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Abstract. We investigate the extrapolation properties of operator ideals A whose components
A(E, F ) are closed subspaces of L(E, F ). In particular, results apply to weakly compact operators,
Banach–Saks operators, Rosenthal operators and Asplund operators.

1. Introduction

Interpolation theory and extrapolation theory are complementary subjects, with
applications in the study of boundedness of important operators and to the research
on function spaces. See, for example, the books by Stein [26], Bergh and Löfström
[3], Triebel [28, 29], Milman [21] and Edmunds and Triebel [12]. Interpolation theory
has also found deep applications in operator theory, as can be seen in the monographs
by Triebel [28] and Pietsch [25], or in the paper by Heinrich [16]. But the connection
of extrapolation theory with operator theory has not yet been fully studied.

As far as we know, Triebel [30] used by the first time extrapolation ideas to study
the degree of compactness of certain limiting Sobolev embeddings. Abstract results
in this direction have been established by Kühn and Schonbek [19] and Cobos and
Kühn [9]. On the other hand, Kryczka [20] and Nikolova and Zachariades [24] have
investigated the extrapolation properties of weakly compact operators. The case of
compact operators has been considered by Cobos and Kühn [8].

Weakly compact operators and compact operators are example of closed operator
ideals. So, it is natural to study if there are general results which are valid for this
kind of operator ideals. This is the aim of the paper. Our results apply to the two
operator ideals mentioned before but also to several others, among them Banach–
Saks operators, Rosenthal operators and Asplund operators, also referred to as dual
Radon–Nikodym operators or decomposing operators. Moreover, for the case of
weakly compact operators, we can improve some results of [24].

The paper is organized as follows. In Section 2 we review some general facts on
closed operator ideals, as well as the basic constructions of extrapolation theory. In
Section 3, we prove results for the special case when we only extrapolate either the
source spaces of the operator, or the target spaces. Finally, in Section 4, we consider
the general case when extrapolation takes place both in the source spaces and in the
target spaces. For these last results, we require that the ideal satisfies the so-called
Σq-condition. Hence, they do not apply to compact operators.
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2. Preliminaries

Subsequently, letters X, Y, E, F stand for Banach spaces. As usual, we write UX

for the closed unit ball of X and L(X,Y ) for the space of all bounded linear operators
from X into Y , endowed with the operator norm. An operator ideal A is a class of
bounded linear operators such that each component A ∩ L(X, Y ) = A(X, Y ) is a
linear subspace of L(X, Y ) which contains the finite rank operators, and it satisfies
that STR ∈ A(X,Y ) whenever R ∈ L(X, E), T ∈ A(E, F ) and S ∈ L(F, Y ).

The operator ideal A is said to be closed if the components A(X, Y ) are closed
subspaces of L(X, Y ). Many classical ideals are closed. For example, compact oper-
ators K and weakly compact operators W have this property.

An ideal A is called injective if for every isomorphic embedding j ∈ L(Y, F ) and
every T ∈ L(X, Y ) it follows from jT ∈ A(X, F ) that T ∈ A(X, Y ). The ideal A is
said to be surjective if for every surjection Q ∈ L(E, X) and every T ∈ L(X, Y ) it
follows from TQ ∈ A(E, Y ) that T ∈ A(X,Y ). Both ideals K and W are injective
and surjective. Strictly singular operators form an ideal which is closed and injective
but it is not surjective. On the other hand, the ideal of strictly cosingular operators
is closed and surjective but it is not injective. We refer to [25] and [11] for more
details.

Let A be an injective closed operator ideal. The following characterization holds
(see [18], [31]): An operator T ∈ L(X, Y ) belongs to A if and only if given any δ > 0,
there is a Banach space F and an operator R ∈ A(X,F ) such that

(2.1) ‖Tx‖Y ≤ δ‖x‖X + ‖Rx‖F , x ∈ X.

For a surjective closed operator ideal A, it turns out that the necessary and sufficient
condition for T ∈ L(X, Y ) to belong to A is that for any δ > 0, there is a Banach
space E and an operator S ∈ A(E, Y ) such that

(2.2) T (UX) ⊆ δUY + S(UE),

(see [1]). More details on these characterizations can be found in [7] and [14], where
the ideal measures that they define are studied and their interpolation properties are
shown (see also [27] for the case of the ideal W).

In what follows, let Θ be an interval Θ ⊆ [0, 1], let Y0, Y1 be Banach spaces and
let Yη, η ∈ Θ, be an ordered family of Banach spaces, that is to say

Y0 ↪→ Yθ ↪→ Yη ↪→ Y1 for any θ ≤ η with θ, η ∈ Θ.

Here ↪→ means continuous embedding. We suppose that embedding operators are
uniformly bounded.

The following extrapolation spaces are considered in [17, 13, 15, 6, 5] and [8]
among other papers. Subsequently, given positive functions f, g defined on an interval
I, we write f(t) ∼ g(t) if there are constants c1, c2 > 0 such that c1f(t) ≤ g(t) ≤
c2f(t) for all t ∈ I.

Definition 2.1. Let 1 ≤ q ≤ ∞ and let 0 ≤ θ < 1 such that for some ε > 0, we
have (θ, θ + ε) ⊆ Θ. Let ϕ be a positive, continuous and monotone function on (0, ε)
such that ϕ(t) ∼ ϕ(2t) and

(2.3)
(ˆ ε

0

ϕ(t)q dt

t

)1/q

< ∞
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(where, as usual, the integral should be replaced by the supremum if q = ∞). The
space Yθ(log Y )+

ϕ,q = Y +
θ,ϕ,q consists of all those y ∈ ⋂

θ<η<θ+ε Yη which have a finite
norm

‖y‖Yθ(log Y )+ϕ,q
=

(ˆ ε

0

(ϕ(t)‖y‖Yθ+t
)q dt

t

)1/q

.

Let J ∈ N with 2−J < ε and write

(2.4) σk = θ + 2−k, k ≥ J.

Then ‖ · ‖Yθ(log Y )+ϕ,q
is equivalent to

‖y‖Y +
θ,ϕ,q

=

( ∞∑
n=J

(ϕ(2−n)‖y‖Yσn
)q

)1/q

(see [8]). We also notice that

(2.5) Yθ(log Y )+
ϕ,q ↪→ Yη for any θ < η < θ + ε,

and that spaces Yθ(log Y )+
ϕ,q do not depend on the choice of ε > 0. Furthermore, a

change in the value of J ∈ N with 2−J < ε yields an equivalent norm to ‖·‖Yθ(log Y )+ϕ,q
.

Definition 2.2. Let 1 ≤ q ≤ ∞, 1/q + 1/q′ = 1 and let 0 < θ ≤ 1 such that for
some ε > 0, we have (θ − ε, θ) ⊆ Θ. Let ψ be a positive, continuous and monotone
function on (0, ε) such that ψ(t) ∼ ψ(2t) and

(2.6)
(ˆ ε

0

ψ(t)−q′ dt

t

)1/q′

< ∞.

The space Yθ(log Y )−ψ,q = Y −
θ,ψ,q is formed by all those y ∈ Y1 which can be represented

as y =
´ ε

0
w(t) dt/t (convergence in Y1) with w(t) ∈ Yθ−t and

(2.7)
(ˆ ε

0

(ψ(t)‖w(t)‖Yθ−t
)q dt

t

)1/q

< ∞.

We provide Yθ(log Y )−ψ,q with the norm ‖ · ‖Yθ(log Y )−ψ,q
defined by the infimum of the

values (2.7) over all possible representations of y of the above type.

Let J ∈ N with 2−J < ε. Write

(2.8) λk = θ − 2−k, k ≥ J.

Then y ∈ Yθ(log Y )−ψ,q if and only if there exist yn ∈ Yλn , n ≥ J , such that y =∑∞
n=J yn (convergence in Y1) and

(2.9)

( ∞∑
n=J

(ψ(2−n)‖yn‖Yλn
)q

)1/q

< ∞.

Moreover,

‖y‖Y −θ,ψ,q
= inf





( ∞∑
n=J

(ψ(2−n)‖yn‖Yλn
)q

)1/q

: y =
∞∑

n=J

yn





is an equivalent norm to ‖ · ‖Yθ(log Y )−ψ,q
(see [8]).
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Again Yθ(log Y )−ψ,q does not depend on the choice of ε > 0 and this time we have

(2.10) Yη ↪→ Yθ(log Y )−ψ,q for any θ − ε < η < θ.

For b > 0, if ϕ(t) = tb and ψ(t) = t−b, we denote the extrapolation spaces by
Yθ(log Y )+

b,q = Y +
θ,b,q and Yθ(log Y )−b,q = Y −

θ,b,q, respectively.

3. Extrapolation either on the source spaces or on the domain spaces

We start with a result regarding extrapolation on the source spaces of the oper-
ator.

Theorem 3.1. Let A be an injective closed operator ideal, let X be a Banach
space and let {Yη}η∈Θ, θ, q, ε and ϕ as in Definition 2.1. Let J ∈ N such that 2−J < ε
and let σn be the numbers defined in (2.4). Suppose that T : X → ⋂

θ<η<θ+ε Yη is a
linear operator satisfying that

(3.1)

{(∑∞
n=J(ϕ(2−n)‖T‖X,Yσn

)q
)1/q

< ∞ if 1 ≤ q < ∞,

limn→∞ ϕ(2−n)‖T‖X,Yσn
= 0 if q = ∞.

If T ∈ A(X, Yη) for any θ < η < θ + ε, then T ∈ A(X,Y +
θ,ϕ,q).

Proof. We shall work with the characterization of operators belonging to A given
by (2.1) and with the discrete norm ‖ · ‖Y +

θ,ϕ,q
of Y +

θ,ϕ,q. Take any δ > 0. Using (3.1)
we can find N ∈ N, N ≥ J such that

(3.2)

( ∞∑
n=N+1

(ϕ(2−n)‖T‖X,Yσn
)q

)1/q

≤ δ

2
.

Since T ∈ A(X,Yσk
) for k = J, . . . , N , there are Banach spaces Fk and operators

Rk ∈ A(X, Fk) such that

(3.3) ‖Tx‖Yσk
≤ δ

2ϕ(2−k)N1/q
‖x‖X + ‖Rkx‖Fk

, x ∈ X.

Let F =
⊕N

k=J Fk, with the norm

‖(zJ , . . . , zN)‖F =

(
N∑

k=J

(ϕ(2−k)‖zk‖Fk
)q

)1/q

,

and let R : X → F be the operator defined by

Rx = (RJx, . . . , RNx).

One can easily check that R ∈ A(X, F ). For any x ∈ X, we obtain by (3.2) and (3.3)
that

‖Tx‖Y +
θ,ϕ,q

≤
(

N∑
n=J

(ϕ(2−n)‖Tx‖Yσn
)q

)1/q

+

( ∞∑
n=N+1

(ϕ(2−n)‖Tx‖Yσn
)q

)1/q

≤
(

N∑
n=J

(
δ

2

)q
1

N

)1/q

‖x‖X +

(
N∑

n=J

(ϕ(2−n)‖Rkx‖Fk
)q

)1/q

+
δ

2
‖x‖X

≤ δ‖x‖X + ‖Rx‖F .
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Hence, (2.1) implies that T ∈ A(X, Y +
θ,ϕ,q). ¤

Next we consider the case where extrapolation takes place in domain spaces.
Subsequently, given a Banach space Y and λ > 0, we designate by λY the space Y
normed by ‖ · ‖λY = λ‖ · ‖Y .

Theorem 3.2. Let A be a surjective closed operator ideal, let X be a Banach
space and let {Yη}η∈Θ, θ, q, ε and ψ as in Definition 2.2. Take J ∈ N with 2−J < ε
and let λn be the numbers given by (2.8). Assume that T : Y1 → X is a bounded
linear operator such that

(3.4)

{(∑∞
n=J(‖T‖Yλn,X

/ψ(2−n))q′
)1/q′

< ∞ if 1 < q ≤ ∞,

limn→∞ ‖T‖Yλn,X
/ψ(2−n) = 0 if q = 1.

If T ∈ A(Yη, X) for any θ − ε < η < θ, then T ∈ A(Y −
θ,ψ,q, X).

Proof. The relevant characterization for operators of A is now (2.2). Take any
δ > 0 and let J ∈ N with 2−J < ε. By (3.4), there exists N ∈ N, N ≥ J , such that

(3.5)

( ∞∑
n=N+1

(‖T‖Yλn ,X/ψ(2−n))q′
)1/q′

≤ δ

4
.

For J ≤ k ≤ N , take positive numbers δk with
∑N

k=J δk = δ/2. Since T ∈
A(ψ(2−k)

2
Yλk

, X), there exist Banach spaces Ek and operators Rk ∈ A(Ek, X) such
that

(3.6) T

(
Uψ(2−k)

2
Yλk

)
⊆ δkUX + Rk(UEk

), J ≤ k ≤ N.

Put E =
⊕N

k=J Ek, endowed with the norm

‖(zJ , . . . , zN)‖E = sup
J≤k≤N

‖zk‖Ek

and let S : E → X be the operator defined by

R(zJ , . . . , zN) =
N∑

k=J

Rk(zk).

It is not hard to check that R ∈ A(E,X). Now take any y ∈ UY −θ,ψ,q
. We can find a

representation y =
∑∞

n=J yn (convergence in Y1) with yn ∈ Yλn and
( ∞∑

n=J

(ψ(2−n)‖yn‖Yλn
)q

)1/q

≤ 2.

For J ≤ k ≤ N , since ‖yk‖(ψ(2−k)/2)Yλk
≤ 1, by (3.6) there is zk ∈ UEk

such that
‖Tyk −Rkzk‖X ≤ δk. Put z = (zJ , . . . , zN). Then z ∈ UE. Using Hölder’s inequality
and (3.5), we derive

‖Ty −Rz‖X ≤ ‖
N∑

n=J

Tyk −
N∑

n=J

Rkzk‖X + ‖
∞∑

n=N+1

Tyn‖X
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≤
N∑

n=J

δk +
∞∑

n=N+1

‖T‖Yλn ,X‖yn‖Yλn

≤ δ

2
+

( ∞∑
n=N+1

(‖T‖Yλn ,X/ψ(2−n))q′
)1/q′ ( ∞∑

n=N+1

(ψ(2−n)‖yn‖Yλn
)q

)1/q

≤ δ

2
+

δ

4
· 2 = δ.

Consequently,
T (UY −θ,ψ,q

) ⊆ δUX + R(UE)

which completes the proof. ¤
Writing down Theorems 3.1 and 3.2 forA = K, the ideal of compact operators, we

recover results of Cobos and Kühn [8, Thms. 4.1 and 4.2]. Our theorems can be also
applied to weakly compact operators, Banach–Saks operators, Rosenthal operators
or Asplund operators. We can also apply Theorem 3.1 to strictly singular operators
and Theorem 3.2 to strictly cosingular operators.

4. Extrapolation on the source spaces and on the domain spaces

For the results of this section we shall require that the ideal A satisfies the so-
called Σq-condition that we recall next. Given any sequence of Banach spaces (En)
and any sequence of positive numbers (µn), we denote by `q(µnEn) the vector valued
`q-space formed by all sequences x = (xn) with xn ∈ En and

‖x‖`q(µnEn) =

(∑
n

(µn‖xn‖En)q

)1/q

< ∞.

We write Qk : `q(µnEn) → µkEk for the projection Qk(xn) = xk, and Pk : µkEk →
`q(µnEn) for the embedding Pkx = (δk

nx) where δk
n is the Kronecker delta.

Definition 4.1. Let 1 < q < ∞. An operator ideal A is said to satisfy
the Σq-condition if for any sequences of Banach spaces (En), (Fn) and any opera-
tor T ∈ L(`q(En), `q(Fn)), it follows from QkTPn ∈ A(En, Fk) for any n, k that
T ∈ A(`q(En), `q(Fn)).

As it has been pointed out by Heinrich [16], every ideal which satisfies the Σq-
condition is closed. It is also proved in [16] that weakly compact operators, Banach–
Saks operators, Rosenthal operators and Asplund operators satisfy the Σq-condition
for any 1 < q < ∞. On the other hand, it is easy to see that compact operators does
not satisfy the Σq-condition for any q. We refer to [4] and [14] for more information
on this condition and its extension to Banach lattices of sequences.

Let X0 ↪→ Xη ↪→ X1 and Y0 ↪→ Yη ↪→ Y1 be ordered families with η ∈ Θ ⊆ [0, 1].
We suppose that in each family embedding operators are uniformly bounded. Let
1 < q < ∞ and assume that θ, ε and ϕ are as in Definition 2.1 or θ, ε and ψ are as
in Definition 2.2. By T ∈ L({Xη}η∈Θ, {Yη}η∈Θ) we mean that T is a linear operator
whose restrictions

T : X1 → Y1, T : X0 → Y0 and T : Xη → Yη
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are bounded with supη∈Θ ‖T‖Xη ,Yη < ∞. Then it is easy to check that restrictions

(4.1) T : X+
θ,ϕ,q → Y +

θ,ϕ,q and T : X−
θ,ψ,q → Y −

θ,ψ,q

are also bounded. Next we show sufficient conditions for restrictions (4.1) to belong
to an operator ideal A with the Σq-property.

Theorem 4.2. Let 1 < q < ∞ and let A be an injective operator ideal which
satisfies the Σq-condition. Suppose that {Xη}η∈Θ, {Yη}η∈Θ are ordered families with
uniformly bounded embeddings and let θ, ε and ϕ be as in Definition 2.1. If T ∈
L({Xη}η∈Θ, {Yη}η∈Θ) and

(4.2) T ∈ A(Xη, Yτ ) for any η < τ with η, τ ∈ (θ, θ + ε)

then
T : X+

θ,ϕ,q → Y +
θ,ϕ,q belongs to A.

Proof. Take any θ < η < θ + ε. By (2.5) and (4.2), for any τ ∈ (η, θ + ε), we
have that

(4.3) T : X+
θ,ϕ,q → Yτ belongs to A.

Choose J ∈ N with 2−J < ε and let σk be the numbers defined by (2.4). We consider
on Y +

θ,ϕ,q the discrete norm ‖ · ‖Y +
θ,ϕ,q

. The map j : Y +
θ,ϕ,q → `q(ϕ(2−n)Yσn) defined by

jy = (y, y, . . . ) is an isometric embedding. For any k ≥ N , it follows from (4.3) that

QkjT ∈ A(X+
θ,ϕ,q, ϕ(2−k)Yσk

).

Since A satisfies the Σq-condition, we obtain that jT ∈ A(X+
θ,ϕ,q, `q(ϕ(2−n)Yσn)).

Finally, using that A is injective, we conclude that T ∈ A(X+
θ,ϕ,q, Y

+
θ,ϕ,q). ¤

Theorem 4.3. Let 1 < q < ∞ and let A be a surjective operator ideal which
satisfies the Σq-condition. Suppose that {Xη}η∈Θ, {Yη}η∈Θ are ordered families with
uniformly bounded embeddings and let θ, ε and ψ be as in Definition 2.2. If T ∈
L({Xη}η∈Θ, {Yη}η∈Θ) and

(4.4) T ∈ A(Xη, Yτ ) for any η < τ with η, τ ∈ (θ − ε, θ),

then
T : X−

θ,ψ,q → Y −
θ,ψ,q belongs to A.

Proof. Using (2.10) and (4.4), we get that

(4.5) T : Xη → Y −
θ,ψ,q belongs to A for any η ∈ (θ − ε, θ).

Let again J ∈ N with 2−J < ε, let λn be the numbers defined by (2.8) and consider the
metric surjection π : `q(ψ(2−n)Xλn) → Y −

θ,ψ,q, defined by π(xn) =
∑

n≥J xn (conver-
gence in X1). For any k ≥ N ,(4.5) implies that TπQk : ψ(2−k)Xλk

→ Y −
θ,ψ,q belongs to

A. Since A satisfies the Σq-condition, it follows that Tπ ∈ A(`q(ψ(2−n)Xλn), Y −
θ,ψ,q).

Then, surjectivity of A yields that T ∈ A(X−
θ,ψ,q, Y −

θ,ψ,q). ¤
Often scales are constructed by interpolation. Next we show that if this is the

case, then we can use the known results on interpolation of closed operator ideals
(see [16], [7] and [4]) with the effect that assumptions on T in the previous results
can be weakened. Let X0, X1, Y0, Y1 be Banach spaces with X0 ↪→ X1, Y0 ↪→ Y1 and
embeddings having norm less than or equal to 1. For 0 ≤ η ≤ 1, let Xη = [X0, X1]η,
Yη = [Y0, Y1]η be the complex interpolation spaces generated by the given couples
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(see [3], [28]). Then {Xη}0≤η≤1, {Yη}0≤η≤1 are ordered families, with embedding
operators having norms ≤ 1. Given any linear operator T ∈ L(X1, Y1) ∩ L(X0, Y0),
the interpolation property of the complex method yields that T ∈ L(Xη, Yη) for any
0 < η < 1, with sup0<η<1 ‖T‖Xη ,Yη < ∞. We also recall the reiteration formula for
the complex method (see [3] and [10]): If 0 ≤ η0, η1, µ ≤ 1 and η = (1 − µ)η0 + µη1

then we have with equality of norms

[[X0, X1]η0 , [X0, X1]η1 ]µ = [X0, X1]η.

Corollary 4.4. Let 1 < q < ∞ and let A be an injective and surjective oper-
ator ideal which satisfies the Σq-condition. Let 0 ≤ θ < 1, 0 < ε < 1 and let ϕ
be a positive, continuous and monotone function on (0, ε) with ϕ(t) ∼ ϕ(2t) and
(
´ ε

0
ϕ(t)q dt/t)1/q < ∞. Suppose that X0, X1, Y0, Y1 are Banach spaces such that

X0 ↪→ X1, Y0 ↪→ Y1 with embeddings having norm ≤ 1. Let Xη = [X0, X1]η and
Yη = [Y0, Y1]η. If

T ∈ L(X1, Y1) ∩ L(X0, Y0) and T ∈ A(X0, Y1),

then
T : X+

θ,ϕ,q → Y +
θ,ϕ,q belongs to A.

Proof. Take any η and τ with θ < η < τ < θ + ε. As it is pointed out in [3] and
[28], the complex interpolation space Xη is of class C(η; X̄). Having this is mind, it
follows from the fact that T ∈ L(X1, Y1) ∩ A(X0, Y1), sobrejectivity of A and [16,
Prop. 1.7] that T ∈ A(Xη, Y1). Now, consider the diagram

Yη.

Y1

©©©©©©*

HHHHHHj

Xη T

By injectivity of A, the reiteration formula and [16, Prop. 1.6], we derive that T ∈
A(Xη, Yτ ). Consequently, the result follows from Theorem 4.2. ¤

Similarly, but using now Theorem 4.3, we obtain the following.

Corollary 4.5. Let 1 < q < ∞ and let A be an injective and surjective op-
erator ideal which satisfies the Σq-condition. Let 0 < θ ≤ 1, 0 < ε < 1 and let ψ
be a positive, continuous and monotone function on (0, ε) with ψ(t) ∼ ψ(2t) and
(
´ ε

0
ψ(t)−q′ dt/t)1/q′ < ∞, 1/q + 1/q′ = 1. Suppose that X0, X1, Y0, Y1 are Banach

spaces such that X0 ↪→ X1, Y0 ↪→ Y1 with embeddings having norm ≤ 1. Let
Xη = [X0, X1]η and Yη = [Y0, Y1]η. If

T ∈ L(X1, Y1) ∩ L(X0, Y0) and T ∈ A(X0, Y1)

then
T : X−

θ,ψ,q → Y −
θ,ψ,q belongs to A.

The special case ϕ(t) = tb and ψ(t) = t−b, with b > 0, corresponds to the so-
called logarithmic spaces in [12] and [13]. As an example, let us recall that if Ω is
a bounded open subset of Rd, and we put X0 = L∞(Ω), X1 = L1(Ω), then we have
that [L∞(Ω), L1(Ω)]θ = L1/θ(Ω), and for 1 < p < ∞ we obtain

X+
1/p,b,p = Lp(log L)−b(Ω) and X−

1/p,b,p = Lp(log L)b(Ω)
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(see [12, Section 2.6.2]). Here, for γ ∈ R, Lp(log L)γ(Ω) is the usual Zygmund space
(see [2]).

For logarithmic spaces the following holds.

Corollary 4.6. Let 1 < q < ∞ and let A be an injective and surjective operator
ideal which satisfies the Σq-condition. Let b > 0 and assume that X0, X1, Y0, Y1 are
Banach spaces such that X0 ↪→ X1, Y0 ↪→ Y1 with embeddings having norm ≤ 1. Let
Xη = [X0, X1]η, Yη = [Y0, Y1]η and let T ∈ L(X1, Y1) ∩ L(X0, Y0).

(a) For 0 ≤ θ < 1, the necessary and sufficient condition for T : X+
θ,b,q → Y +

θ,b,q to
belong to A is that T ∈ A(X0, Y1).

(b) For 0 < θ ≤ 1, the necessary and sufficient condition for T : X−
θ,b,q → Y −

θ,b,q to
belong to A is that T ∈ A(X0, Y1).

Proof. Sufficiently follows from Corollaries 4.4 and 4.5. Necessity is a consequence
of the factorizations

X0 ↪→ X+
θ,b,q

T→ Y +
θ,b,q ↪→ Y1, X0 ↪→ X−

θ,b,q

T→ Y −
θ,b,q ↪→ Y1. ¤

Writing down Corollary 4.6 for the case of weakly compact operators, we obtain
a result which improves [24, Cor. 2.3]: It is enough that T : X0 → Y1 belongs to W ,
instead of requiring that T ∈ W(Xj, Yj) for j = 0 or j = 1.

For the particular case when T is the identity operator we conclude the following
result.

Corollary 4.7. Let 1 < q < ∞ and let A be an injective and surjective operator
ideal which satisfies the Σq-condition. Let b > 0, assume that X0, X1 are Banach
spaces such that the embedding X0 ↪→ X1 belongs to A, and let Xη = [X0, X1]η.

(a) For 0 ≤ θ < 1, the identity operator of X+
θ,b,q belongs to A.

(b) For 0 < θ ≤ 1, the identity operator of X−
θ,b,q also belongs to A.

As a direct consequence of Corollary 4.7, if the embedding X0 ↪→ X1 is weakly
compact, we derive that for 0 < θ < 1, 1 < q < ∞ and b > 0, spaces X+

θ,b,q and X−
θ,b,q

are reflexive. This result improves [24, Cor. 2.2/(ii)]: No assumption of density of
X0 in X1 is required and it is enough that the embedding X0 ↪→ X1 belongs to W ,
instead of requiring the stronger assumption that X0 or X1 is reflexive.

We refer to [22, 23, 24] for other geometrical properties of logarithmic spaces.
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