we have the following distortion estimate.

Lemma 2.2. [17] Let f be as in Theorem 1.1. If Bt(x) ⊂ B5/4, then there exists
a constant C = C(n, µ,K) such that

maxy∈S3/2
|f(x)− f(y)|

miny∈St(x) |f(x)− f(y)| ≤ exp

(
C(n, µ,K)t

− 1

n− 3
2

)
.

We will use the following consequence of the previous results.

Lemma 2.3. Let f be as above and assume f(e1) = 0 and |fB1| = ωn. Then
there exists m0 > 0, depending only on n, µ, and K, such that for every 0 < t < m0,

(2.4) Bst(e1) ⊂ f−1Bt ⊂ B1/10(e1).

Here st satisfies

t =
C(n, µ,K)

logµ/n 1
st

,

where C(n, µ,K) is the constant in Theorem 2.1. Moreover,

(2.5) |B1 ∩ f−1Bt|(n−1)/n ≤ C(n)Hn−1(B1 ∩ f−1St).
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Proof. The first inclusion in (2.4) follows directly from Theorem 2.1. Also, under
the assumption |fB1| = ωn, there exists b ∈ S3/2 such that |f(e1)−f(b)| = |f(b)| ≥ 1.
Lemma 2.2 with x = e1 yields

1

miny∈S1/10(e1) |f(y)− f(e1)| ≤
maxb∈S3/2

|f(b)|
miny∈S1/10(e1) |f(y)| ≤ ϕ(n, µ,K).

The second inclusion follows once m0 is chosen to be small enough depending only
on n, µ, and K.

To prove (2.5), we notice that the second inclusion in (2.4) guarantees that

|B1 ∩ f−1Bt| ≤ |B1 \ f−1Bt|.
Therefore, (2.5) follows by the following relative isoperimetric inequality in B1 (see
[1, (3.43)]):

min{|B1 ∩ f−1Bt|(n−1)/n, |B1 \ f−1Bt|(n−1)/n} ≤ C(n)Hn−1(B1 ∩ f−1St). ¤

3. Proof of Theorem 1.1

We assume that A(fB1, gB1) > 0. Since the distortions Kf and Kg are not
affected by postcompositions with affine maps, we may assume that |fB1| = |gB1| =
ωn and

A(fB1, gB1) = ω−1
n |fB1 \ gB1| = ω−1

n |gB1 \ fB1|.
We denote m = distH(fS1, gS1). In order to prove the theorem, we need to show
that

mn+n2/µ ≤ C(n, µ,K)|fB1 \ gB1|.
Now either there exists a point y0 ∈ fS1 such that

(3.1) distH(y0, gS1) = m,

or a point z0 ∈ gS1 such that

(3.2) distH(z0, fS1) = m.

From now on we assume that (3.1) holds, otherwise we change the roles of f and
g. By precomposing f with a rotation and postcomposing with a translation, if
necessary, we may assume that y0 = 0 and f−1(y0) = e1.

Since distH(0, gS1) = m, we have that either

Bm ∩ fB1 ⊂ Rn \ gB1,

or
Bm \ fB1 ⊂ gB1,

depending on whether or not 0 ∈ Rn \ gB1. In the first case we have

|fB1 \ gB1| ≥ |Bm ∩ fB1 \ gB1| = |Bm ∩ fB1|,
so in order to prove the theorem it suffices to show that

(3.3) mn+n2/µ ≤ C(n, µ,K)|Bm ∩ fB1|.
In the second case

|gB1 \ fB1| ≥ |Bm \ fB1|,
so in this case the theorem follows if

(3.4) mn+n2/µ ≤ C(n, µ,K)|Bm \ fB1|.
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The proofs of estimates (3.3) and (3.4) are very similar, and therefore we only give
the proof of (3.3).

Proof of (3.3). We first assume that m ≤ m0, where m0 is as in Lemma 2.3. We
choose t0 = m/2 and an increasing sequence (tj)

k
j=1 of radii inductively such that if

|f−1(Bm) ∩B1| > 2|f−1(Btj−1
) ∩B1|,

then we choose m/2 < tj < m such that

(3.5) |f−1(Btj) ∩B1| = 2|f−1(Btj−1
) ∩B1|,

otherwise j = k and we choose tk = m. We claim that

(3.6) k ≤ C(n) log
1

sm/2

≤ C(n, µ,K)m−n/µ.

Here sm/2 is as in Lemma 2.3. The second inequality in (3.6) follows from Lemma 2.3.
In order to prove the first inequality we use the definition of (tj) to write (note that
tk = m)

(3.7) 2k−1 ≤
k∏

j=1

|f−1(Btj) ∩B1|
|f−1(Btj−1

) ∩B1| =
|f−1(Bm) ∩B1|
|f−1(Bm/2) ∩B1| .

Since
Bsm/2

(e1) ⊂ f−1(Bm/2) and f−1(Bm) ⊂ B1/10(e1),

by Lemma 2.3, the right term in (3.7) can be estimated by C(n)s−n
m/2. Taking loga-

rithms gives the first inequality in (3.6).
By [2] (see also [7, 10, 13]), f−1 ∈ W 1,n(fB2,R

n). Therefore,

(3.8) Hn−1(f−1(St ∩ fB1)) ≤
ˆ

St∩fB1

|(Df−1)](y)| dHn−1(y)

for almost every m/2 < t < m. Indeed, recall that the change of variables formula
holds for h : G ⊂ Rk → Rn, k ≤ n, whenever h ∈ W 1,p for some p > k, see [12]. We
conclude that (3.8) holds since the restriction of our f−1 to (the relative components
of) St ∩ fB1 belongs to W 1,n for almost every m/2 < t < m.

Let Vt = f−1(Bt) ∩ B1 and Vj = Vtj . We integrate both sides of (3.8) over the
interval (tj−1, tj), j = 1, . . . , k. By the relative isoperimetric inequality (2.5), and our
choice (3.5) of the radii tj, the left integral is estimated from below by

C(n)(tj − tj−1)|Vj|(n−1)/n.

Using the equality at (2.3), Hölder’s inequality and the area formula, the right integral
is estimated from above as follows:ˆ

fB1∩Btj \Btj−1

|(Df−1)](y)| dy =

ˆ

fB1∩Btj \Btj−1

Kf (f
−1(y))1/nJf−1(y)(n−1)/n dy

≤ |fB1 ∩Btj \Btj−1
|1/n

( ˆ

Vj

Kf (x)1/(n−1) dx
)(n−1)/n

.

We denote |fB1∩Btj \Btj−1
| by qj. Combining the estimates and taking the measure

of Vj to the right yields

(3.9) (tj − tj−1) ≤ Cq
1/n
j

(
|Vj|−1

ˆ

Vj

Kf (x)1/(n−1) dx
)(n−1)/n

,
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where C depends only on n. Applying Jensen’s inequality to the convex function
t 7→ exp(µtn−1), and using the integrability assumption on Kf , gives

|Vj|−1

ˆ

Vj

Kf (x)1/(n−1) dx ≤ µ−1
(

log
(|Vj|−1

ˆ

Vj

exp(µKf (x)) dx
))1/(n−1)

≤ µ−1
(

log
(
K|Vj|−1

))1/(n−1)

.

(3.10)

Since |Vj| ≥ C(n)sn
m/2, where sm/2 is as in Lemma 2.3, the second inequality in (3.6)

yields (
log |Vj|−1

)1/(n−1)

≤ C(n, µ,K)m−n/(µ(n−1)).

Combining with (3.9) and (3.10) gives

tj − tj−1 ≤ Cq
1/n
j m−1/µ.

Finally, we add over j and use the Cauchy–Schwarz inequality:

(3.11)
m

2
=

k∑
j=1

tj − tj−1 ≤ Cm−1/µ

k∑
j=1

q
1/n
j ≤ Cm−1/µk(n−1)/n

( k∑
j=1

qj

)1/n

.

Since
k∑

j=1

qj ≤ |Bm ∩ fB1|,

using estimates (3.11) and (3.6), we get

m ≤ C(n, µ,K)|Bm ∩ fB1|1/nm−n/µ,

which implies (3.3).
We next assume that m ≥ m0. By applying the previous argument with m = m0,

we see that

(3.12) |Bm ∩ fB1| ≥ |Bm0 ∩ fB1| ≥ C1(n, µ,K).

On the other hand, Lemma 2.2 shows that we always have

(3.13) m ≤ diam fS1 ≤ C2(n, µ,K)|fB1| = C3(n, µ,K).

Combining (3.12) and (3.13) gives (3.3). The proof is complete. ¤

4. Proof of Theorem 1.2

We use the following result of Gehring and Väisälä [8, Theorem 5.2] (they only
consider the case n = 3, but the proof extends to all dimensions n ≥ 2).

Theorem 4.1. Let B1 ⊂ E ⊂ BΛ be a convex domain. Then there exists a
K-quasiconformal mapping g : Rn → Rn, where K depends only on n and Λ, such
that gB1 = E.

Proof of Theorem 1.2. We shall apply Theorems 1.1 and 4.1. By scaling invari-
ance, we may assume that |fB1| = |E| = ωn and

A(fB1, E) = ω−1
n |fB1 \ E|.
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By Lemmas 2.2 and 2.3, there exist x ∈ Rn and t > 1, depending only on n, µ, and
K, such that

Bt−1(x) ⊂ fB1 ⊂ Bt(x).

Let Λ be the smallest constant for which there exist x ∈ Rn and R > 0 such that

BR(x) ⊂ E ⊂ BΛR(x).

Then, if Λ is large enough depending on t, the convexity of E implies that A(fB1, E) ≥
1/100. We have R < 1 because |E| = ωn, and so

distrel(fS1, ∂E) ≤ diam fS1 + diam ∂E ≤ C(n, µ,K) + Λ.

Therefore,
distrel(fS1, ∂E) ≤ C(n, µ,K, Λ)A(fB1, E)

when Λ ≥ Λ0(n, µ,K).
Now let Λ ≤ Λ0(n, µ,K). An application of Theorem 4.1 gives a K(n, µ,K)-

quasiconformal homeomorphism g : B2 → gB2 such that gB1 = E. We can now
apply Theorem 1.1 to f and g, sinceˆ

B2

exp(µKg(x)) dx ≤ C(n, µ,K).

This gives the first inequality at (1.3). The second inequality follows from [3, Theorem
1.1]. ¤
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