Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 38, 2013, 193–207

Q_K AND MORREY TYPE SPACES

Hasi Wulan and Jizhen Zhou

Shantou University, Department of Mathematics Shantou 515063, P. R. China; wulan@stu.edu.cn Shantou University, Department of Mathematics Shantou 515063, P. R. China; and Anhui University of Science and Technology, School of Sciences Anhui, Huainan 232001, P. R. China; hope189@tom.com

Abstract. In this paper, we obtain a characterization of spaces Q_K in terms of fractional order derivatives of functions. We give a description of Morrey-type spaces similar to the well-known characterization of *BMOA*. A relationship between Q_K spaces and Morrey type spaces in terms of the fractional order derivatives is established.

1. Introduction

There are two principal results obtained in this article. The first result is a characterization of the space Q_K in terms of some fractional order derivatives of an analytic function in the unit disc **D**. In [12] we characterized the Q_K spaces in terms of higher order derivatives. The main difficulty here is to replace higher order derivatives by fractional order derivatives. The second result is a connection between the spaces Q_K and Morrey type spaces H_K^2 introduced in Section 3. We will show that if f is a member of Q_K , then some fractional order derivatives of f belongs to H_K^2 . Conversely, if f is in the Morrey type spaces, then some fractional order derivatives of f belongs to Q_K space.

Before proceeding, it may be useful to recall a few fundamental definitions and establish some notation.

Let $K: [0, \infty) \to [0, \infty)$ be a right-continuous and nondecreasing function. The Q_K space consists of analytic functions f in **D** satisfying

(1.1)
$$||f||_{K} = \left(\sup_{a \in \mathbf{D}} \int_{\mathbf{D}} |f'(z)|^{2} K(g(z,a)) \, dA(z)\right)^{1/2} < \infty,$$

where g(z, a) is the Green function in **D** with singularity at $a \in \mathbf{D}$, and dA(z) is the Euclidean area element on **D** so that $A(\mathbf{D}) = 1$.

It is clear that Q_K is Möbius-invariant, i.e., $||f \circ \varphi_a||_K = ||f||_K$ holds for all $a \in \mathbf{D}$, where $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$; see [3] and [4] for the theory of Q_K spaces. In the case $K(t) = t^p, 0 , the space <math>Q_K$ gives Q_p space; see [1], [13] and [14]. Especially, Q_K coincides with BMOA if K(t) = t. We know from [3] that Q_K spaces are contained in the Bloch space \mathcal{B} , which consists of analytic functions f such that

$$||f||_{\mathcal{B}} = \sup\{(1-|z|^2)|f'(z)|: z \in \mathbf{D}\} < \infty.$$

doi:10.5186/aasfm.2013.3801

²⁰¹⁰ Mathematics Subject Classification: Primary 30D45, 30D99.

Key words: Q_K spaces, Morrey type spaces, fractional order derivative.

The authors are supported by NSF of China (No. 11071153).

In this paper we assume that

(1.2)
$$\int_0^{\frac{1}{e}} K\left(\log\frac{1}{r}\right) dr < \infty.$$

Otherwise, the space Q_K contains constant functions only. By Theorem 2.1 in [3] we may assume that K is defined on [0,1] and extend its domain to $[0,\infty)$ by setting K(t) = K(1) for t > 1.

Further we need two conditions on K as follows:

(1.3)
$$\int_0^1 \varphi_K(s) \frac{ds}{s} < \infty$$

and

(1.4)
$$\int_{1}^{\infty} \varphi_K(s) \frac{ds}{s^{1+p}} < \infty, \quad 0 < p < 2,$$

where

$$\varphi_K(s) = \sup_{0 < t \le 1} K(st) / K(t), \quad 0 < s < \infty.$$

It is obvious that $K(t) = t^q, 0 \le q \le 1$, satisfies (1.3) and (1.4) for all 0 . $For a subarc <math>I \subset \partial \mathbf{D}$, let θ be the midpoint of I and denote

$$S(I) = \left\{ z \in \mathbf{D} \colon 1 - |I| < |z| < 1, \ |\theta - \arg z| < \frac{|I|}{2} \right\}$$

for $|I| \leq 1$ and $S(I) = \mathbf{D}$ for |I| > 1, where |I| denotes the length of I. For $0 , we say that a positive measure <math>d\mu$ is a *p*-Carleson measure on \mathbf{D} provided

$$\|\mu\|_p = \sup_{I \subset \partial \mathbf{D}} \frac{\mu(S(I))}{|I|^p} < \infty.$$

A positive measure $d\mu$ is said to be a K-Carleson measure on **D** if

(1.5)
$$\|\mu\|_{K} = \sup_{I \subset \partial \mathbf{D}} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d\mu(z) < \infty.$$

Clearly, if $K(t) = t^p$, then μ is a K-Carleson measure on **D** if and only if $(1 - |z|^2)^p d\mu(z)$ is a *p*-Carleson measure on **D**.

In addition, we may assume that $K(t) \approx K(2t)$. This means that $K(t) \leq K(2t) \leq K(t)$. Note, we say $K_1 \leq K_2$ (for two functions K_1 and K_2) if there exists a constant C > 0 (independent of K_1 and K_2) such that $K_1 \leq CK_2$.

In the present work we need two basic characterizations of Q_K spaces and we shall list them here for reference. First we mention the higher order derivative characterization of Q_K spaces given by the first author and Zhu in [12].

Theorem A. Suppose

$$\int_0^1 \frac{\varphi_K(s)}{s} \, ds < \infty$$
$$\int_1^\infty \frac{\varphi_K(s)}{s^p} \, ds < \infty$$

or

for some 0 . Then for any positive integer n, an analytic function f in**D** $belongs to <math>Q_K$ if and only if

$$\sup_{a \in \mathbf{D}} \int_{\mathbf{D}} |f^{(n)}(z)|^2 (1 - |z|^2)^{2n-2} K(1 - |\varphi_a(z)|^2) \, dA(z) < \infty.$$

The second result we mention here is a characterization of K-Carleson measure given by the first author and Essen and Xiao in [4].

Theorem B. Let K satisfy (1.3). A positive measure $d\mu$ on **D** is a K-Carleson measure if and only if

$$\sup_{a \in \mathbf{D}} \int_{\mathbf{D}} K(1 - |\varphi_a(z)|^2) \, d\mu(z) < \infty.$$

By Theorems A and B, we have

Theorem C. Let K satisfy (1.3). An analytic function f in **D** belongs to Q_K if and only if $|f^{(n)}(z)|^2(1-|z|^2)^{2n-2} dA(z)$ is a K-Carleson measure.

The following lemma will be used in the sections 2 and 3, and its proof will be given in Section 3.

Lemma D. If K satisfies the condition (1.4), then there exists a weight K_1 , comparable with K, such that $K_1(t)/t^p$ is non-increasing. Moreover, for some enough small c > 0, $K_1(t)/t^{p-c}$ is also non-increasing.

2. Fractional order derivative and Q_K spaces

For fixed b > 1, define the α -order derivative as follows:

$$f^{(\alpha)}(z) = \frac{\Gamma(b+\alpha)}{\Gamma(b)} \int_{\mathbf{D}} \frac{(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+\alpha}} \overline{w}^{[\alpha-1]} f'(w) \, dA(w), \quad b+\alpha > 0,$$

where Γ is the Gamma function and $[\alpha]$ denotes the smallest integer which is larger than or equal to α . Since

$$(z^{n})^{(\alpha)} = \begin{cases} \frac{\Gamma(b+n+\alpha-1-[\alpha-1])\Gamma(n+1)}{\Gamma(b+n)\Gamma(n-[\alpha-1])} z^{n-1-[\alpha-1]}, & n \ge [\alpha-1]+1, \\ 0, & n < [\alpha-1]+1, \end{cases}$$

we know that if $\alpha = n, n = 1, 2, 3 \cdots$, then $f^{(\alpha)}$ is just the derivative of order n of f. The following is our first main result in this paper:

Theorem 2.1. Let K satisfy the conditions (1.3) and (1.4). If $\alpha > 1/2$, then $f \in Q_K$ if and only if $|f^{(\alpha)}(z)|^2 (1 - |z|^2)^{2(\alpha-1)} dA(z)$ is a K-Carleson measure.

Firstly, we give some results which will be used in our proof.

Lemma 2.1. Let K satisfy the conditions (1.3) and (1.4). Let $b + \alpha \ge 1 + p$, $b \ge p$ and $\alpha > 0$. There exists a $\beta \in (0, 1)$ and a constant C (independent of |I|, the length of arc I on $\partial \mathbf{D}$) such that

(2.1)
$$\int_{\mathbf{D}} \frac{K\left(\frac{1-|z|}{|I|}\right)(1-|w|^2)^{b-1}}{(1-|z|)^{1-\alpha+\beta}|1-\overline{w}z|^{b+\alpha}} \, dA(z) \le C \frac{K\left(\frac{1-|w|}{|I|}\right)}{(1-|w|)^{\beta}}$$

for all $w \in \mathbf{D}$.

Proof. By Lemma D, there exists a small enough c > 0 such that $t^{c-p}K(t)$ is decreasing. Since $b+\alpha \ge 1+p$, $b \ge p$, $\alpha > 0$, we are able to choose $\beta \in (0, \min\{\alpha, 1\})$ such that $b-p+\beta+c > 1$. If $1-|w| \ge |I|$, Lemma 4.2.2 in [15] gives

$$\begin{split} \int_{\mathbf{D}} \frac{K\left(\frac{1-|z|}{|I|}\right)(1-|w|^2)^{b-1}}{(1-|z|)^{1-\alpha+\beta}|1-\overline{w}z|^{b+\alpha}} \, dA(z) \lesssim \int_{\mathbf{D}} \frac{(1-|w|^2)^{b-1}}{(1-|z|)^{1-\alpha+\beta}|1-\overline{w}z|^{b+\alpha}} \, dA(z) \\ \lesssim \frac{1}{(1-|w|^2)^{\beta}} \lesssim \frac{K\left(\frac{1-|w|}{|I|}\right)}{(1-|w|^2)^{\beta}}. \end{split}$$

It is easy to see that (2.1) holds when 1 - |w| < |I| and $|w| \le 1/2$. Now we assume 1 - |w| < |I| and |w| > 1/2. Without loss of generality we may assume that I is centered at $e^{i0} = 1$ and Im(w) = 0. Let $\gamma = 1 - w$. We divide the unit disk **D** into $S_1 \bigcup S_2 \bigcup S_3$, where

$$S_{1} = \{ z \colon 0 < 1 - |z| \le \gamma, \ |\arg z| \le \gamma/2 \},\$$

$$S_{2} = \{ z \colon \gamma < 1 - |z| \le 1, \ |\arg z| \le \gamma/2 \}$$

and

$$S_3 = \{ z \colon 0 < 1 - |z| \le 1, \ |\arg z| > \gamma/2 \}$$

Then

$$\begin{split} \int_{S_1} \frac{K\left(\frac{1-|z|}{|I|}\right)(1-|w|^2)^{b-1}}{(1-|z|)^{1-\alpha+\beta}|1-\overline{w}z|^{b+\alpha}} \, dA(z) &\lesssim \gamma^b \int_0^\gamma \frac{K(t/|I|) \, dt}{(\gamma+t(1-\gamma))^{b+\alpha}t^{1-\alpha+\beta}} \\ &\leq \frac{1}{\gamma^\alpha} \int_0^\gamma \frac{K(t/|I|)}{t^{1-\alpha+\beta}} \, dt \end{split}$$

and

$$\begin{split} \int_{S_2} \frac{K\left(\frac{1-|z|}{|I|}\right) (1-|w|)^{b-1}}{(1-|z|)^{1-\alpha+\beta} |1-\overline{w}z|^{b+a}} \, dA(z) &\leq \gamma^b \int_{\gamma}^1 \frac{K(t/|I|) \, dt}{(\gamma+t(1-\gamma))^{b+\alpha} t^{1-\alpha+\beta}} \\ &\leq \frac{\gamma^{b-1}}{(1-\gamma)^{b+\alpha-1}} \int_{\gamma}^1 \frac{K(t/|I|)}{t^{b+\beta}} \, dt. \end{split}$$

On the other hand,

$$\begin{split} &\int_{S_3} \frac{K\left(\frac{1-|z|}{|I|}\right) (1-|w|)^{b-1}}{(1-|z|)^{1-\alpha+\beta} |1-\overline{w}z|^{b+\alpha}} \, dA(z) \\ &\leq 2\gamma^{b-1} \int_0^1 \frac{K(t/|I|)}{t^{1-\alpha+\beta}} \left(\int_{\gamma}^{\pi} \frac{d\theta}{[(\gamma+t(1-\gamma))^2 + \sin^2(\theta/2)]^{\frac{b+\alpha}{2}}} \right) dt \\ &\lesssim \gamma^{b-1} \int_0^1 \frac{K(t/|I|) \, dt}{(\gamma+t(1-\gamma))^{b+\alpha-1} t^{1-\alpha+\beta}} \\ &\leq \frac{1}{\gamma^{\alpha}} \int_0^{\gamma} \frac{K(t/|I|)}{t^{1-\alpha+\beta}} \, dt + \frac{\gamma^{b-1}}{(1-\gamma)^{b+\alpha-1}} \int_{\gamma}^1 \frac{K(t/|I|) \, dt}{t^{b+\beta}}. \end{split}$$

Since $\beta < \alpha$, Lemma 2.1 in [4] gives

`

$$\frac{1}{\gamma^{\alpha}} \int_{0}^{\gamma} \frac{K(t/|I|)}{t^{1-\alpha+\beta}} \, dt = \frac{|I|^{\alpha-\beta}}{\gamma^{\alpha}} \int_{0}^{\gamma/|I|} \frac{K(s)}{s^{1-\alpha+\beta}} \, ds \lesssim \frac{1}{\gamma^{\beta}} \int_{0}^{\gamma/|I|} \frac{K(s)}{s} \, ds \approx \frac{K(\gamma/|I|)}{\gamma^{\beta}}$$

Note that $b - p + \beta + c > 1$. By Lemma D we have

$$\frac{\gamma^{b-1}}{(1-\gamma)^{b+\alpha-1}} \int_{\gamma}^{1} \frac{K(t/|I|)}{t^{b+\beta}} dt \leq \frac{\gamma^{b-1}}{(1-\gamma)^{b+\alpha-1}} K\left(\frac{\gamma}{|I|}\right) \left(\frac{\gamma}{|I|}\right)^{c-p} \int_{\gamma}^{1} \frac{dt}{t^{b+\beta}(t/|I|)^{c-p}} \leq \frac{\gamma^{b-p-1+c}}{(1-\gamma)^{b+\alpha-1}} K\left(\frac{\gamma}{|I|}\right) \int_{\gamma}^{1} \frac{dt}{t^{b-p+\beta+c}} \leq \frac{K(\gamma/|I|)}{\gamma^{\beta}}.$$

The above estimates give

$$\begin{split} &\int_{\mathbf{D}} \frac{K\left(\frac{1-|z|}{|I|}\right) (1-|w|)^{b-1}}{(1-|z|)^{1-\alpha+\beta} |1-\overline{w}z|^{b+\alpha}} \, dA(z) \lesssim \sum_{j=1}^{3} \int_{S_{i}} \frac{K\left(\frac{1-|z|}{|I|}\right) (1-|w|)^{b-1}}{(1-|z|)^{1-\alpha+\beta} |1-\overline{w}z|^{b+\alpha}} \, dA(z) \\ &\leq \frac{1}{\gamma^{\alpha}} \int_{0}^{\gamma} \frac{K(t/|I|)}{t^{1-\alpha+\beta}} \, dt + \frac{\gamma^{b-1}}{(1-\gamma)^{b+\alpha-1}} \int_{\gamma}^{1} \frac{K(t/|I|)}{t^{b+\beta}} \, dt \lesssim \frac{K(\gamma/|I|)}{\gamma^{\beta}}. \end{split}$$

Hence (2.1) holds. The proof is complete.

Lemma 2.2. Let K satisfy the conditions (1.3) and (1.4). Let ψ be measurable on **D**. If $d\mu(z) = |\psi(z)|^2 dA(z)$ is a K-Carleson measure, then $|\psi(z)|(1 - |z|^2)^{(p-1)/2} dA(z)$ is a (p+1)/2-Carleson measure.

Proof. By Lemma D, we can choose a small c such that $t^{-p+c}K(t)$ is decreasing. By Cauchy–Schwarz inequality we have

$$\begin{split} &\int_{S(I)} |\psi(z)| (1-|z|^2)^{(p-1)/2} \, dA(z) \\ &\leq \left(\int_{S(I)} |\psi(z)|^2 K \left(\frac{1-|z|}{|I|} \right) dA(z) \right)^{1/2} \left(\int_{S(I)} \frac{(1-|z|^2)^{p-1}}{K((1-|z|)/|I|)} \, dA(z) \right)^{1/2} \\ &\lesssim \|\mu\|_K^{1/2} \left(\int_{S(I)} |I|^{p-c} (1-|z|^2)^{c-1} \, dA(z) \right)^{1/2} \lesssim \|\mu\|_K^{1/2} |I|^{(p+1)/2}. \end{split}$$

The above estimates give the desired result.

Lemma 2.3. Let K satisfy the conditions (1.3) and (1.4). Let $b + \alpha \ge 1 + p, b \ge \max\{p, (1+p)/2\}$ and $\alpha > 1/2$. Let ψ be measurable on **D** and define an operator on $L^2(\mathbf{D})$ as:

$$T\psi(z) = \int_{\mathbf{D}} \frac{(1 - |w|^2)^{b-1}}{|1 - \overline{w}z|^{b+\alpha}} |\psi(w)| \, dA(w).$$

If $d\mu(z) = |\psi(z)|^2 dA(z)$ is a K-Carleson measure, then $|T\psi(z)|^2 (1 - |z|^2)^{2(\alpha-1)} dA(z)$ is a K-Carleson measure.

Proof. For the Carleson box S(I), we have

$$\begin{split} &\int_{S(I)} |T\psi(z)|^2 (1-|z|^2)^{2(\alpha-1)} K\left(\frac{1-|z|}{|I|}\right) dA(z) \\ &\leq \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^2)^{2(\alpha-1)} \\ &\cdot \left\{ \left(\int_{S(2I)} + \int_{\mathbf{D}\setminus S(2I)}\right) |\psi(w)| \frac{(1-|w|^2)^{b-1}}{|1-\overline{w}z|^{b+\alpha}} \, dA(w) \right\}^2 \, dA(z) \lesssim E_1 + E_2, \end{split}$$

where

$$E_{1} = \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^{2})^{2(\alpha-1)} \left(\int_{S(2I)} |\psi(w)| \frac{(1-|w|^{2})^{b-1}}{|1-\overline{w}z|^{b+\alpha}} \, dA(w)\right)^{2} \, dA(z)$$

and

$$E_{2} = \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^{2})^{2(\alpha-1)} \left(\int_{\mathbf{D}\setminus S(2I)} |\psi(w)| \frac{(1-|w|^{2})^{b-1}}{|1-\overline{w}z|^{b+\alpha}} dA(w)\right)^{2} dA(z).$$

To estimate E_1 , consider

$$B(z,w) = \sqrt{\frac{K\left((1-|z|)/|I|\right)}{K\left((1-|w|)/|I|\right)}} \frac{(1-|w|^2)^{b-1}(1-|z|^2)^{\alpha-1}}{|1-\overline{w}z|^{b+\alpha}}$$

and the integral operator on $L^2(\mathbf{D})$

$$T_B\psi(z) = \int_{\mathbf{D}} B(z, w) |\psi(w)| \, dA(w).$$

Choose β as in Lemma 2.1 such that $\beta < b$ and $\alpha + \beta > 1$. In fact, if $p \ge 1$, we choose $\beta \in (1/2, \min\{\alpha, 1\})$; if $0 , we choose <math>\beta \in ((1 + p - c)/2, (1 + p)/2)$, where c is given as in Lemma 2.1.

Define

$$h(z) = \frac{\left(K\left(\frac{1-|z|}{|I|}\right)\right)^{1/2}}{(1-|z|^2)^{\beta}}.$$

By Lemma 4.2.2 in [15] and Lemma 2.1, we have

$$\int_{\mathbf{D}} B(z, w) h(w) \, dA(w) \lesssim h(z)$$

and

$$\int_{\mathbf{D}} B(z,w)h(z) \, dA(z) \lesssim h(w).$$

By Schur's Theorem (cf. [15]) we have

$$\int_{\mathbf{D}} |T_B g(w)|^2 \, dA(w) \lesssim \int_{\mathbf{D}} |g(w)|^2 \, dA(w)$$

for all $g \in L^2(\mathbf{D})$. Thus the operator T_B is bounded on $L^2(\mathbf{D})$ by Corollary 3.2.3 in [15]. Consider the function

$$g(w) = |\psi(w)| \left(K\left(\frac{1-|w|}{|I|}\right) \right)^{1/2} \chi_{S(2I)}(w),$$

where $\chi_{S(2I)}(w) = 1$ for $w \in S(2I)$ and 0 for $w \notin S(2I)$. We have

(2.2)
$$E_1 \lesssim \int_{\mathbf{D}} |T_B g(w)|^2 dA(w) \lesssim \int_{\mathbf{D}} |g(w)|^2 dA(w) \le \|\mu\|_K.$$

Next we estimate E_2 . Since $|\psi(w)|^2 dA(w)$ is a K-Carleson measure, by Lemma 2.2, $dv(w) = |\psi(w)|(1 - |w|^2)^{(p-1)/2} dA(w)$ is (p+1)/2-Carleson measure. This

deduces

$$\begin{split} E_2 &= \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^2)^{2(\alpha-1)} \\ &\quad \cdot \left(\sum_{n=1}^{\infty} \int_{S(2^{n+1}I) \setminus S(2^nI)} \frac{|\psi(w)|(1-|w|^2)^{b-1}}{|1-\overline{w}z|^{b+\alpha}} \, dA(w)\right)^2 \, dA(z) \\ &= \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^2)^{2(\alpha-1)} \\ &\quad \cdot \left(\sum_{n=1}^{\infty} \int_{S(2^{n+1}I) \setminus S(2^nI)} \frac{dv(w)}{|1-\overline{w}z|^{\alpha+(p+1)/2}}\right)^2 \, dA(z) \\ &\lesssim \|v\|_{(p+1)/2}^2 \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^2)^{2(\alpha-1)} \left(\sum_{n=1}^{\infty} \frac{(2^{n+1}|I|)^{(p+1)/2}}{(2^n|I|)^{\alpha+(p+1)/2}}\right)^2 \, dA(z) \\ &\lesssim \|v\|_{(p+1)/2}^2 \frac{1}{|I|^{2\alpha}} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) (1-|z|^2)^{2(\alpha-1)} \, dA(z) \\ &\lesssim \|v\|_{(p+1)/2}^2 \frac{1}{|I|^{2\alpha}} \int_{S(I)} (1-|z|^2)^{2(\alpha-1)} \, dA(z) \lesssim \|v\|_{(p+1)/2}^2. \end{split}$$

Here we use the following estimate:

(2.3)
$$\frac{1}{|1-\overline{w}z|} \lesssim \frac{1}{2^n|I|}, \quad w \in S(2^{n+1}I) \setminus S(2^nI).$$

Combining our estimates for E_1 and E_2 , we have

$$\int_{S(I)} |T\psi(z)|^2 (1-|z|^2)^{2(\alpha-1)} K\left(\frac{1-|z|}{|I|}\right) dA(z) \lesssim \|\mu\|_K + \|\nu\|_{(p+1)/2}^2$$

for any $I \subset \partial \mathbf{D}$. By Theorem 3.1 in [4] we obtain that $|T\psi(z)|^2(1-|z|^2)^{2(\alpha-1)} dA(z)$ is a K-Carleson measure. The proof is complete.

Proof of Theorem 2.1. Now we apply Theorem A to prove Theorem 2.1. Suppose $f \in Q_K$, then $|f'(z)|^2 dA(z)$ is a K-Carleson measure. For $\alpha > 1/2$, the α -order derivative of f at $z \in \mathbf{D}$ is

$$f^{(\alpha)}(z) = \frac{\Gamma(b+\alpha)}{\Gamma(b)} \int_{\mathbf{D}} \frac{(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+\alpha}} \overline{w}^{[\alpha-1]} f'(w) \, dA(w),$$

where b > 1 and $b + \alpha \ge 1 + p$, $b \ge \max\{p, (1+p)/2\}$. By Lemma 2.3 we obtain that $|f^{(\alpha)}(z)|^2(1-|z|^2)^{2(\alpha-1)} dA(z)$ is a K-Carleson measure.

Conversely, assume that $|f^{(\alpha)}(z)|^2(1-|z|^2)^{2(\alpha-1)} dA(z)$ is a K-Carleson measure. We consider the Taylor series of $f: f(z) = \sum_{j=0}^{\infty} a_j z^j$. Note that

$$\frac{1}{(1-\overline{w}z)^{\lambda}} = \sum_{j=0}^{\infty} \frac{\Gamma(j+\lambda)}{j!\Gamma(\lambda)} \,\overline{w}^j z^j, \quad \lambda > 0.$$

Hence

$$f^{(\alpha)}(z) = \frac{\Gamma(b+\alpha)}{\Gamma(b)} \int_{\mathbf{D}} \frac{\overline{w}^{[\alpha-1]}(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+\alpha}} f'(w) \, dA(w)$$

= $\frac{\Gamma(b+\alpha)}{\Gamma(b)} \int_{\mathbf{D}} \frac{\overline{w}^{[\alpha-1]}(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+\alpha}} \sum_{j=1}^{\infty} a_j(z^j)' \, dA(w)$
= $\frac{\Gamma(b+\alpha)}{\Gamma(b)} \sum_{j=1}^{\infty} a_j \int_{\mathbf{D}} \frac{\overline{w}^{[\alpha-1]}(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+\alpha}} (z^j)' \, dA(w) = \sum_{j=0}^{\infty} a_{j,\alpha} z^j,$

where

(2.5)
$$a_{j,\alpha} = a_{j+m+1} \left(\frac{\Gamma(b+j+\alpha)\Gamma(j+m+2)}{\Gamma(b+j+m+1)\Gamma(j+1)} \right), \quad j = 0, 1, \cdots, m = [\alpha - 1].$$

Since $\alpha > 1/2$, $m \ge 0$, a simple computation gives the following equality

$$\frac{\Gamma(b+m+1)}{\Gamma(b+\alpha-1)} \int_{\mathbf{D}} \frac{(1-|w|^2)^{b-1}}{(1-\overline{w}z)^{b+m+1}} f^{(\alpha)}(w) (1-|w|^2)^{\alpha-1} dA(w)
= \frac{\Gamma(b+m+1)}{\Gamma(b+\alpha-1)} \int_{\mathbf{D}} \frac{(1-|w|^2)^{b+\alpha-2}}{(1-\overline{w}z)^{b+m+1}} \left(\sum_{j=0}^{\infty} a_{j,\alpha} w^j\right) dA(w)
= \frac{\Gamma(b+m+1)}{\Gamma(b+\alpha-1)} \sum_{j=0}^{\infty} a_{j,\alpha} \int_{\mathbf{D}} (1-|w|^2)^{b+\alpha-2} \left(\sum_{k=0}^{\infty} \frac{\Gamma(k+b+m+1)}{k!\Gamma(b+m+1)} \overline{w}^k z^k\right) w^j dA(w)
= \sum_{j=0}^{\infty} \frac{\Gamma(j+m+2)}{\Gamma(j+1)} a_{j+m+1} z^j = f^{(m+1)}(z).$$

Since $|f^{(\alpha)}(w)|^2 (1-|w|^2)^{2(\alpha-1)} dA(w)$ is a K-Carleson measure, Lemma 2.3 implies that $|f^{(m+1)}(z)|^2 (1-|z|^2)^{2m} dA(z)$ is a K-Carleson measure. Hence $f \in Q_K$ by Theorem A.

3. Morrey type spaces and Q_K spaces

Denote H_K^2 the Morrey type space of all analytic functions $f \in H^2$ on **D** such that

(3.1)
$$||f||_{H^2_K} = \left(\sup_{I \subset \partial \mathbf{D}} \frac{1}{K(|I|)} \int_I |f(\zeta) - f_I|^2 |d\zeta|\right)^{1/2} < \infty,$$

where

$$f_I = \frac{1}{|I|} \int_I f(\zeta) \, d\zeta$$

and the Hardy space H^2 consists of analytic functions f in **D** satisfying

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta < \infty.$$

See [8] and [16] about the Morrey space.

The Poisson extension of a function $f \in L^1(\partial \mathbf{D})$ from $\partial \mathbf{D}$ to \mathbf{D} is denoted by \hat{f} and defined as follows:

$$\hat{f}(z) = \frac{1}{2\pi} \int_{\partial \mathbf{D}} f(\zeta) \frac{1 - |z|^2}{|\zeta - z|^2} |d\zeta|, \quad z \in \mathbf{D}.$$

If $f \in H_K^2$, then $\hat{f}(z) = f(z)$ for $z \in \mathbf{D}$. Wu and Xie in [10] characterized functions in the Morrey space in terms of *p*-Carleson measures. Furthermore, they reveal a simple relation between Q_p space and Morrey space. In this section, we will give a series of characterizations of the Morrey type space H_K^2 and build a relationship between the spaces H_K^2 and Q_K .

Theorem 3.1. Let K satisfy the conditions (1.3) and (1.4). Then the following are equivalent.

$$\begin{array}{ll} (1) \ f \in H_K^2. \\ (2) \ \sup_{I \subset \partial \mathbf{D}} \frac{1}{K(|I|)} \int_{S(I)} |f'(z)|^2 (1 - |z|^2) \, dA(z) < \infty. \\ (3) \ \sup_{a \in \mathbf{D}} \frac{1 - |a|^2}{K(1 - |a|)} \int_{\mathbf{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2) dA(z) < \infty. \\ (4) \ \sup_{a \in \mathbf{D}} \frac{1 - |a|^2}{K(1 - |a|)} \int_{\mathbf{D}} |f'(z)|^2 g(z, a) \, dA(z) < \infty. \\ (5) \ \sup_{a \in \mathbf{D}} \frac{1 - |a|^2}{K(1 - |a|)} \widehat{\int_{\mathbf{D}} (f(a)|^2(a)} < \infty. \\ (6) \ \sup_{a \in \mathbf{D}} \frac{1 - |a|^2}{K(1 - |a|)} \left(\widehat{|f|^2}(a) - |f(a)|^2 \right) < \infty. \end{array}$$

To prove Theorem 3.1, we need the following Lemmas. The first lemma, Lemma D, was proved in [11] but here we state it again.

Lemma 3.1. If K satisfies the condition (1.4), then there exists a weight K_1 , comparable with K, such that $K_1(t)/t^p$ is non-increasing. Moreover, for some enough small c > 0, $K_1(t)/t^{p-c}$ is also non-increasing.

Proof. If K satisfies the condition (1.4), we will claim that

(3.2)
$$\liminf_{t \to 0} K(t)/t^p > 0.$$

If s > 1, then

$$K(1)/K(1/s) \le \varphi_K(s)$$

and by (1.4)

$$\int_{1}^{\infty} K(1/s)^{-1} \frac{ds}{s^{1+p}} = \int_{0}^{1} K(s)^{-1} \frac{ds}{s^{1-p}} < \infty.$$

So, we have

$$t^p/K(t) \lesssim K(t)^{-1} \int_0^t \frac{ds}{s^{1-p}} \le \int_0^1 K(s)^{-1} \frac{ds}{s^{1-p}} < \infty.$$

Then we obtain the claim.

We define

$$K_1(t) = t^p \int_t^\infty \frac{K(s)}{s^{1+p}} \, ds, \quad 0 < t < \infty.$$

It is easy to see that $K_1(t)/t^p$ is non-increasing. Since K is nondecreasing, it follows that $K_1(t) \ge K(t), 0 < t < \infty$. We note that for $t \in (0, 1)$,

$$\int_{t}^{1} \frac{K(s)}{s^{1+p}} \, ds \le K(t) \int_{t}^{1} \frac{\varphi_K(s/t)}{s^{1+p}} \, ds \le \frac{K(t)}{t^p} \int_{1}^{\infty} \frac{\varphi_K(u)}{u^{1+p}} \, du$$

Hasi Wulan and Jizhen Zhou

and by (3.2),

$$\int_{1}^{\infty} \frac{K(s)}{s^{1+p}} \, ds = K(1) \lesssim \frac{K(t)}{t^p}.$$

Hence, we obtain that

(3.3)
$$K_1(t) \le K(t) \left(\int_1^\infty \frac{\varphi_K(s)}{s^{1+p}} \, ds + 1 \right), \quad 0 < t < 1.$$

For $t \in [1, \infty)$, we have

(3.4)
$$K_1(t) = t^p \int_1^\infty \frac{\varphi_K(s)}{s^{1+p}} \, ds = K(1) = K(t)$$

By (3.3) and (3.4) we get that $K_1 \approx K$.

Note that if c is sufficiently small, then we have

$$(t^{c-p}K_1(t))' = t^{c-1-p}(cK_1(t) - K(t)) < 0, \quad 0 < t < \infty.$$

Lemma 3.2. Let K satisfy the condition (1.4). Then

 $K(rt) \le t^p K(r), \quad 0 \le r \le 1, 1 \le t < \infty.$

Proof. By Lemma 3.1 we know that $t^{-p}K(t)$ is non-increasing. Thus

$$K(rt) = t^{p} \frac{(rt)^{-p} K(rt) K(r)}{r^{-p} K(r)} \le t^{p} K(r),$$

and we get the desired result.

Proof of Theorem 3.1. We first show (1) \Leftrightarrow (5). If (1) holds, without loss of generality, we assume that |a| > 3/4. Let I_a be the subarc of $\partial \mathbf{D}$ with the midpointer a/|a| and length 1 - |a|. Moreover, let $J_n = 2^n I_a$ for $n = 0, 1, \ldots, N - 1$, where N is the smallest positive integer such that $2^N |I_a| \ge 1$. Let J_N be the unit circle. Then we have the following estimate:

(3.5)
$$\frac{1-|a|^2}{|1-\overline{a}\zeta|^2} \approx \frac{1}{|I_a|}, \quad \zeta \in I_a$$

and

(3.6)
$$\frac{1-|a|^2}{|1-\overline{a}\zeta|^2} \approx \frac{1}{2^{2n}|I_a|}, \quad \zeta \in J_{n+1} \setminus J_n, \ n = 0, 1, 2, \cdots, N-1.$$

For a fixed point $a \in \mathbf{D}$ with |a| > 3/4, we obtain the following estimate.

$$\begin{split} \widehat{|f - f(a)|^2(a)} &= \frac{1}{2\pi} \int_{\partial \mathbf{D}} |f(\zeta) - f(a)|^2 \frac{1 - |a|^2}{|\zeta - a|^2} |d\zeta| \\ &= \frac{1}{2\pi} \int_{\partial \mathbf{D}} |(f(\zeta) - f_{I_a}) - (f(a) - f_{I_a})|^2 \frac{1 - |a|^2}{|1 - \overline{a}\zeta|^2} |d\zeta| \\ &\lesssim \int_{\partial \mathbf{D}} |f(\zeta) - f_{I_a}|^2 \frac{1 - |a|^2}{|1 - \overline{a}\zeta|^2} |d\zeta| \\ &\lesssim \left(\int_{J_0} + \sum_{n=0}^{N-1} \int_{J_{n+1} \setminus J_n} \right) |f(\zeta) - f_{I_a}|^2 \frac{1 - |a|^2}{|1 - \overline{a}\zeta|^2} |d\zeta| \end{split}$$

202

$$\lesssim \frac{1}{|I_a|} \left(\int_{J_0} + \sum_{n=0}^{N-1} 2^{-2n} \int_{J_{n+1} \setminus J_n} \right) |f(\zeta) - f_{I_a}|^2 |d\zeta|$$

$$\lesssim \frac{1}{|I_a|} \int_{J_0} |f(\zeta) - f_{J_0}|^2 |d\zeta| + \sum_{n=0}^{N-1} \frac{2^{-n}}{|J_{n+1}|} \int_{J_{n+1} \setminus J_n} |f(\zeta) - f_{J_0}|^2 |d\zeta|.$$

By the Cauchy–Schwarz inequality and Lemma 3.2,

$$\begin{aligned} |f_{J_{n+1}} - f_{J_n}| &\leq \frac{2}{|J_{n+1}|} \int_{J_{n+1}} |f(\zeta) - f_{J_{n+1}}| \, |d\zeta| \\ &\leq \left(\frac{2}{|J_{n+1}|} \int_{J_{n+1}} |f(\zeta) - f_{J_{n+1}}|^2 \, |d\zeta|\right)^{1/2} \\ &\leq \sqrt{\frac{K(|J_{n+1}|)}{|J_{n+1}|}} \, \|f\|_{H^2_K} \lesssim 2^{n(p-1)/2} \sqrt{\frac{K(1-|a|)}{1-|a|^2}} \, \|f\|_{H^2_K}. \end{aligned}$$

Therefore

$$|f_{J_{n+1}} - f_{J_0}| \le |f_{J_{n+1}} - f_{J_n}| + \dots + |f_{J_1} - f_{J_0}| \le C(n, p) \sqrt{\frac{K(1 - |a|)}{1 - |a|^2}} \|f\|_{H^2_K},$$

where $C(n,p) = (1 - 2^{(p-1)/2})^{-1}$ for 0 , <math>C(n,p) = n for p = 1 and $C(n,p) = 2^{n(p-1)/2}$ for 1 . On the other hand, the Minkowski inequality gives

$$\frac{1}{|J_{n+1}|} \int_{J_{n+1}} |f(\zeta) - f_{J_0}|^2 |d\zeta|
\leq \left(\left(\frac{1}{|J_{n+1}|} \int_{J_{n+1}} |f(\zeta) - f_{J_n+1}| |d\zeta| \right)^{1/2} + |f_{J_n+1} - f_{J_0}| \right)^2
\lesssim (C(n,p))^2 \frac{K(1-|a|)}{1-|a|^2} \|f\|_{H^2_K}^2.$$

Since $\sum_{n=0}^{\infty} \frac{(C(n,p))^2}{2^n}$ is convergent, the above estimates show that

$$|\widehat{f-f(a)}|^2(a) \lesssim \frac{K(1-|a|)}{1-|a|^2} \, \|f\|_{H^2_K}^2 \sum_{n=0}^\infty \frac{(C(n,p))^2}{2^n} \lesssim \frac{K(1-|a|)}{1-|a|^2} \, \|f\|_{H^2_K}^2.$$

Hence, $(1) \Rightarrow (5)$ holds.

Let (5) hold. For any given $I \subset \partial \mathbf{D}$, we choose $a_I \in \mathbf{D}$ such that $a_I/|a_I|$ is the center of I and $|a_I| = 1 - |I|$. Then

$$\begin{aligned} \frac{1}{K(|I|)} \int_{I} |f(\zeta) - f_{I}|^{2} |d\zeta| &= \frac{1}{K(|I|)} \int_{I} |(f(\zeta) - f(a_{I})) - (f_{I} - f(a_{I}))|^{2} |d\zeta| \\ &\leq \frac{4}{K(|I|)} \int_{I} |f(\zeta) - f(a_{I})|^{2} |d\zeta| \\ &\lesssim \frac{1 - |a_{I}|^{2}}{K(1 - |a_{I}|)} \int_{I} |f(\zeta) - f(a_{I})|^{2} \frac{1 - |a_{I}|^{2}}{|1 - \overline{\zeta}a_{I}|^{2}} |d\zeta| \\ &\lesssim \frac{1 - |a_{I}|^{2}}{K(1 - |a_{I}|)} |f - \widehat{f(a_{I})}|^{2} (a_{I}). \end{aligned}$$

The above estimate shows that $(5) \Rightarrow (1)$ holds.

Now we will prove that (2) \Leftrightarrow (3). For given $I \subset \partial \mathbf{D}$, let $a_I/|a_I|$ be the midpoint of I and $1 - |a_I| = |I|$. Note that

$$|1 - \overline{a_I}z| \approx |I|, \quad z \in S(I).$$

Then

$$\frac{1}{K(|I|)} \int_{S(I)} |f'(z)|^2 (1 - |z|^2) \, dA(z) \approx \frac{1 - |a_I|^2}{K(1 - |a_I|)} \int_{S(I)} |f'(z)|^2 (1 - |\varphi_{a_I}(z)|^2) \, dA(z) \leq \sup_{a_I \in \mathbf{D}} \frac{1 - |a_I|^2}{K(1 - |a_I|)} \int_{\mathbf{D}} |f'(z)|^2 (1 - |\varphi_{a_I}(z)|^2) \, dA(z),$$

which shows that $(3) \Rightarrow (2)$.

Conversely, suppose (2) holds. There exists a constant M such that

$$\mu(S(I)) = \int_{S(I)} d\mu(z) \le MK(|I|)$$

for any $I \subset \partial \mathbf{D}$, where $d\mu(z) = |f'(z)|^2 (1-|z|^2) dA(z)$. For any given nonzero $a \in \mathbf{D}$, let I_a be the subarc of $\partial \mathbf{D}$ with the mid-pointer a/|a| and length 1-|a|. By (3.5), (3.6) and Lemma 3.2 we have

$$(1 - |a|^2) \int_{\mathbf{D}} \frac{1 - |a|^2}{|1 - \overline{a}z|^2} d\mu(z) \leq \sum_{n=1}^{\infty} \frac{1}{2^{2n}} \int_{S(2^{n+1}I_a) \setminus S(2^nI_a)} d\mu(z)$$
$$\leq \sum_{n=1}^{\infty} \frac{1}{2^{2n}} \mu(S(2^{n+1}I_a)) \leq M \sum_{n=1}^{\infty} \frac{1}{2^{2n}} K(2^{n+1}|I_a|)$$
$$\lesssim \sum_{n=1}^{\infty} \frac{1}{2^{(2-p)n}} K(1 - |a|) \approx K(1 - |a|).$$

Taking the supremum over $a \in \mathbf{D}$, we have that $(2) \Rightarrow (3)$.

By the Littlewood–Paley identity ([6], p. 236)

$$\int_{\mathbf{D}} |f'(z)|^2 (1-|z|^2) \, dA(z) \approx \int_{\mathbf{D}} |f'(z)|^2 \log \frac{1}{|z|^2} \, dA(z) \approx \int_{\partial \mathbf{D}} |f(\zeta) - f(0)|^2 \, |d\zeta|,$$

we can figure out $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$. The proof is complete.

We conclude this paper by proving a connection between Q_K and H_K^2 spaces.

- **Theorem 3.2.** Let K satisfy the conditions (1.3) and (1.4).
- (1) If $f \in Q_K$, there exists a q, 0 < q < p, such that $f^{(\frac{1-q}{2})} \in H_K^2$. (2) If $f \in H_K^2$, there exists a q, 0 < q < p, such that $f^{(\frac{q-1}{2})} \in Q_K$.

Proof. We note that $(f^{(\alpha)})' = f^{(\alpha+1)}$. In fact, we consider the Taylor series of f: $f(z) = \sum_{j=0}^{\infty} a_j z^j$. Then $f^{(\alpha)}(z) = \sum_{j=0}^{\infty} a_{j,\alpha} z^j$, where $a_{j,\alpha}$ is defined as in (2.5).

Since $[\alpha - 1] + 1 = [\alpha]$, we have

$$(f^{(\alpha)})'(z) = \sum_{j=0}^{\infty} a_{j+1,\alpha}(j+1)z^{j}$$

= $\sum_{j=0}^{\infty} a_{j+[\alpha-1]+2}(j+1) \left(\frac{\Gamma(b+j+1+\alpha)\Gamma(j+[\alpha-1]+3)}{\Gamma(b+j+[\alpha-1]+2)\Gamma(j+2)} \right) z^{j}$
= $\sum_{j=0}^{\infty} a_{j+[\alpha]+1} \left(\frac{\Gamma(b+j+1+\alpha)\Gamma(j+[\alpha]+2)}{\Gamma(b+j+[\alpha]+1)\Gamma(j+1)} \right) z^{j} = f^{(\alpha+1)}(z).$

We now prove (1). If $f \in Q_K$, then $d\mu = |f^{(\frac{3-q}{2})}(z)|^2(1-|z|^2)^{1-q} dA(z)$ is *K*-Carleson measure. For any given $I \subset \partial \mathbf{D}$, We have

$$\begin{aligned} &\frac{1}{K(|I|)} \int_{S(I)} |f^{(\frac{3-q}{2})}(z)|^2 (1-|z|^2) \, dA(z) \\ &\lesssim \frac{|I|^q}{K(|I|)} \int_{S(I)} |f^{(\frac{3-q}{2})}(z)|^2 (1-|z|^2)^{1-q} K\left(\frac{1-|z|}{|I|}\right) dA(z) \\ &\leq \frac{1}{K(1)} \sup_{I \subset \partial \mathbf{D}} \int_{S(I)} |f^{(\frac{3-q}{2})}(z)|^2 (1-|z|^2)^{1-q} K\left(\frac{1-|z|}{|I|}\right) dA(z) \lesssim \|\mu\|_K^2. \end{aligned}$$

Here we used Lemma 3.1, which shows that there exists a q, 0 < q < p, such that $K(t)/t^q$ is non-increasing. Thus, we obtain that $f^{(\frac{1-q}{2})} \in H^2_K$ by Theorem 3.1; that is, (1) holds.

By Lemma 2.1 in [4], there exists a q, 0 < q < p, such that $K(t)/t^q$ is nondecreasing. For any $I \subset \partial \mathbf{D}$, we have

$$\begin{split} \int_{S(I)} |f'(z)|^2 (1-|z|^2)^{1-q} K\left(\frac{1-|z|}{|I|}\right) dA(z) &\lesssim \frac{1}{|I|^q} \int_{S(I)} |f'(z)|^2 (1-|z|^2) \, dA(z) \\ &\lesssim \frac{1}{K(|I|)} \int_{S(I)} |f'(z)|^2 (1-|z|^2) \, dA(z) \end{split}$$

Suppose $f \in H^2_K$. By Theorem 3.1 we obtain that $|f'(z)|^2(1-|z|^2)^{1-q}$ is a K-Carleson measure. We note that

$$f^{(\frac{q+1}{2})}(z) = \frac{\Gamma(b+\frac{q+1}{2})}{\Gamma(b)} \int_{\mathbf{D}} \frac{(1-|w|^2)^{b+\frac{q-3}{2}}}{(1-\overline{w}z)^{b+\frac{q+1}{2}}} \overline{w}^{[\frac{q-1}{2}]} (1-|w|^2)^{1-\frac{q+1}{2}} f'(w) \, dA(w).$$

Lemma 2.3 implies that $|f^{(\frac{q+1}{2})}(z)|^2 dA(z)$ is a K-Carleson measure. Since $f^{(\frac{q+1}{2})}(z) = (f^{(\frac{q-1}{2})})'(z)$, we have $f^{(\frac{q-1}{2})} \in Q_K$ by Theorem 2.1. Now (2) follows.

Remark. Carefully checking the proof of Theorem 3.2, we find that we need a non-increasing function $K(t)/t^{q_1}$ for $q_1 \in (0, p)$ in the proof of (1) and a nondecreasing function $K(t)/t^{q_2}$ in the proof of (2) for $q_2 \in (0, p)$. Generally, $q_1 \neq q_2$ unless $K(t) = t^q$. In this case Q_K coincides with Q_q . Therefore, we have the following result about Q_q which appeared in [10].

Corollary 3.1. Let 0 < q < 2 and $f \in H^2$. Then $f \in Q_q$ if and only if $f^{(\frac{1-q}{2})} \in H^{2,q}$, where

$$H^{2,q} = \left\{ f \in H^2 \colon \sup_{I \subset \partial \mathbf{D}} \frac{1}{|I|^q} \int_I |f(\zeta) - f_I|^2 |d\zeta| < \infty \right\}.$$

Consequently, $f \in H^{2,q}$ if and only if $f^{(\frac{q-1}{2})} \in Q_q$.

4. Final remark

The space $Q_{K,0}$ consists of analytic functions f in **D** with the property that

$$\lim_{a \to 1^{-}} \int_{\mathbf{D}} |f'(z)|^2 K(1 - |\varphi_a(z)|^2) \, dA(z) = 0.$$

It can be checked that $Q_{K,0}$ is a closed subspace in Q_K .

A positive Borel measure μ on **D** is called a vanishing K-Carleson measure if

$$\lim_{|I| \to 0} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d\mu(z) = 0.$$

Carefully checking the proofs of Theorem 2.1 and several lemmas in Section 2 and Theorem 3.1 in [4], we see that the little oh version of Theorem 2.1 holds as well, from which we obtain the following.

Theorem 4.1. Let K satisfy the conditions (1.3) and (1.4). If $\alpha > 1/2$, then $f \in Q_{K,0}$ if and only if $|f^{(\alpha)}(z)|^2(1-|z|^2)^{2(\alpha-1)} dA(z)$ is a vanishing K-Carleson measure.

We are also able to give the little oh versions of Theorems 3.1 and 3.2. Here we omit the details about them.

References

- AULASKARI, R., J. XIAO, and R. ZHAO: On subspaces and subsets of BMOA and UBC. -Analysis 15, 1995, 101–121.
- [2] DUREN, P.: Theory of H^p spaces. Academic Press, New York, 1970.
- [3] ESSÉN, M., and H. WULAN: On analytic and meromorphic functions and spaces of Q_K type. - Illinois J. Math. 46, 2002, 1233–1258.
- [4] ESSÉN, M., H. WULAN, and J. XIAO: Several function-theoretic characterizations of Möbius invariant Q_K spaces. J. Funct. Anal. 230, 2006, 78–115.
- [5] ESSÉN, M., and J. XIAO: Some results on Q_p spaces, 0 . J. Reine Angew. Math. 485, 1997, 173–195.
- [6] GARNETT, J.: Bounded analytic functions. Academic Press, New York, 1982.
- [7] PAU, J.: Bounded Möbius invariant Q_K spaces. J. Math. Anal. Appl. 338, 2008, 1029–1042.
- [8] PEETRE, J.: On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4, 1964, 71–87.
- [9] WU, Z., and C. XIE: Decomposition theorems for Q_p spaces. Ark. Mat. 40, 2002, 383–401.
- [10] WU, Z., and C. XIE: Q spaces and Morrey spaces. J. Funct. Anal. 201, 2003, 282–297.
- [11] WULAN, H., and J. ZHOU: Decomposition theorems for Q_K spaces and applications. Forum Math. (to appear).
- [12] WULAN, H., and K. ZHU: Q_K spaces via higher order derivatives. Rocky Mountain J. Math. 38, 2008, 329–350.

- [13] XIAO, J.: Holomorphic Q classes. Springer, Berlin, 2001.
- [14] XIAO, J.: Geometric ${\cal Q}_p$ functions. Birkhäuser Verlag, Basel-Boston-Berlin, 2006.
- [15] ZHU, K.: Operator theory in function spaces. Marcel Dekker, New York, 1990.
- [16] ZORKO, C.: Morrey space. Proc. Amer. Math. Soc. 98, 1986, 586–592.

Received 17 February 2012 \bullet Accepted 2 July 2012