OPTIMAL WEAK TYPE ESTIMATES FOR DYADIC-LIKE MAXIMAL OPERATORS

Eleftherios N. Nikolidakis

University of Crete, Department of Mathematics Heraklion 71409, Crete, Greece; lefteris@math.uoc.gr

Abstract. We provide sharp weak estimates for the distribution function of $\mathcal{M}\phi$ when on ϕ we impose L^1 , L^q and $L^{p,\infty}$ restrictions. Here \mathcal{M} is the dyadic maximal operator associated to a tree \mathcal{T} on a non-atomic probability measure space. As a consequence we produce that the inequality $||\mathcal{M}_{\mathcal{T}}\phi||_{p,\infty} \leq |||\phi|||_{p,\infty}$ is sharp allowing every possible value for the L^1 and the L^q norm for a fixed q such that 1 < q < p, where $||| \cdot |||_{p,\infty}$ is the integral norm on and $|| \cdot ||_{p,\infty}$ the usual quasi norm on $L^{p,\infty}$.

1. Introduction

The dyadic maximal operator on \mathbf{R}^n is defined by

(1.1)
$$\mathcal{M}_d \phi(x) = \sup \left\{ \frac{1}{|Q|} \int_Q |\phi(u)| \, du \colon x \in Q, \ Q \subseteq \mathbf{R}^n \text{ is a dyadic cube} \right\}$$

for every $\phi \in L^1_{\text{loc}}(\mathbf{R}^n)$ where the dyadic cubes are those formed by the grids $2^{-N}\mathbf{Z}^n$ for $N = 1, 2, \ldots$ and |A| is the Lesbesgue measure of any measurable subset A of \mathbb{R}^n . It is easy to prove by using the definition of \mathcal{M}_d that it satisfies the following weak type (1, 1) inequality

(1.2)
$$|\{x \in \mathbf{R}^n \colon \mathcal{M}_d \phi(x) \ge \lambda\}| \le \frac{1}{\lambda} \int_{\{\mathcal{M}_d \phi \ge \lambda\}} |\phi(u)| \, du$$

for every $\phi \in L^1(\mathbf{R}^n)$ and every $\lambda > 0$. Tis inequality is sharp as can be easily seen by considering characteristic functions over dyadic cubes. Using the fact that

$$||\mathcal{M}_d\phi||_p^p = \int_0^\infty p\lambda^{p-1} |\{\mathcal{M}_d\phi \ge \lambda\}| \, d\lambda$$

and in the sequel inequality (1.2) along with Fubini's theorem we easily get the following L^p inequality known as Doob's inequality

(1.3)
$$||\mathcal{M}_d\phi||_p \le \frac{p}{p-1}||\phi||_p$$

for every p > 1 and every $\phi \in L^p(\mathbf{R}^n)$, which is proved to be best possible (see [2, 3] for the general martingales and [10] for the dyadic ones).

A way of studying the dyadic maximal operator is the introduction of the so called Bellman functions (see [8]). Actually, we define for every p > 1

(1.4)
$$B_p(f,F) = \sup\left\{\frac{1}{|Q|}\int_Q (\mathcal{M}_d\phi)^p : \frac{1}{|Q|}\int_Q \phi^p = F, \ \frac{1}{|Q|}\int_Q \phi = f\right\}$$

doi:10.5186/aasfm.2013.3817

²⁰¹⁰ Mathematics Subject Classification: Primary 47A30.

Key words: Dyadic, maximal.

where Q is a fixed dyadic cube, ϕ is nonnegative in $L^p(Q)$ and f, F are such that $0 < f^p \leq F$. $B_p(f, F)$ has been computed in [5]. In fact it has been shown that $B_p(f, F) = F\omega_p(f^p/F)^p$ where $\omega_p \colon [0, 1] \to \left[1, \frac{p}{p-1}\right]$ is the inverse function of $H_p(z) = -(p-1)z^p + pz^{p-1}$.

This has been proved in a much more general setting of tree like maximal operators on non-atomic probability spaces. The result turns out to be independent of the choice of the measure space. The study of these operators has been continued in [7] where the Bellman functions of them in the case p < 1 have been computed. As in [5] and [7] we will follow the moregeneral approach. So for a tree \mathcal{T} on a non atomic probability measure space (X, μ) , we define the associated dyadic maximal operator, namely

$$\mathcal{M}_{\mathcal{T}}\phi(x) = \sup\left\{\frac{1}{\mu(I)}\int_{I} |\phi| \, d\mu \colon x \in I \in \mathcal{T}\right\}$$

for every $\phi \in L^1(X, \mu)$.

As it can be seen in [9], $\mathcal{M}_{\mathcal{T}} \colon L^{p,\infty} \to L^{p,\infty}$ is a continuous operator and satisfies the following inequality

(1.5)
$$||\mathcal{M}_{\mathcal{T}}\phi||_{p,\infty} \le |||\phi|||_{p,\infty}.$$

where $|| \cdot ||_{p,\infty}$ is the usual quasi-norm on $L^{p,\infty}$ defined by

$$||\phi||_{p,\infty} = \sup \left\{ \lambda \mu (\{\phi \ge \lambda\})^{1/p} \colon \lambda > 0 \right\}.$$

and $||| \cdot |||_{p,\infty}$ is the integral norm on $L^{p,\infty}$ given by

$$|||\phi|||_{p,\infty} = \sup\left\{\mu(E)^{-1+\frac{1}{p}} \int_{E} |\phi| \, d\mu \colon E \text{ measurable subset of } X \text{ such that } \mu(E) > 0\right\}.$$

 $||| \cdot |||_{p,\infty}$ and $|| \cdot ||_{p,\infty}$ are equivalent because of the following

$$||\phi||_{p,\infty} \le |||\phi|||_{p,\infty} \le \frac{p}{p-1} ||\phi||_{p,\infty}, \ \forall \ \phi \in L^{p,\infty},$$

which can be seen in [4]. In this paper we prove that inequality (1.5) is sharp and independent of the L^1 and L^q norm of ϕ , for a fixed q such that 1 < q < p. In fact we prove a stronger result, by evaluating the following function of $\lambda > 0$

$$S(f, A, F, \lambda)$$

$$(1.6) = \sup\left\{\mu(\{\mathcal{M}_{\mathcal{T}}\phi \ge \lambda\}): \phi \ge 0, \int_{X} \phi \, d\mu = f, \int_{X} \phi^{q} \, d\mu = A, |||\phi|||_{p,\infty} = F\right\},$$

where (f, A, F) is on the domain of the extremal problem. That is we prove the following

Theorem 1.1. For f, A such that $f^q < A \leq \Gamma f^{p-q/p-1} F^{p(q-1)/p-1}$ and $0 < f \leq F$ the following hold

$$S(f, A, F, \lambda) = \min\left\{1, G_{f,A}(\lambda), \frac{F^p}{\lambda^p}\right\}$$

where

(1.7)
$$G_{f,A}(\lambda) = \sup\left\{\mu(\{\mathcal{M}_{\mathcal{T}}\phi \ge \lambda\}) \colon \phi \ge 0, \ \int_{X} \phi \, d\mu = f, \ \int_{X} \phi^{q} \, d\mu = A\right\}.$$

In fact, $G_{f,A}(\lambda)$ has been precisely computed in [6] by using sharp inequalities on a certain class of functions which is enough to describe the related problem. In this paper we avoid the technique used in [6] and refine this result by proving the theorem mentioned using a different approach. As a corrolary we obtain the following

Corollary 1.1. The following is true

(1.8)
$$\sup\left\{||\mathcal{M}_{\mathcal{T}}\phi||_{p,\infty}:\phi\geq 0, \int_{X}\phi\,d\mu=f, \int_{X}\phi^{q}\,d\mu=A, |||\phi|||_{p,\infty}=F\right\}=F,$$

that is, (1.5) is sharp allowing every value of the integral and the L^{q} -norm of ϕ .

This paper is organized as follows: In Section 2 we provide some lemmas and facts concerning non-atomic probability measure spaces and trees on them. In Section 3 we find the domain of the extremal problem for the case F = 1. This is done by finding sharp inequalities relating the L^1 and L^q norm of a measurable function ϕ under the weak condition $|||\phi|||_{p,\infty} = 1$. Krein–Milman theorem is a tool for us in order to find these sharp inequalities. At last in section 4 we precisely evaluate $S(f, A, 1, \lambda)$. We need also to mention that all the estimates are independent of the measure space (X, μ) and the tree \mathcal{T} .

2. Preliminaries

Let (X, μ) be a non-atomic probability measure space. We state the following lemma which can be found in [1].

Lemma 2.1. Let $\phi: (X, \mu) \to \mathbf{R}^+$ and ϕ^* the decreasing rearrangement of ϕ , defined on [0, 1]. Then

$$\int_0^t \phi^*(u) \, du = \sup\left\{\int_E \phi \, d\mu \colon E \text{ measurable subset of } X \text{ with } \mu(E) = t\right\}$$

for every $t \in [0, 1]$, with the supremum attained.

We prove now the following

Lemma 2.2. Let $\phi: X \to \mathbf{R}^+$ be measurable and $I \subseteq X$ be measurable with $\mu(I) > 0$. Suppose that $\frac{1}{\mu(I)} \int_I \phi \, d\mu = s$. Then for every t such that $0 < t \leq \mu(I)$ there exists a measurable set $E_t \subseteq I$ with $\mu(E_t) = t$ and $\frac{1}{\mu(E_t)} \int_{E_t} \phi \, d\mu = s$.

Proof. Consider the measure space $(I, \mu/I)$ and let $\psi: I \to \mathbf{R}^+$ be the restriction of ϕ on I that is $\psi = \phi/I$. Then, if $\psi^*: [0, \mu(I)] \to \mathbf{R}^+$ is the decreasing rearrangement of ψ , we have that

(2.1)
$$\frac{1}{t} \int_0^t \psi^*(u) \, du \ge \frac{1}{\mu(I)} \int_0^{\mu(I)} \psi^*(u) \, du = s \ge \frac{1}{t} \int_{\mu(I)-t}^{\mu(I)} \psi^*(u) \, du.$$

Since ψ^* is decreasing, we get the inequalities in (2.1), while the equality is obvious since

$$\int_0^{\mu(I)} \psi^*(u) \, du = \int_I \phi \, d\mu.$$

From (2.1) it is easily seen that there exists $r \ge 0$ such that $t + r \le \mu(I)$ with

(2.2)
$$\frac{1}{t} \int_{r}^{t+r} \psi^{*}(u) \, du = s.$$

It is also easily seen that there exists E_t measurable subset of I such that

(2.3)
$$\mu(E_t) = t \quad \text{and} \quad \int_{E_t} \phi \, d\mu = \int_r^{t+r} \psi^*(u) \, du$$

since (X, μ) is non-atomic. From (2.2) and (2.3) we get the conclusion of the lemma.

We now call two measurable subsets of X almost disjoint if $\mu(A \cap B) = 0$. We give now the following

Definition 2.1. A set \mathcal{T} of measurable subsets of X will be called a tree if the following conditions are satisfied:

- (i) $X \in \mathcal{T}$ and for every $I \in \mathcal{T}$ we have that $\mu(I) > 0$.
- (ii) For every $I \in \mathcal{T}$ there corresponds a finite or countable subset $C(I) \subseteq \mathcal{T}$ containing at least two elements such that
 - (a) the elements of C(I) are pairwise almost disjoint subsets of I,

(b)
$$I = \bigcup C(I)$$
.

(iii) $\mathcal{T} = \bigcup_{m \ge 0} \mathcal{T}_{(m)}$ where $\mathcal{T}_0 = \{X\}$ and $\mathcal{T}_{(m+1)} = \bigcup_{I \in \mathcal{T}_{(m)}} C(I)$. (iv) lim sup $\mu(I) = 0$.

(iv)
$$\lim_{m \to +\infty} \sup_{I \in \mathcal{T}_{(m)}} \mu(I) = 0$$

From [5] we get the following

Lemma 2.3. For every $I \in \mathcal{T}$ and every α such that $0 < \alpha < 1$ there exists a subfamily $\mathcal{F}(I) \subseteq \mathcal{T}$ consisting of pairwise almost disjoint subsets of I such that

$$\mu\bigg(\bigcup_{J\in\mathcal{F}(I)}J\bigg)=\sum_{J\in\mathcal{F}(I)}\mu(J)=(1-\alpha)\mu(I).$$

Let now (X, μ) be a non-atomic probability measure space and \mathcal{T} a tree as in Definition 1.1. We define the associated maximal operator to the tree \mathcal{T} as follows: For every $\phi \in L^1(X, \mu)$ and $x \in X$, then

$$\mathcal{M}_{\mathcal{T}}\phi(x) = \sup\left\{\frac{1}{\mu(I)}\int_{I} |\phi| \, d\mu \colon x \in I \in \mathcal{T}\right\}.$$

3. The domain of the extremal problem

Our aim is to find the exact allowable values of (f, A, F) for which there exists $\phi: (X,\mu) \to \mathbf{R}^+$ measurable such that

(3.1)
$$\int_X \phi \, d\mu = f, \quad \int_X \phi^q \, d\mu = A \quad \text{and} \quad |||\phi|||_{p,\infty} = F.$$

We find it in the case where F = 1. For the beginning assume that (f, A) are such that there exist ϕ as in (3.1). We set $g = \phi^* \colon [0, 1] \to \mathbf{R}^+$. Then

$$\int_0^1 g = f, \quad \int_0^1 g^q = A \quad \text{and} \quad |||g|||_{p,\infty}^{[0,1]} = 1$$

where

$$|||g|||_{p,\infty}^{[0,1]} = \sup\left\{|E|^{-1+\frac{1}{p}}\int_{E}g\colon E\subset[0,1] \text{ Lebesque measurable such that } |E|>0\right\}.$$

This is true because of the definition of the decreasing rearrangement of ϕ and Lemma 2.1. In fact since g is decreasing $|||g|||_{p,\infty}$ is equal to

$$\sup \left\{ t^{-1+\frac{1}{p}} \int_0^t g \colon 0 < t \le 1 \right\}.$$

Of course, we should have that $0 < f \leq 1$ and $f^q \leq A$. We give now the following

Definition 3.1. If $n \in \mathbf{N}$, and $h: [0,1) \to \mathbf{R}^+$, h will be called $\frac{1}{2^n}$ -step if it is constant on each interval

$$\left[\frac{i-1}{2^n},\frac{i}{2^n}\right), \quad i=1,2,\ldots,2^n.$$

Now for $n \in \mathbf{N}$ and $0 < f \le 1$ fixed, we set

$$\Delta_n(f) = \left\{ h \colon [0,1] \to \mathbf{R}^+ \colon h \text{ is a } \frac{1}{2^n} \text{-step function}, \ \int_0^1 h = f, \ |||h|||_{p,\infty}^{[0,1]} \le 1 \right\}.$$

Then

$$\Delta_n = \Delta_n(f) \subset L^{p,\infty}([0,1])$$

where we use the $||| \cdot |||_{p,\infty}^{[0,1]}$ norm for functions defined on [0,1]. Δ_n is also convex, that is,

$$h_1, h_2 \in \Delta_n \implies \frac{h_1 + h_2}{2} \in \Delta_n.$$

Additionally, we have the following

Lemma 3.1. Δ_n is compact subset of $L^{p,\infty}([0,1]) = Y$ where the topology on Y is that endowed by $||| \cdot |||_{p,\infty}^{[0,1]}$.

Proof. $(Y, ||| \cdot |||_{p,\infty})$ is a Banach space. So, especially a metric space. As a consequence we just need to prove that Δ_n is sequentially compact.Let now $(h_i)_i \subset \Delta_n$. It is now easy to see by a finite diagonal argument that there exists $(h_{i_j})_j$ subsequence and $h: [0, 1] \to \mathbf{R}^+$. such that $h_{i_j} \to h$ uniformly on [0, 1]. Then obviously $\int_0^1 h = f$, $|||h|||_{p,\infty}^{[0,1]} \leq 1$, so $h \in \Delta_n$. Additionally

$$|||h_{i_j} - h|||_{p,\infty}^{[0,1]} = \sup\left\{ |E|^{-1+\frac{1}{p}} \int_E |h_{i_j} - h| \colon |E| > 0 \right\}$$

$$\leq \sup\left\{ |(h_{i_j} - h)(t)|, \ t \in [0,1] \right\} \to 0$$

as $j \to \infty$. That is $h_{i_j} \xrightarrow{Y} h \in \Delta_n$. Consequently, Δ_n is a compact subset of $L^{p,\infty}([0,1])$.

We give now the following known

Definition 3.2. For a closed convex subset K of a topological vector space Y, and for a $y \in K$ we say that y is an extreme point of K, if whenever $y = \frac{x+z}{2}$, with $x, z \in K$ it is implied that y = x = z. We write $y \in \text{ext}(K)$.

Definition 3.3. For a subset A of a topological vector space Y we set

$$\operatorname{conv}(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i \colon \lambda_i \ge 0, \ x_i \in A, \ n \in \mathbf{N}^*, \ \sum_{i=1}^{n} \lambda_i = 1 \right\}.$$

We call conv(A) the convex hull of A.

We state now the following well known

Theorem 3.1. (Krein–Milman) Let K be a convex, compact subset of a locally convex topological vector space Y. Then $K = \overline{\text{conv}(\text{ext}(K))}^Y$, that is, K is the closed convex hull of its extreme points.

According now to Lemma 3.1 we have that

$$\Delta_n = \overline{\operatorname{conv}[\operatorname{ext}(\Delta_n)]}^{L^{p,\infty}([0,1])}.$$

We find now the set $ext(\Delta_n)$.

Lemma 3.2. Let $g \in \text{ext}(\Delta_n)$. Then for every $i \in \{1, 2, ..., 2^n\}$ such that $\left(\frac{i}{2^n}\right)^{1-\frac{1}{p}} \leq f$, we have that

$$\sup\left\{|E|^{-1+\frac{1}{p}}\int_{E}g\colon|E|=\frac{i}{2^{n}}\right\}=1.$$

Proof. We prove it first when i = 1 and $\left(\frac{1}{2^n}\right)^{1-\frac{1}{p}} \leq f$. It is now easy to see that $g \in \text{ext}(\Delta_n)$ if and only if $g^* \in \text{ext}(\Delta_n)$. So we just need to prove that $\int_0^{1/2^n} g^* = \left(\frac{1}{2^n}\right)^{1-\frac{1}{p}}$. We write

$$g^* = \sum_{i=1}^{2^n} \alpha_i \xi_{I_i}$$
 with $I_i = \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)$

and $\alpha_i \ge \alpha_{i+1}$ for every $i \in \{1, 2, ..., 2^n - 1\}$. Suppose now that $\alpha_1 < 2^{n/p}$, and that $\alpha_1 > \alpha_2$ (the case $\alpha_1 = \alpha_2$ is handled in an analogous way). For a suitable $\varepsilon > 0$ we set

$$g_1 = \sum_{i=1}^{2^n} \alpha_i^{(1)} \xi_{I_i}, \quad g_2 = \sum_{i=1}^{2^n} \alpha_i^{(2)} \xi_{I_i}, \quad \text{where} \quad \begin{array}{c} \alpha_1^{(1)} = \alpha_1 + \varepsilon, \quad \alpha_2^{(1)} = \alpha_2 - \varepsilon \\ \alpha_1^{(2)} = \alpha_1 - \varepsilon, \quad \alpha_2^{(2)} = \alpha_2 + \varepsilon \end{array} \right\}$$

and $\alpha_k^{(1)} = \alpha_k^{(2)} = \alpha_k$ for every k > 2. Since $\alpha_1 < 2^{n/p}$, we can find small enough $\varepsilon > 0$ such that g_i satisfy $|||g_i|||_{p,\infty}^{[0,1]} \leq 1$, for i = 1, 2. Indeed, for i = 1, we need to prove that for small enough $\varepsilon > 0$

(3.2)
$$\int_{0}^{t} g_{1} \le t^{1-\frac{1}{p}}$$

for every $t \in [0, 1)$, since g_1 is decreasing. (3.2) is now obviously true for $t \geq \frac{2}{2^n}$ since

(3.3)
$$\int_0^t g_1 = \int_0^t g^* \quad \text{for every such } t.$$

(3.2) is also true for $t = 0, \frac{1}{2^n}$ for a suitable $\varepsilon > 0$. But then it remains true for every $t \in \left(0, \frac{1}{2^n}\right)$ since the function $t \mapsto \int_0^t g_1$ represents a straight line on $\left[0, \frac{1}{2^n}\right]$ and $t^{1-\frac{1}{p}}$ is concave there, analogously for the interval $\left[\frac{1}{2^n}, \frac{2}{2^n}\right]$. That is we proved $|||g_1|||_{p,\infty}^{[0,1]} \leq 1$. For i = 2 we use the same arguments and the hypothesis $\alpha_1 > \alpha_2$ in order to ensure that for small enough $\varepsilon > 0, g_2$ is decreasing. Obviously now,

 $\int_0^1 g_i = f$, so that $g_i \in \Delta_n$, for i = 1, 2. But $g^* = \frac{g_1 + g_2}{2}$, with $g_i \neq g$ and $g_i \in \Delta_n$, i = 1, 2,, a contradiction since $g^* \in \text{ext}(\Delta_n)$. So,

$$\alpha_1 = 2^{n/p}$$
 and $\int_0^{1/2} g^* = \left(\frac{1}{2^n}\right)^{1-\frac{1}{p}},$

that is what we wanted to prove. In the same way we prove that for $i \in \{1, 2, \ldots, n\}$ $2^n - 1$ such that

$$\left(\frac{i+1}{2^n}\right)^{1-\frac{1}{p}} \le f, \quad \text{if} \quad \int_0^{i/2^n} g^* = \left(\frac{i}{2^n}\right)^{1-\frac{1}{p}}, \quad \text{then} \quad \int_0^{(i+1)/2^n} g^* = \left(\frac{i+1}{2^n}\right)^{1-\frac{1}{p}}.$$

The lemma is now proved by induction.

The lemma is now proved by induction.

Let now $g \in \text{ext}(\Delta_n)$ and $k = \max\left\{i \leq 2^n : \left(\frac{i}{2^n}\right)^{1-\frac{1}{p}} \leq f\right\}$, so if we suppose that f < 1, we have that

$$\left(\frac{k}{2^n}\right)^{1-\frac{1}{p}} \le f < \left(\frac{k+1}{2^n}\right)^{1-\frac{1}{p}}.$$

By Lemma 3.2,

$$\int_{0}^{k/2^{n}} g^{*} = \left(\frac{k}{2^{n}}\right)^{1-\frac{1}{p}}.$$

But by using the reasoning of the previous lemma it is easy to see that

$$\int_0^{(k+1)/2^n} g^* = f,$$

which gives

$$\int_{k/2^n}^{k+1/2^n} g^* = f - \left(\frac{k}{2^n}\right)^{1-\frac{1}{p}} \implies \alpha_{k+1} = 2^n \cdot f - 2^{n/p} \cdot k^{1-\frac{1}{p}}$$

Additionally, $\alpha_i = 0$ for i > k + 1. From the above we obtain the following

Corollary 3.1. Let
$$g \in \text{ext}(\Delta_n)$$
. Then $g^* = \sum_{i=1}^{2^n} \alpha_i \xi_{I_i}$, where
 $\alpha_i = 2^{n/p} \left(i^{1-\frac{1}{p}} - (i-1)^{1-\frac{1}{p}} \right)$ for $i = 1, 2, ..., k$

and

$$\alpha_{k+1} = 2^n f - 2^{n/p} \cdot k^{1-\frac{1}{p}}, \quad \alpha_i = 0, \quad i > k+1,$$

where

$$k = \max\left\{i \le 2^n \colon \left(\frac{i}{2^n}\right)^{1-\frac{1}{p}} \le f\right\}.$$

We estimate now the L^q -norm of every $g \in ext(\Delta_n)$. We state it as

Lemma 3.3. Let $g \in \text{ext}(\Delta_n)$ and $A = \int_0^1 g^q$. Then $A \leq \Gamma f^{p-q/p-1} + \mathcal{E}_n(f)$, where

$$\Gamma = \left(\frac{p-1}{p}\right)^{q} \frac{p}{p-q} \quad \text{and} \quad \mathcal{E}_{n}(f) = \frac{\alpha_{k+1}^{q}}{2^{n}} = \frac{(2^{n}f - 2^{n/p}k^{1-\frac{1}{p}})^{q}}{2^{n}}$$

Proof. For g we write $g^* = \sum_{i=1}^{2^n} \alpha_i \xi_{I_i}$, where α_i are given in Corollary 3.1. Then

(3.4)
$$A = \int_0^1 (g^*)^q = \left[\left(\sum_{i=1}^k \alpha_i^q \right) + \alpha_{k+1}^q \right] \cdot \frac{1}{2^n}$$

Now for $i \in \{1, 2, ..., k\}$

(3.5)
$$\alpha_i^q = \left[2^{n/p} \left(i^{1-\frac{1}{p}} - (i-1)^{1-\frac{1}{p}} \right) \right]^q = \left\{ 2^n \left[\left(\frac{i}{2^n} \right)^{1-\frac{1}{p}} - \left(\frac{i-1}{2^n} \right)^{1-\frac{1}{p}} \right] \right\}^q \\ = \left[2^n \int_{i-1/2^n}^{i/2^n} \psi \right]^q,$$

where $\psi: (0,1] \to \mathbf{R}^+$ is defined by $\psi(t) = \frac{p-1}{p} t^{-1/p}$. By (3.5) and in view of Hölder's inequality we have that for $i \in \{1, 2, \dots, k\}$

(3.6)
$$\alpha_i^q \le 2^n \int_{i-1/2^n}^{i/2^n} \psi^q.$$

Summing up relations (3.6) we have that

(3.7)
$$\sum_{i=1}^{k} \alpha_i^q \le 2^n \int_0^{k/2^n} \psi^q = 2^n \cdot \Gamma \cdot \left(\frac{k}{2^n}\right)^{1-\frac{q}{p}}.$$

Additionally from the definition of k we have that

(3.8)
$$\left(\frac{k}{2^n}\right)^{1-\frac{1}{p}} \le f \implies k^{1-\frac{q}{p}} \le (2^n)^{1-\frac{q}{p}} \cdot f^{p-q/p-1}.$$

From (3.4), (3.7) and (3.8) we obtain

$$A \le \left[2^n \cdot \Gamma \cdot f^{p-q/p-1} + \alpha_{k+1}^q\right] \frac{1}{2^n} = \Gamma f^{p-q/p-1} + \mathcal{E}_n(f)$$

and Lemma 3.3 is proved.

Corollary 3.2. For every $g \in \Delta_n$,

$$A \leq \Gamma f^{p-q/p-1} + \mathcal{E}_n(f), \text{ where } A = \int_0^1 g^q.$$

Proof. This is true, of course, for $g \in \text{ext}(\Delta_n)$, and so also for $g \in \text{conv}(\text{ext}\Delta_n)$, since $t \mapsto t^q$ is convex for q > 1 on \mathbb{R}^+ . It remains true for $g \in \overline{\text{conv}(\text{ext}(\Delta_n))}^{L^{p,\infty}([0,1])}$ using a simple continuity argument. In fact, we just need the continuity of the identity operator if it is viewed as $I: L^{p,\infty}([0,1]) \to L^q([0,1])$. See [4]. Using now Krein–Milman Theorem the Corollary is proved.

We have now the following

Corollary 3.3. Let $\phi \colon (X, \mu) \to \mathbf{R}^+$ such that

$$\int_X \phi \, d\mu = f, \quad \int_X \phi^q \, d\mu = A, \quad |||\phi|||_{p,\infty} \le 1.$$

Then

$$f^q \le A \le \Gamma f^{p-q/p-1}.$$

Proof. Let $g = \phi^* \colon [0,1] \to \mathbf{R}^+$. There exist a sequence (g_n) of $\frac{1}{2^n}$ -simple functions, such that $g_n \leq g_{n+1} \leq g$ and g_n converges almost everywhere to g. But then by defining

$$f_n = \int_0^1 g_n, \quad A_n = \int_0^1 g_n^q$$

we have that

(3.9) $g_n \in \Delta_n(f_n)$ so that $A_n \leq \Gamma f_n^{p-q/p-1} + \mathcal{E}_n(f_n).$

By the monotone convergence theorem $f_n \to f, A_n \to A$. Moreover,

$$\mathcal{E}_n(f_n) = \frac{(2^n f_n - k_n^{1-\frac{1}{p}} 2^{n/p})^q}{2^n},$$

where k_n satisfy

$$\left(\frac{k_n}{2^n}\right)^{1-\frac{q}{p}} \le f_n < \left(\frac{k_n+1}{2^n}\right)^{1-\frac{1}{p}}.$$

As a consequence

$$\mathcal{E}_{n}(f_{n}) = (2^{n})^{q-1} \left[f_{n} - \left(\frac{k_{n}}{2^{n}}\right)^{1-\frac{1}{p}} \right]^{q} < (2^{n})^{q-1} \left[\left(\frac{k_{n}+1}{2^{n}}\right)^{1-\frac{1}{p}} - \left(\frac{k_{n}}{2^{n}}\right)^{1-\frac{1}{p}} \right]^{q} \\ \leq (2^{n})^{q-1} \left[\left(\frac{1}{2^{n}}\right)^{1-\frac{1}{q}} \right]^{q} = \left(\frac{1}{2^{1-\frac{q}{p}}}\right)^{n} \to 0, \quad \text{as} \quad n \to \infty$$

where in the second inequality we used the known

$$(t+s)^{\alpha} \le t^{\alpha} + s^{\alpha}$$
 for $t, s \ge 0, \ 0 < \alpha < 1.$

Now (3.9) gives the corollary.

In fact the converse of Corollary 3.3 is also true.

Theorem 3.2. For $0 < f \le 1$, A > 0 the following are equivalent:

i) $f^q \leq A \leq \Gamma f^{p-q/p-1}$, ii) $\exists \phi \colon (X,\mu) \to \mathbf{R}^+$ such that

$$\int_X \phi \, d\mu = f, \quad \int_X \phi^q \, d\mu = A, \quad |||\phi|||_{p,\infty} \le 1.$$

We prove first the following

Lemma 3.4. Let $\alpha \in (0, 1)$ and (f, A) such that

$$(3.10) f \lneq \alpha^{1-\frac{1}{p}}$$

$$(3.11) f^q \leq \alpha^{q-1}A,$$

Then there exists $g \colon [0, \alpha] \to \mathbf{R}^+$ such that

$$\int_0^{\alpha} g = f, \quad \int_0^{\alpha} g^q = A, \quad and \quad |||g|||_{p,\infty}^{[0,\alpha]} = 1,$$

where

$$|||g|||_{p,\infty}^{[0,\alpha]} = \sup\left\{|E|^{-1+\frac{1}{p}}\int_{E}g\colon E \text{ measurable subset of } [0,\alpha] \text{ such that } |E| > 0\right\}.$$

Proof. We search for a g of the form

$$g := \begin{cases} \frac{p-1}{p} t^{-1/p}, & 0 < t \le c_1, \\ \mu_2, & c_1 < t \le \alpha, \end{cases}$$

for suitable constant $c_1\mu_2$. We must have that

(3.13)
$$\int_{0}^{\alpha} g = f \iff c_{1}^{1-\frac{1}{p}} + \mu_{2}(\alpha - c_{1}) = f.$$

Additionally, g must satisfy

(3.14)
$$\int_0^\alpha g^q = A \Longleftrightarrow \Gamma c_1^{1-\frac{q}{p}} + \mu_2^q(\alpha - c_1) = A.$$

(3.13) gives

(3.15)
$$\mu_2 = \frac{f - c_1^{1 - \frac{1}{p}}}{a - c_1},$$

so (3.14) becomes

(3.16)
$$\Gamma c_1^{1-\frac{q}{p}} + \frac{(f - c_1^{1-\frac{1}{p}})^q}{(\alpha - c_1)^{q-1}} = A.$$

That is we search for a $c_1 \in (0, \alpha)$ such that

 $T(c_1) = A$ where $T: [0, \alpha) \to \mathbf{R}^+$

is defined by

$$T(t) = \Gamma t^{1-\frac{q}{p}} + \frac{(f - t^{1-\frac{1}{p}})^{q}}{(\alpha - t)^{q-1}}$$

Observe that $T(0) = \frac{f^q}{\alpha^{q-1}} \leq A$ because of (3.11) and that $T(f^{p/p-1}) = \Gamma f^{p-q/p-1} \geq A$. Now because of the continuity of T, there exists $c_1 \in (0, f^{p/p-1}]$ such that $T(c_1) = A$. Then $c_1 \in (0, \alpha)$ because of (3.10), and if we define μ_2 by (3.15), we guarantee (3.13) and (3.14). We need to prove now that $|||g|||_{p,\infty}^{[0,\alpha]} = 1$. Obviously, because of the form of g, $|||g|||_{p,\infty}^{[0,\alpha]} \geq 1$. So we have to prove that

(3.17)
$$\int_0^t g \le t^{1-\frac{1}{p}}, \quad \forall \ t \in (0,\alpha].$$

This is of course true for $t \in [0, c_1]$. For $t \in (c_1, \alpha]$,

$$\int_0^t g = c_1^{1 - \frac{1}{p}} + \mu_2(t - c_1) =: G(t).$$

Since $G(c_1) = c_1^{1-\frac{1}{p}}$, $G(\alpha) = f < \alpha^{1-\frac{1}{p}}$ and $t \mapsto t^{1-\frac{1}{p}}$ is concave on $(c_1, \alpha]$, (3.17) is true. Thus Lemma 3.4 is proved.

We have now the

Proof of Theorem 3.2. We have to prove the direction i) \Rightarrow ii). Indeed, if $f^q \leq A \leq \Gamma f^{p-q/p-1}$ and f < 1, we apply Lemma 3.4. If $f^q = A$ with $0 < f \leq 1$, we set g by g(t) = f, for every $t \in [0, 1]$, while if $f = 1 \leq A \leq \Gamma$ a simple modification of Lemma 3.4 gives the result.

We conclude Section 3 with the following theorem which can be proved easily using all the above.

Theorem 3.3. For f, A such that 0 < f < 1, A > 0 the following are equivalent: i) $f^q \leq A \leq \Gamma f^{p-q/p-1}$,

ii)
$$\exists \phi \colon (X,\mu) \to \mathbf{R}^+$$
 such that $\int_X \phi \, d\mu = f$, $\int_X \phi^q \, d\mu = A$, $|||\phi|||_{p,\infty} = 1$

Remark 3.1. Theorem 3.3 is completed if we mention that for f = 1 the following are equivalent:

i)
$$f = 1 \le A \le \Gamma$$
,
ii) $\exists \phi \colon (X,\mu) \to \mathbf{R}^+$ such that $\int_X \phi \, d\mu = 1$, $\int_X \phi^q \, d\mu = A$, $|||\phi|||_{p,\infty} = 1$

4. The extremal problem

Let $\mathcal{M}_{\mathcal{T}} = \mathcal{M}$ the dyadic maximal operator associated to the tree \mathcal{T} , on the probability non-atomic measure space (X, μ) . Our aim is to find

$$T_{f,A,F}(\lambda) = \sup\left\{\mu(\{\mathcal{M}\phi \ge \lambda\}) \colon \phi \ge 0, \int_X \phi \, d\mu = f, \int_X \phi^q \, d\mu = A, \, |||\phi|||_{p,\infty} = F\right\}$$

for all the allowable values of f, A, F. We find it in the case where F = 1. We write $T_{f,A}(\lambda)$ for $T_{f,A,1}(\lambda)$. In order to find $T_{f,A}(\lambda)$ we find first the following

$$T_{f,A}^{(1)}(\lambda) = \sup\left\{\mu(\{\mathcal{M}\phi \ge \lambda\}) \colon \phi \ge 0, \int_X \phi \, d\mu = f, \int_X \phi^q \, d\mu = A, \, |||\phi|||_{p,\infty} \le 1\right\}.$$

The domain of this extremal problem is the following

$$D = \Big\{ (f, A) \colon 0 < f \le 1, \ f^q \le A \le \Gamma f^{p-q/p-1} \Big\}.$$

Obviously, $T_{f,A}^{(1)}(\lambda) = 1$, for $\lambda \leq f$. Let now $\lambda > f$ and $(f, A) \in D$. Let ϕ be as in the definition of $T_{f,A}^{(1)}(\lambda)$. Consider the decreasing rearrangement of ϕ , $g = \phi^* \colon [0, 1] \to \mathbf{R}^+$. Then

$$\int_{0}^{1} g = f, \quad \int_{0}^{1} g^{q} = A, \quad |||g|||_{p,\infty}^{[0,1]} \le 1.$$

Consider also $E = \{\mathcal{M}\phi \geq \lambda\} \subseteq X$. Then E is the almost disjoint union of elements of \mathcal{T} , let $(I_j)_j$. In fact, we just need to consider the elements I of \mathcal{T} , maximal under the condition

(4.1)
$$\frac{1}{\mu(I)} \int_{I} \phi \, d\mu \ge \lambda.$$

We then have $E = \bigcup_j I_j$ and $\int_E \phi d\mu \ge \lambda \mu(E)$ because of (4.1). Then according to Lemma 2.1 we have that $\int_0^{\alpha} g \ge \alpha \lambda$ where $\alpha = \mu(E)$. That is

(4.2)
$$T_{f,A}^{(1)}(\lambda) \le \Delta_{f,A}(\lambda),$$

where

(4.3)
$$\Delta_{f,A}(\lambda) = \sup \left\{ \alpha \in (0,1] \colon \exists g \colon [0,1] \to \mathbf{R}^+ \colon \int_0^1 g = f, \ \int_0^1 g = f, \ \int_0^1 g^q = A, \ |||g|||_{p,\infty}^{[0,1]} \le 1, \ \int_0^\alpha g \ge \alpha \lambda \right\}.$$

We prove now the converse inequality in (4.2) by proving the following

Lemma 4.1. Let g be as in (4.3) for a fixed $\alpha \in (0,1]$. Then there exists $\phi: (X,\mu) \to \mathbf{R}^+$ such that

$$\int_X \phi \, d\mu = f, \quad \int_X \phi^q \, d\mu = A, \quad |||\phi|||_{p,\infty} \le 1 \quad \text{and} \quad \mu(\{\mathcal{M}\phi \ge \lambda\}) \ge \alpha.$$

Proof. Lemma 2.3 guarantees the existence of a sequence $(I_j)_j$ of pairwise almost disjoint elements of \mathcal{T} such that

(4.4)
$$\mu\left(\bigcup I_j\right) = \sum \mu(I_j) = \alpha.$$

Consider now the finite measure space $([0, \alpha], |\cdot|)$, where $|\cdot|$ is the Lebesque measure. Then since $\int_0^{\alpha} g \ge \alpha \lambda$ and (4.4) holds, applying Lemma 2.2 repeatedly, we obtain the existence of a sequence (A_j) of Lebesque measurable subsets of $[0, \alpha]$ such that the following hold:

$$(A_j)_j$$
 is a pairwise disjoint family, $\bigcup A_j = [0, \alpha], |A_j| = \mu(I_j), \frac{1}{|A_j|} \int_{A_j} g \ge \lambda.$

Then we define $g_j: [0, |A_j|] \to \mathbf{R}^+$ by $g_j = (g/A_j)^*$. Define also for every j a measurable function $\phi_j: I_j \to \mathbf{R}^+$ so that $\phi_j^* = g_j$. The existence of such a function is guaranteed by the fact that $(I_j, \mu/I_j)$ is non-atomic. Since (I_j) is almost pairwise disjoint family we produce a $\phi^{(1)}: \cup I_j \to \mathbf{R}^+$ measurable such that $\phi^{(1)}/I_j = \phi_j$. We set now $Y = X \setminus \bigcup I_j$ and $h: [0, 1 - \alpha] \to \mathbf{R}^+$ by $h = (g/[\alpha, 1])^*$. Then since $\mu(Y) = 1 - \alpha$ there exists $\phi^{(2)}: Y \to \mathbf{R}^+$ such that $(\phi^{(2)})^* = h$. Set now

$$\phi = \begin{cases} \phi^{(1)}, & \text{on } \cup I_j, \\ \phi^{(2)}, & \text{on } Y. \end{cases}$$

It is easy to see from the above construction that $\phi^* = g$ a.e. with respect to Lesbesgue measure, which gives $\int_X \phi \, d\mu = f$, $\int_X \phi^q \, d\mu = A$ and $|||\phi|||_{p,\infty} \leq 1$. Additionally,

$$\frac{1}{\mu(I_j)} \int_{I_j} \phi \, d\mu = \frac{1}{|A_j|} \int_{A_j} g \ge \lambda \quad \text{for every } j,$$

that is,

$$\{\mathcal{M}\phi \ge \lambda\} \supseteq \cup I_j, \text{ so } \mu(\{\mathcal{M}\phi \ge \lambda\}) \ge \alpha$$

and the lemma is proved.

It is now not difficult to see that we can replace the inequality $\int_0^{\alpha} g \ge \alpha \lambda$ in the definition of $\Delta_{f,A}(\lambda)$ by equality, thus defining $S_{f,A}(\lambda)$, in such a way that

(4.5)
$$T_{f,A}^{(1)}(\lambda) = \Delta_{f,A}(\lambda) = S_{f,A}(\lambda).$$

This is true since if g is as in (4.3) and $\lambda > f$, there exists $\beta \ge \alpha$ such that $\int_0^\beta g = \beta \lambda$. For $(f, A) \in D$ we set

$$G_{f,A}(\lambda) = \sup\left\{\mu(\{\mathcal{M}\phi \ge \lambda\}) \colon \phi \ge 0, \ \int_X \phi \, d\mu = f, \ \int_X \phi^q \, d\mu = A\right\}.$$

It is obvious that $T_{f,A}^{(1)}(\lambda) \leq G_{f,A}(\lambda)$. As a matter of fact $G_{f,A}(\lambda)$ has been computed in [6] and was found to be

(4.6)
$$G_{f,A}(\lambda) = \begin{cases} 1, & \lambda \leq f, \\ \frac{f}{\lambda}, & f < \lambda < \left(\frac{A}{f}\right)^{1/q-1}, \\ k, & \left(\frac{A}{f}\right)^{1/q-1} \leq \lambda, \end{cases}$$

where k is the unique root of the equation

$$\frac{(f - \alpha \lambda)^q}{(1 - \alpha)^{q-1}} + \alpha \lambda^q = A \quad \text{on } \alpha \in \left[0, \frac{f}{\lambda}\right], \quad \text{when } \lambda > \left(\frac{A}{f}\right)^{1/q-1}.$$

We have now the following

Proposition 4.1. If $(f, A) \in D$, then

$$T_{f,A}^{(1)}(\lambda) \le \min\left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

Proof. We just need to see that $\mu(\{\mathcal{M}\phi \geq \lambda\}) \leq \frac{1}{\lambda^p}$ for every ϕ such that $|||\phi|||_{p,\infty} \leq 1$. But if $E = \{\mathcal{M}\phi \geq \lambda\}$, we have by the definition of the norm $||| \cdot |||_{p,\infty}$ that $\int_E \phi \leq \mu(E)^{1-\frac{1}{p}}$. But by (1.3) $\int_E \phi \geq \lambda \mu(E)$, so that

$$\lambda \mu(E) \le \mu(E)^{1-\frac{1}{p}} \implies \mu(E) \le \frac{1}{\lambda^p}$$

So Proposition 4.1 is true.

We prove now that in Proposition 4.1 we have equality.

Proposition 4.2. Let $(f, A) \in D$ and λ such that

(4.7)
$$\frac{f}{\lambda} = \min\left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

Then $T_{f,A}^{(1)}(\lambda) = \frac{f}{\lambda}$.

Proof. We use Lemma 3.4 and equations (4.5). Because of (4.5) we need to find $g: [0,1] \to \mathbf{R}^+$ such that

$$\int_{0}^{1} g = f, \quad \int_{0}^{1} g^{q} = A, \quad |||g|||_{p,\infty} \le 1 \text{ and } \int_{0}^{f/\lambda} g = \frac{f}{\lambda} \cdot \lambda = f,$$

that is, g should be defined on $[0, f/\lambda]$. We apply Lemma 3.4, with $\alpha = \frac{f}{\lambda}$. In fact, since (4.7) is true, we have that $G_{f,A}(\lambda) = \frac{f}{\lambda}$ so, $\lambda < \left(\frac{A}{f}\right)^{1/q-1}$ which gives (3.11), while $\frac{f}{\lambda} \leq \frac{1}{\lambda^p}$ gives (3.10). In fact, Lemma 3.4 works even with equality on (3.10) as it is easily can be seen by continouity reasons. So, in view of (4.5) we have $T_{f,A}^{(1)}(\lambda) \geq f/\lambda$ and the proposition is proved.

At the next step we have

Proposition 4.3. Let $(f, A) \in D$ and λ such that

(4.8)
$$k = \min\left\{1, G_{f,A}(\lambda)\frac{1}{\lambda^p}\right\}$$

Then $T_{f,A}^{(1)}(\lambda) = k$.

Proof. Obviously, (4.8) gives $\lambda \ge \left(\frac{A}{f}\right)^{1/q-1}$. We prove that there exists $g: [0,1] \to$ \mathbf{R}^+ such that

(4.9)
$$\int_0^k g = k\lambda, \quad \int_0^1 g = f, \quad \int_0^1 g^q = A \text{ and } |||g|||_{p,\infty} \le 1.$$

For this purpose we define

$$g := \begin{cases} \lambda, & \text{on } [0, k], \\ \frac{f - k\lambda}{1 - k}, & \text{on } (k, 1]. \end{cases}$$

Then, obviously, the first two conditions in (4.9) are satisfied, while

$$\int_0^1 g^q = \frac{(f - k\lambda)^q}{(1 - k)^{q-1}} + k\lambda^q = A,$$

by the definition of k. Moreover, $|||g|||_{p,\infty} \leq 1$. This is true since $k\lambda \leq k^{1-\frac{q}{p}}$, $f \leq 1$ and the fact that g is constant on each of the intervals [0,k] and (k,1]. So the proposition is proved.

At last we prove

Proposition 4.4. Let $(f, A) \in D$ and λ such that

(4.10)
$$\frac{1}{\lambda^p} = \min\left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

Then $T_{f,A}^{(1)}(\lambda) = \frac{1}{\lambda^p}$.

Proof. As before we search for a function g such that

(4.11)
$$\int_0^1 g = f$$
, $\int_0^1 g^q = A$, $|||g|||_{p,\infty} \le 1$ and $\int_0^{1/\lambda^p} g = \frac{1}{\lambda^p} \cdot \lambda = \frac{1}{\lambda^{p-1}}$.
We define

$$\vartheta_{\lambda} = \frac{\Gamma}{\lambda^{p-q}} + \frac{\left(f - \frac{1}{\lambda^{p-1}}\right)^{q}}{\left(1 - \frac{1}{\lambda^{p}}\right)^{q-1}}$$

and we consider two cases:

i) $\vartheta_{\lambda} > A$. We search for a function of the form

(4.12)
$$g := \begin{cases} \left(1 - \frac{1}{p}\right)t^{-1/p}, & 0 < t \le c_1, \\ \mu_2, & c_1 < t \le \frac{1}{\lambda^p} \\ \mu_3, & \frac{1}{\lambda^p} < t < 1, \end{cases}$$

for suitable constants $c_1 \leq \frac{1}{\lambda^p}$, μ_2 , μ_3 . Then in view of (4.11) the following must hold:

(4.13)
$$c_1^{1-\frac{1}{p}} + \mu_2 \left(\frac{1}{\lambda^p} - c_1\right) = \frac{1}{\lambda^{p-1}},$$

(4.14)
$$c_1^{1-\frac{1}{p}} + \mu_2 \left(\frac{1}{\lambda^p} - c_1\right) + \mu_3 \left(1 - \frac{1}{\lambda^p}\right) = f,$$

(4.15)
$$\Gamma c_1^{1-\frac{q}{p}} + \mu_2^q \left(\frac{1}{\lambda^p} - c_1\right) + \mu_3^q \left(1 - \frac{1}{\lambda^p}\right) = A.$$

Notice that the condition $|||g|||_{p,\infty} \leq 1$ is automatically satisfied because of the form of g and the previous stated relations. Now (4.13) and (4.14) give

(4.16)
$$\mu_3 = \frac{f - \frac{1}{\lambda^{p-1}}}{1 - \frac{1}{\lambda^p}}$$

and

(4.17)
$$\mu_2 = \frac{\frac{1}{\lambda^{p-1}} - c_1^{1-\frac{1}{p}}}{\frac{1}{\lambda^p} - c_1},$$

while (4.15) gives $T(c_1) = A$ where T is defined on $\left[0, \frac{1}{\lambda^p}\right)$ by

$$T(c) = \Gamma c^{1-\frac{q}{p}} + \frac{\left(\frac{1}{\lambda^{p-1}} - c^{1-\frac{1}{p}}\right)^{q}}{\left(\frac{1}{\lambda^{p}} - c\right)^{q-1}} + \frac{\left(f - \frac{1}{\lambda^{p-1}}\right)^{q}}{\left(1 - \frac{1}{\lambda^{p}}\right)^{q-1}}.$$

Then

$$T(0) = \frac{1}{\lambda^{p-q}} + \frac{\left(f - \frac{1}{\lambda^{p-1}}\right)^q}{\left(1 - \frac{1}{\lambda^p}\right)^{q-1}}.$$

It is now easy to see that $T(0) \leq A$ by using that $F: [0, f/\lambda] \to \mathbf{R}^+$ defined by

$$F(t) = \frac{(f - t\lambda)^q}{(1 - t)^{q-1}} + t\lambda^q$$

is increasing, and the definition of $G_{f,A}(\lambda)$. Moreover $\lim_{c \to \frac{1^{-}}{\lambda^{p}}} T(c) = \vartheta_{\lambda} > A$, so by

continuity of the function t, we end case i). Now for ii) $\vartheta_{\lambda} < A$. We search for a function of the form

If
$$v_{\lambda} \leq A$$
. We search for a function of the form

$$g := \begin{cases} \left(1 - \frac{1}{p}\right) t^{1 - 1/p}, & 0 < t \le c_1, \\ \mu_2, & c_1 < t \le 1, \end{cases}$$

where $\frac{1}{\lambda^p} < c_1$. Similar arguments as in case i) give the result.

From Propositions 4.1–4.4 we have now

Theorem 4.1. For $(f, A) \in D$,

$$T_{f,A}^{(1)}(\lambda) = \min\left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

Remark 4.1. Notice that $T_{f,A}(\lambda) = T_{f,A}^{(1)}(\lambda)$ for every f, A such that $f^q < A \leq \Gamma f^{p-q/p-1}$ and $0 < f \leq 1$. Indeed, suppose that $\alpha = T_{f,A}^{(1)}(\lambda)$. Then there exists $g: [0,1] \to \mathbf{R}^+$ such that

(4.18)
$$\int_0^1 g = f, \quad \int_0^1 g^q = A, \quad \int_0^\alpha g = \alpha \lambda \quad \text{and} \quad |||g|||_{p,\infty} \le 1.$$

It is easy to see that for every $\varepsilon > 0$, small enough we can produce from g a function g_{ε} satisfying

$$\int_0^{\alpha-\varepsilon} g_{\varepsilon} \ge (\alpha-\varepsilon)\lambda, \quad \int_0^1 g_{\varepsilon} = f, \quad \int_0^1 g_{\varepsilon} = A + \delta_{\varepsilon} \quad \text{and} \quad |||g_{\varepsilon}|||_{p,\infty} = 1,$$

where $\lim_{\varepsilon \to 0^+} \delta \varepsilon = 0$. This and continuity reasons shows $T_{f,A}(\lambda) = \alpha$.

iii) The case $A = f^q$ can be worked out separately because there is essentially unique function g satisfying $\int_0^1 g = f$, $\int_0^1 g^q = f^q$, namely the constant function with value f.

Scaling all the above we have that

Theorem 4.2. For f, A such that $f^q < A \leq \Gamma f^{p-q/p-1} F^{p(q-1)/(p-1)}$ and $0 < f \leq F$ the following hold

(4.19)
$$\sup \left\{ \mu(\{\mathcal{M}\phi \ge \lambda\}) \colon \phi \ge 0, \ \int_X \phi \, d\mu = f, \ \int_X \phi^q \, d\mu = A, \ |||\phi|||_{p,\infty} = F \right\}$$
$$= \min \left\{ 1, G_{f,A}(\lambda), \frac{F^p}{\lambda^p} \right\}$$

and

$$\sup\left\{||\mathcal{M}\phi||_{p,\infty}:\phi\geq 0,\ \int_X\phi\,d\mu=f,\ \int_X\phi^q\,d\mu=A,\ |||\phi|||_{p,\infty}=F\right\}=F.$$

References

- [1] BENNET, C., and R. SHARPLEY: Interpolation of operators. Academic Press.
- [2] BURKHOLDER, D. L.: Martingales and Fourier analysis in Banach spaces. In: C.I.M.E. Lectures (Varenna (Como), Italy, 1985), Lecture Notes in Math. 1206, 1986, 61–108.
- [3] BURKHOLDER, D. L.: Boundary value problems and sharp inequalities for martingale transforms. - Ann. Probab. 12, 1984, 647–702.
- [4] GRAFAKOS, L.: Classical and modern Fourier analysis. Pearson Education, Upper Saddle River, N.J., 2004.
- [5] MELAS, A. D.: The Bellman functions of dyadic-like maximal operators and related inequalities. - Adv. Math. 192, 2005, 310–340.
- [6] MELAS, A. D., and E. NIKOLIDAKIS: On weak type inequalities for dyadic maximal functions.
 J. Math. Anal. Appl. 348, 2008, 404–410.
- [7] MELAS, A. D., and E. NIKOLIDAKIS: Dyadic-like maximal operators on integrable functions and Bellman functions related to Kolmogorov's inequality. - Trans. Amer. Math. Soc. 362:3, 1571–1596.
- [8] NAZAROV, F., and S. TREIL: The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. - Algebra i Analiz 8:5, 1996, 32–162.
- [9] NIKOLIDAKIS, E. N.: Extremal problems related to maximal dyadic-like operators. J. Math. Anal. Appl. 369, 2010, 377–385.
- [10] WANG, G.: Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion. - Proc. Amer. Math. Soc. 112, 1991, 579–586.

Received 24 February 2012 • Accepted 12 October 2012