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Abstract. In this paper, we obtain a characterization of spaces QK in terms of fractional
order derivatives of functions. We give a description of Morrey-type spaces similar to the well-
known characterization of BMOA. A relationship between QK spaces and Morrey type spaces in
terms of the fractional order derivatives is established.

1. Introduction

There are two principal results obtained in this article. The first result is a
characterization of the space QK in terms of some fractional order derivatives of
an analytic function in the unit disc D. In [12] we characterized the QK spaces in
terms of higher order derivatives. The main difficulty here is to replace higher order
derivatives by fractional order derivatives. The second result is a connection between
the spaces QK and Morrey type spaces H2

K introduced in Section 3. We will show
that if f is a member of QK , then some fractional order derivatives of f belongs
to H2

K . Conversely, if f is in the Morrey type spaces, then some fractional order
derivatives of f belongs to QK space.

Before proceeding, it may be useful to recall a few fundamental definitions and
establish some notation.

Let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing function. The
QK space consists of analytic functions f in D satisfying

(1.1) ‖f‖K =

(
sup
a∈D

ˆ

D

|f ′(z)|2K(g(z, a)) dA(z)

)1/2

< ∞,

where g(z, a) is the Green function in D with singularity at a ∈ D, and dA(z) is the
Euclidean area element on D so that A(D) = 1.

It is clear that QK is Möbius-invariant, i.e., ‖f ◦ ϕa‖K = ‖f‖K holds for all
a ∈ D, where ϕa(z) = a−z

1−az
; see [3] and [4] for the theory of QK spaces. In the

case K(t) = tp, 0 < p < ∞, the space QK gives Qp space; see [1], [13] and [14].
Especially, QK coincides with BMOA if K(t) = t. We know from [3] that QK spaces
are contained in the Bloch space B, which consists of analytic functions f such that

‖f‖B = sup{(1− |z|2)|f ′(z)| : z ∈ D} < ∞.
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In this paper we assume that

(1.2)

ˆ 1
e

0

K

(
log

1

r

)
dr < ∞.

Otherwise, the space QK contains constant functions only. By Theorem 2.1 in [3] we
may assume that K is defined on [0,1] and extend its domain to [0,∞) by setting
K(t) = K(1) for t > 1.

Further we need two conditions on K as follows:

(1.3)

ˆ 1

0

ϕK(s)
ds

s
< ∞

and

(1.4)

ˆ ∞

1

ϕK(s)
ds

s1+p
< ∞, 0 < p < 2,

where
ϕK(s) = sup

0<t≤1
K(st)/K(t), 0 < s < ∞.

It is obvious that K(t) = tq, 0 ≤ q ≤ 1, satisfies (1.3) and (1.4) for all 0 < p < 2.
For a subarc I ⊂ ∂D, let θ be the midpoint of I and denote

S(I) =

{
z ∈ D : 1− |I| < |z| < 1, |θ − arg z| < |I|

2

}

for |I| ≤ 1 and S(I) = D for |I| > 1, where |I| denotes the length of I. For
0 < p < ∞, we say that a positive measure dµ is a p-Carleson measure on D
provided

‖µ‖p = sup
I⊂∂D

µ(S(I))

|I|p < ∞.

A positive measure dµ is said to be a K-Carleson measure on D if

(1.5) ‖µ‖K = sup
I⊂∂D

ˆ

S(I)

K

(
1− |z|
|I|

)
dµ(z) < ∞.

Clearly, if K(t) = tp , then µ is a K-Carleson measure on D if and only if (1 −
|z|2)p dµ(z) is a p-Carleson measure on D.

In addition, we may assume that K(t) ≈ K(2t). This means that K(t) .
K(2t) . K(t). Note, we say K1 . K2 (for two functions K1 and K2) if there
exists a constant C > 0 (independent of K1 and K2) such that K1 ≤ CK2.

In the present work we need two basic characterizations of QK spaces and we
shall list them here for reference. First we mention the higher order derivative char-
acterization of QK spaces given by the first author and Zhu in [12].

Theorem A. Suppose ˆ 1

0

ϕK(s)

s
ds < ∞

or ˆ ∞

1

ϕK(s)

sp
ds < ∞
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for some 0 < p < 2. Then for any positive integer n, an analytic function f in D
belongs to QK if and only if

sup
a∈D

ˆ

D

|f (n)(z)|2(1− |z|2)2n−2K(1− |ϕa(z)|2) dA(z) < ∞.

The second result we mention here is a characterization of K-Carleson measure
given by the first author and Essen and Xiao in [4].

Theorem B. Let K satisfy (1.3). A positive measure dµ on D is a K-Carleson
measure if and only if

sup
a∈D

ˆ

D

K(1− |ϕa(z)|2) dµ(z) < ∞.

By Theorems A and B, we have

Theorem C. Let K satisfy (1.3). An analytic function f in D belongs to QK if
and only if |f (n)(z)|2(1− |z|2)2n−2 dA(z) is a K-Carleson measure.

The following lemma will be used in the sections 2 and 3, and its proof will be
given in Section 3.

Lemma D. If K satisfies the condition (1.4), then there exists a weight K1,
comparable with K, such that K1(t)/t

p is non-increasing. Moreover, for some enough
small c > 0, K1(t)/t

p−c is also non-increasing.

2. Fractional order derivative and QK spaces

For fixed b > 1, define the α-order derivative as follows:

f (α)(z) =
Γ(b + α)

Γ(b)

ˆ

D

(1− |w|2)b−1

(1− wz)b+α
w[α−1]f ′(w) dA(w), b + α > 0,

where Γ is the Gamma function and [α] denotes the smallest integer which is larger
than or equal to α. Since

(zn)(α) =

{
Γ(b+n+α−1−[α−1])Γ(n+1)

Γ(b+n)Γ(n−[α−1])
zn−1−[α−1], n ≥ [α− 1] + 1,

0, n < [α− 1] + 1,

we know that if α = n, n = 1, 2, 3 · · · , then f (α) is just the derivative of order n of f .
The following is our first main result in this paper:

Theorem 2.1. Let K satisfy the conditions (1.3) and (1.4). If α > 1/2, then
f ∈ QK if and only if |f (α)(z)|2(1− |z|2)2(α−1) dA(z) is a K-Carleson measure.

Firstly, we give some results which will be used in our proof.

Lemma 2.1. Let K satisfy the conditions (1.3) and (1.4). Let b + α ≥ 1 + p,
b ≥ p and α > 0. There exists a β ∈ (0, 1) and a constant C (independent of |I|, the
length of arc I on ∂D) such that

(2.1)

ˆ

D

K
(

1−|z|
|I|

)
(1− |w|2)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z) ≤ C

K
(

1−|w|
|I|

)

(1− |w|)β

for all w ∈ D.
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Proof. By Lemma D, there exists a small enough c > 0 such that tc−pK(t) is
decreasing. Since b+α ≥ 1+p, b ≥ p, α > 0, we are able to choose β ∈ (0, min{α, 1})
such that b− p + β + c > 1. If 1− |w| ≥ |I|, Lemma 4.2.2 in [15] gives

ˆ

D

K
(

1−|z|
|I|

)
(1− |w|2)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z) .

ˆ

D

(1− |w|2)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z)

. 1

(1− |w|2)β
.

K
(

1−|w|
|I|

)

(1− |w|2)β
.

It is easy to see that (2.1) holds when 1 − |w| < |I| and |w| ≤ 1/2. Now we
assume 1− |w| < |I| and |w| > 1/2. Without loss of generality we may assume that
I is centered at ei0 = 1 and Im(w) = 0. Let γ = 1 − w. We divide the unit disk D
into S1

⋃
S2

⋃
S3, where

S1 = {z : 0 < 1− |z| ≤ γ, | arg z| ≤ γ/2} ,

S2 = {z : γ < 1− |z| ≤ 1, | arg z| ≤ γ/2}
and

S3 = {z : 0 < 1− |z| ≤ 1, | arg z| > γ/2} .

Then
ˆ

S1

K
(

1−|z|
|I|

)
(1− |w|2)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z) . γb

ˆ γ

0

K(t/|I|) dt

(γ + t(1− γ))b+αt1−α+β

≤ 1

γα

ˆ γ

0

K(t/|I|)
t1−α+β

dt

and
ˆ

S2

K
(

1−|z|
|I|

)
(1− |w|)b−1

(1− |z|)1−α+β|1− wz|b+a
dA(z) ≤ γb

ˆ 1

γ

K(t/|I|) dt

(γ + t(1− γ))b+αt1−α+β

≤ γb−1

(1− γ)b+α−1

ˆ 1

γ

K(t/|I|)
tb+β

dt.

On the other hand,
ˆ

S3

K
(

1−|z|
|I|

)
(1− |w|)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z)

≤ 2γb−1

ˆ 1

0

K(t/|I|)
t1−α+β

(ˆ π

γ

dθ

[(γ + t(1− γ))2 + sin2(θ/2)]
b+α

2

)
dt

. γb−1

ˆ 1

0

K(t/|I|) dt

(γ + t(1− γ))b+α−1t1−α+β

≤ 1

γα

ˆ γ

0

K(t/|I|)
t1−α+β

dt +
γb−1

(1− γ)b+α−1

ˆ 1

γ

K(t/|I|)) dt

tb+β
.

Since β < α, Lemma 2.1 in [4] gives

1

γα

ˆ γ

0

K(t/|I|)
t1−α+β

dt =
|I|α−β

γα

ˆ γ/|I|

0

K(s)

s1−α+β
ds . 1

γβ

ˆ γ/|I|

0

K(s)

s
ds ≈ K(γ/|I|)

γβ
.
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Note that b− p + β + c > 1. By Lemma D we have

γb−1

(1− γ)b+α−1

ˆ 1

γ

K(t/|I|)
tb+β

dt ≤ γb−1

(1− γ)b+α−1
K

(
γ

|I|
) (

γ

|I|
)c−p ˆ 1

γ

dt

tb+β(t/|I|)c−p

≤ γb−p−1+c

(1− γ)b+α−1
K

(
γ

|I|
) ˆ 1

γ

dt

tb−p+β+c
. K(γ/|I|)

γβ
.

The above estimates give

ˆ

D

K
(

1−|z|
|I|

)
(1− |w|)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z) .

3∑
j=1

ˆ

Si

K
(

1−|z|
|I|

)
(1− |w|)b−1

(1− |z|)1−α+β|1− wz|b+α
dA(z)

≤ 1

γα

ˆ γ

0

K(t/|I|)
t1−α+β

dt +
γb−1

(1− γ)b+α−1

ˆ 1

γ

K(t/|I|)
tb+β

dt . K(γ/|I|)
γβ

.

Hence (2.1) holds. The proof is complete. ¤
Lemma 2.2. Let K satisfy the conditions (1.3) and (1.4). Let ψ be mea-

surable on D. If dµ(z) = |ψ(z)|2dA(z) is a K-Carleson measure, then |ψ(z)|(1 −
|z|2)(p−1)/2dA(z) is a (p + 1)/2-Carleson measure.

Proof. By Lemma D, we can choose a small c such that t−p+cK(t) is decreasing.
By Cauchy–Schwarz inequality we have

ˆ

S(I)

|ψ(z)|(1− |z|2)(p−1)/2 dA(z)

≤
(ˆ

S(I)

|ψ(z)|2K
(

1− |z|
|I|

)
dA(z)

)1/2 (ˆ

S(I)

(1− |z|2)p−1

K((1− |z|)/|I|) dA(z)

)1/2

. ‖µ‖1/2
K

(ˆ

S(I)

|I|p−c(1− |z|2)c−1 dA(z)

)1/2

. ‖µ‖1/2
K |I|(p+1)/2.

The above estimates give the desired result. ¤
Lemma 2.3. Let K satisfy the conditions (1.3) and (1.4). Let b+α ≥ 1+p, b ≥

max{p, (1 + p)/2} and α > 1/2. Let ψ be measurable on D and define an operator
on L2(D) as:

Tψ(z) =

ˆ

D

(1− |w|2)b−1

|1− wz|b+α
|ψ(w)| dA(w).

If dµ(z) = |ψ(z)|2dA(z) is a K-Carleson measure, then |Tψ(z)|2(1− |z|2)2(α−1)dA(z)
is a K-Carleson measure.

Proof. For the Carleson box S(I), we have
ˆ

S(I)

|Tψ(z)|2(1− |z|2)2(α−1)K

(
1− |z|
|I|

)
dA(z)

≤
ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1)

·
{(ˆ

S(2I)

+

ˆ

D\S(2I)

)
|ψ(w)|(1− |w|

2)b−1

|1− wz|b+α
dA(w)

}2

dA(z) . E1 + E2,
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where

E1 =

ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1)

(ˆ

S(2I)

|ψ(w)|(1− |w|
2)b−1

|1− wz|b+α
dA(w)

)2

dA(z)

and

E2 =

ˆ

S(I)

K

(
1− |z|
|I|

)
(1−|z|2)2(α−1)

(ˆ

D\S(2I)

|ψ(w)|(1− |w|
2)b−1

|1− wz|b+α
dA(w)

)2

dA(z).

To estimate E1, consider

B(z, w) =

√
K ((1− |z|)/|I|)
K ((1− |w|)/|I|)

(1− |w|2)b−1(1− |z|2)α−1

|1− wz|b+α

and the integral operator on L2(D)

TBψ(z) =

ˆ

D

B(z, w)|ψ(w)| dA(w).

Choose β as in Lemma 2.1 such that β < b and α + β > 1. In fact, if p ≥ 1, we
choose β ∈ (1/2, min{α, 1}); if 0 < p < 1, we choose β ∈ ((1 + p − c)/2, (1 + p)/2),
where c is given as in Lemma 2.1.

Define

h(z) =

(
K

(
1−|z|
|I|

))1/2

(1− |z|2)β
.

By Lemma 4.2.2 in [15] and Lemma 2.1, we have
ˆ

D

B(z, w)h(w) dA(w) . h(z)

and ˆ

D

B(z, w)h(z) dA(z) . h(w).

By Schur’s Theorem (cf. [15]) we have
ˆ

D

|TBg(w)|2 dA(w) .
ˆ

D

|g(w)|2 dA(w)

for all g ∈ L2(D). Thus the operator TB is bounded on L2(D) by Corollary 3.2.3 in
[15]. Consider the function

g(w) = |ψ(w)|
(

K

(
1− |w|
|I|

))1/2

χS(2I)(w),

where χS(2I)(w) = 1 for w ∈ S(2I) and 0 for w 6∈ S(2I). We have

(2.2) E1 .
ˆ

D

|TBg(w)|2 dA(w) .
ˆ

D

|g(w)|2 dA(w) ≤ ‖µ‖K .

Next we estimate E2. Since |ψ(w)|2 dA(w) is a K-Carleson measure, by Lemma
2.2, dυ(w) = |ψ(w)|(1 − |w|2)(p−1)/2 dA(w) is (p + 1)/2-Carleson measure. This
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deduces

E2 =

ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1)

·
( ∞∑

n=1

ˆ

S(2n+1I)\S(2nI)

|ψ(w)|(1− |w|2)b−1

|1− wz|b+α
dA(w)

)2

dA(z)

=

ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1)

·
( ∞∑

n=1

ˆ

S(2n+1I)\S(2nI)

dυ(w)

|1− wz|α+(p+1)/2

)2

dA(z)

. ‖υ‖2
(p+1)/2

ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1)

( ∞∑
n=1

(2n+1|I|)(p+1)/2

(2n|I|)α+(p+1)/2

)2

dA(z)

. ‖υ‖2
(p+1)/2

1

|I|2α

ˆ

S(I)

K

(
1− |z|
|I|

)
(1− |z|2)2(α−1) dA(z)

. ‖υ‖2
(p+1)/2

1

|I|2α

ˆ

S(I)

(1− |z|2)2(α−1) dA(z) . ‖υ‖2
(p+1)/2.

Here we use the following estimate:

(2.3)
1

|1− wz| . 1

2n|I| , w ∈ S(2n+1I) \ S(2nI).

Combining our estimates for E1 and E2, we have
ˆ

S(I)

|Tψ(z)|2(1− |z|2)2(α−1)K

(
1− |z|
|I|

)
dA(z) . ‖µ‖K + ‖υ‖2

(p+1)/2

for any I ⊂ ∂D. By Theorem 3.1 in [4] we obtain that |Tψ(z)|2(1− |z|2)2(α−1) dA(z)
is a K-Carleson measure. The proof is complete. ¤

Proof of Theorem 2.1. Now we apply Theorem A to prove Theorem 2.1. Suppose
f ∈ QK , then |f ′(z)|2 dA(z) is a K-Carleson measure. For α > 1/2, the α-order
derivative of f at z ∈ D is

f (α)(z) =
Γ(b + α)

Γ(b)

ˆ

D

(1− |w|2)b−1

(1− wz)b+α
w[α−1]f ′(w) dA(w),

where b > 1 and b + α ≥ 1 + p, b ≥ max{p, (1 + p)/2}. By Lemma 2.3 we obtain
that |f (α)(z)|2(1− |z|2)2(α−1) dA(z) is a K-Carleson measure.

Conversely, assume that |f (α)(z)|2(1− |z|2)2(α−1) dA(z) is a K-Carleson measure.
We consider the Taylor series of f : f(z) =

∑∞
j=0 ajz

j. Note that

1

(1− wz)λ
=

∞∑
j=0

Γ(j + λ)

j!Γ(λ)
wjzj, λ > 0.
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Hence

f (α)(z) =
Γ(b + α)

Γ(b)

ˆ

D

w[α−1](1− |w|2)b−1

(1− wz)b+α
f ′(w) dA(w)

=
Γ(b + α)

Γ(b)

ˆ

D

w[α−1](1− |w|2)b−1

(1− wz)b+α

∞∑
j=1

aj(z
j)′ dA(w)

=
Γ(b + α)

Γ(b)

∞∑
j=1

aj

ˆ

D

w[α−1](1− |w|2)b−1

(1− wz)b+α
(zj)′ dA(w) =

∞∑
j=0

aj,αzj,

where

(2.5) aj,α = aj+m+1

(
Γ(b + j + α)Γ(j + m + 2)

Γ(b + j + m + 1)Γ(j + 1)

)
, j = 0, 1, · · · ,m = [α− 1].

Since α > 1/2, m ≥ 0, a simple computation gives the following equality

Γ(b + m + 1)

Γ(b + α− 1)

ˆ

D

(1− |w|2)b−1

(1− wz)b+m+1
f (α)(w)(1− |w|2)α−1 dA(w)

=
Γ(b + m + 1)

Γ(b + α− 1)

ˆ

D

(1− |w|2)b+α−2

(1− wz)b+m+1

( ∞∑
j=0

aj,αwj

)
dA(w)

=
Γ(b + m + 1)

Γ(b + α− 1)

∞∑
j=0

aj,α

ˆ

D

(1− |w|2)b+α−2

( ∞∑

k=0

Γ(k + b + m + 1)

k!Γ(b + m + 1)
wkzk

)
wj dA(w)

=
∞∑

j=0

Γ(j + m + 2)

Γ(j + 1)
aj+m+1z

j = f (m+1)(z).

Since |f (α)(w)|2(1−|w|2)2(α−1)dA(w) is a K-Carleson measure, Lemma 2.3 implies
that |f (m+1)(z)|2(1 − |z|2)2mdA(z) is a K-Carleson measure. Hence f ∈ QK by
Theorem A. ¤

3. Morrey type spaces and QK spaces

Denote H2
K the Morrey type space of all analytic functions f ∈ H2 on D such

that

(3.1) ‖f‖H2
K

=

(
sup

I⊂∂D

1

K(|I|)
ˆ

I

|f(ζ)− fI |2 |dζ|
)1/2

< ∞,

where
fI =

1

|I|
ˆ

I

f(ζ) dζ

and the Hardy space H2 consists of analytic functions f in D satisfying

sup
0<r<1

1

2π

ˆ 2π

0

|f(reiθ)|2 dθ < ∞.

See [8] and [16] about the Morrey space.
The Poisson extension of a function f ∈ L1(∂D) from ∂D to D is denoted by f̂

and defined as follows:

f̂(z) =
1

2π

ˆ

∂D

f(ζ)
1− |z|2
|ζ − z|2 |dζ|, z ∈ D.
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If f ∈ H2
K , then f̂(z) = f(z) for z ∈ D. Wu and Xie in [10] characterized functions

in the Morrey space in terms of p-Carleson measures. Furthermore, they reveal a
simple relation between Qp space and Morrey space. In this section, we will give
a series of characterizations of the Morrey type space H2

K and build a relationship
between the spaces H2

K and QK .

Theorem 3.1. Let K satisfy the conditions (1.3) and (1.4). Then the following
are equivalent.

(1) f ∈ H2
K .

(2) sup
I⊂∂D

1

K(|I|)
ˆ

S(I)

|f ′(z)|2(1− |z|2) dA(z) < ∞.

(3) sup
a∈D

1− |a|2
K(1− |a|)

ˆ

D

|f ′(z)|2(1− |ϕa(z)|2)dA(z) < ∞.

(4) sup
a∈D

1− |a|2
K(1− |a|)

ˆ

D

|f ′(z)|2g(z, a) dA(z) < ∞.

(5) sup
a∈D

1− |a|2
K(1− |a|)

̂|f − f(a)|2(a) < ∞.

(6) sup
a∈D

1− |a|2
K(1− |a|)

(
|̂f |2(a)− |f(a)|2

)
< ∞.

To prove Theorem 3.1, we need the following Lemmas. The first lemma, Lemma D,
was proved in [11] but here we state it again.

Lemma 3.1. If K satisfies the condition (1.4), then there exists a weight K1,
comparable with K, such that K1(t)/t

p is non-increasing. Moreover, for some enough
small c > 0, K1(t)/t

p−c is also non-increasing.

Proof. If K satisfies the condition (1.4), we will claim that

(3.2) lim
t→0

inf K(t)/tp > 0.

If s > 1, then
K(1)/K(1/s) ≤ ϕK(s)

and by (1.4) ˆ ∞

1

K(1/s)−1 ds

s1+p
=

ˆ 1

0

K(s)−1 ds

s1−p
< ∞.

So, we have

tp/K(t) . K(t)−1

ˆ t

0

ds

s1−p
≤
ˆ 1

0

K(s)−1 ds

s1−p
< ∞.

Then we obtain the claim.
We define

K1(t) = tp
ˆ ∞

t

K(s)

s1+p
ds, 0 < t < ∞.

It is easy to see that K1(t)/t
p is non-increasing. Since K is nondecreasing, it follows

that K1(t) ≥ K(t), 0 < t < ∞. We note that for t ∈ (0, 1),
ˆ 1

t

K(s)

s1+p
ds ≤ K(t)

ˆ 1

t

ϕK(s/t)

s1+p
ds ≤ K(t)

tp

ˆ ∞

1

ϕK(u)

u1+p
du,
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and by (3.2), ˆ ∞

1

K(s)

s1+p
ds = K(1) . K(t)

tp
.

Hence, we obtain that

(3.3) K1(t) ≤ K(t)

(ˆ ∞

1

ϕK(s)

s1+p
ds + 1

)
, 0 < t < 1.

For t ∈ [1,∞), we have

(3.4) K1(t) = tp
ˆ ∞

1

ϕK(s)

s1+p
ds = K(1) = K(t)

By (3.3) and (3.4) we get that K1 ≈ K.
Note that if c is sufficiently small, then we have

(tc−pK1(t))
′ = tc−1−p(cK1(t)−K(t)) < 0, 0 < t < ∞. ¤

Lemma 3.2. Let K satisfy the condition (1.4). Then

K(rt) ≤ tpK(r), 0 ≤ r ≤ 1, 1 ≤ t < ∞.

Proof. By Lemma 3.1 we know that t−pK(t) is non-increasing. Thus

K(rt) = tp
(rt)−pK(rt)K(r)

r−pK(r)
≤ tpK(r),

and we get the desired result. ¤
Proof of Theorem 3.1. We first show (1) ⇔ (5). If (1) holds, without loss of

generality, we assume that |a| > 3/4. Let Ia be the subarc of ∂D with the mid-
pointer a/|a| and length 1 − |a|. Moreover, let Jn = 2nIa for n = 0, 1, . . . , N − 1,
where N is the smallest positive integer such that 2N |Ia| ≥ 1. Let JN be the unit
circle. Then we have the following estimate:

(3.5)
1− |a|2
|1− aζ|2 ≈

1

|Ia| , ζ ∈ Ia

and

(3.6)
1− |a|2
|1− aζ|2 ≈

1

22n|Ia| , ζ ∈ Jn+1 \ Jn, n = 0, 1, 2, · · · , N − 1.

For a fixed point a ∈ D with |a| > 3/4, we obtain the following estimate.

̂|f − f(a)|2(a) =
1

2π

ˆ

∂D

|f(ζ)− f(a)|2 1− |a|2
|ζ − a|2 |dζ|

=
1

2π

ˆ

∂D

|(f(ζ)− fIa)− (f(a)− fIa)|2
1− |a|2
|1− aζ|2 |dζ|

.
ˆ

∂D

|f(ζ)− fIa|2
1− |a|2
|1− aζ|2 |dζ|

.
(ˆ

J0

+
N−1∑
n=0

ˆ

Jn+1\Jn

)
|f(ζ)− fIa|2

1− |a|2
|1− aζ|2 |dζ|
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. 1

|Ia|

(ˆ

J0

+
N−1∑
n=0

2−2n

ˆ

Jn+1\Jn

)
|f(ζ)− fIa|2 |dζ|

. 1

|Ia|
ˆ

J0

|f(ζ)− fJ0|2 |dζ|+
N−1∑
n=0

2−n

|Jn+1|
ˆ

Jn+1\Jn

|f(ζ)− fJ0|2 |dζ|.

By the Cauchy–Schwarz inequality and Lemma 3.2,

|fJn+1 − fJn | ≤
2

|Jn+1|
ˆ

Jn+1

|f(ζ)− fJn+1| |dζ|

≤
(

2

|Jn+1|
ˆ

Jn+1

|f(ζ)− fJn+1|2 |dζ|
)1/2

≤
√

K(|Jn+1|)
|Jn+1| ‖f‖H2

K
. 2n(p−1)/2

√
K(1− |a|)
1− |a|2 ‖f‖H2

K
.

Therefore

|fJn+1 − fJ0| ≤ |fJn+1 − fJn |+ · · ·+ |fJ1 − fJ0| . C(n, p)

√
K(1− |a|)
1− |a|2 ‖f‖H2

K
,

where C(n, p) = (1− 2(p−1)/2)−1 for 0 < p < 1, C(n, p) = n for p = 1 and C(n, p) =
2n(p−1)/2 for 1 < p < 2. On the other hand, the Minkowski inequality gives

1

|Jn+1|
ˆ

Jn+1

|f(ζ)− fJ0|2 |dζ|

≤
((

1

|Jn+1|
ˆ

Jn+1

|f(ζ)− fJn+1| |dζ|
)1/2

+ |fJn+1 − fJ0|
)2

. (C(n, p))2K(1− |a|)
1− |a|2 ‖f‖2

H2
K
.

Since
∑∞

n=0
(C(n,p))2

2n is convergent, the above estimates show that

̂|f − f(a)|2(a) . K(1− |a|)
1− |a|2 ‖f‖2

H2
K

∞∑
n=0

(C(n, p))2

2n
. K(1− |a|)

1− |a|2 ‖f‖2
H2

K
.

Hence, (1) ⇒ (5) holds.
Let (5) hold. For any given I ⊂ ∂D, we choose aI ∈ D such that aI/|aI | is the

center of I and |aI | = 1− |I|. Then
1

K(|I|)
ˆ

I

|f(ζ)− fI |2 |dζ| = 1

K(|I|)
ˆ

I

|(f(ζ)− f(aI))− (fI − f(aI))|2 |dζ|

≤ 4

K(|I|)
ˆ

I

|f(ζ)− f(aI)|2 |dζ|

. 1− |aI |2
K(1− |aI |)

ˆ

I

|f(ζ)− f(aI)|2 1− |aI |2
|1− ζaI |2

|dζ|

. 1− |aI |2
K(1− |aI |)

̂|f − f(aI)|2(aI).
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The above estimate shows that (5) ⇒ (1) holds.
Now we will prove that (2) ⇔ (3). For given I ⊂ ∂D, let aI/|aI | be the midpoint

of I and 1− |aI | = |I|. Note that

|1− aIz| ≈ |I|, z ∈ S(I).

Then

1

K(|I|)
ˆ

S(I)

|f ′(z)|2(1− |z|2) dA(z)

≈ 1− |aI |2
K(1− |aI |)

ˆ

S(I)

|f ′(z)|2(1− |ϕaI
(z)|2) dA(z)

≤ sup
aI∈D

1− |aI |2
K(1− |aI |)

ˆ

D

|f ′(z)|2(1− |ϕaI
(z)|2) dA(z),

which shows that (3) ⇒ (2).
Conversely, suppose (2) holds. There exists a constant M such that

µ(S(I)) =

ˆ

S(I)

dµ(z) ≤ MK(|I|)

for any I ⊂ ∂D, where dµ(z) = |f ′(z)|2(1−|z|2) dA(z). For any given nonzero a ∈ D,
let Ia be the subarc of ∂D with the mid-pointer a/|a| and length 1 − |a|. By (3.5),
(3.6) and Lemma 3.2 we have

(1− |a|2)
ˆ

D

1− |a|2
|1− az|2 dµ(z) ≤

∞∑
n=1

1

22n

ˆ

S(2n+1Ia)\S(2nIa)

dµ(z)

≤
∞∑

n=1

1

22n
µ(S(2n+1Ia)) ≤ M

∞∑
n=1

1

22n
K(2n+1|Ia|)

.
∞∑

n=1

1

2(2−p)n
K(1− |a|) ≈ K(1− |a|).

Taking the supremum over a ∈ D, we have that (2) ⇒ (3).
By the Littlewood–Paley identity ([6], p. 236)

ˆ

D

|f ′(z)|2(1− |z|2) dA(z) ≈
ˆ

D

|f ′(z)|2 log
1

|z|2 dA(z) ≈
ˆ

∂D

|f(ζ)− f(0)|2 |dζ|,

we can figure out (3) ⇔ (4) ⇔ (5) ⇔ (6). The proof is complete. ¤
We conclude this paper by proving a connection between QK and H2

K spaces.

Theorem 3.2. Let K satisfy the conditions (1.3) and (1.4).
(1) If f ∈ QK , there exists a q, 0 < q < p, such that f ( 1−q

2
) ∈ H2

K .
(2) If f ∈ H2

K , there exists a q, 0 < q < p, such that f ( q−1
2

) ∈ QK .

Proof. We note that (f (α))′ = f (α+1). In fact, we consider the Taylor series of
f : f(z) =

∑∞
j=0 ajz

j. Then f (α)(z) =
∑∞

j=0 aj,αzj, where aj,α is defined as in (2.5).
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Since [α− 1] + 1 = [α], we have

(f (α))′(z) =
∞∑

j=0

aj+1,α(j + 1)zj

=
∞∑

j=0

aj+[α−1]+2(j + 1)

(
Γ(b + j + 1 + α)Γ(j + [α− 1] + 3)

Γ(b + j + [α− 1] + 2)Γ(j + 2)

)
zj

=
∞∑

j=0

aj+[α]+1

(
Γ(b + j + 1 + α)Γ(j + [α] + 2)

Γ(b + j + [α] + 1)Γ(j + 1)

)
zj = f (α+1)(z).

We now prove (1). If f ∈ QK , then dµ = |f ( 3−q
2

)(z)|2(1 − |z|2)1−q dA(z) is
K−Carleson measure. For any given I ⊂ ∂D, We have

1

K(|I|)
ˆ

S(I)

|f ( 3−q
2

)(z)|2(1− |z|2) dA(z)

. |I|q
K(|I|)

ˆ

S(I)

|f ( 3−q
2

)(z)|2(1− |z|2)1−qK

(
1− |z|
|I|

)
dA(z)

≤ 1

K(1)
sup

I⊂∂D

ˆ

S(I)

|f ( 3−q
2

)(z)|2(1− |z|2)1−qK

(
1− |z|
|I|

)
dA(z) . ‖µ‖2

K .

Here we used Lemma 3.1, which shows that there exists a q, 0 < q < p, such that
K(t)/tq is non-increasing. Thus, we obtain that f ( 1−q

2
) ∈ H2

K by Theorem 3.1; that
is, (1) holds.

By Lemma 2.1 in [4], there exists a q, 0 < q < p, such that K(t)/tq is nonde-
creasing. For any I ⊂ ∂D, we have
ˆ

S(I)

|f ′(z)|2(1− |z|2)1−qK

(
1− |z|
|I|

)
dA(z) . 1

|I|q
ˆ

S(I)

|f ′(z)|2(1− |z|2) dA(z)

. 1

K(|I|)
ˆ

S(I)

|f ′(z)|2(1− |z|2) dA(z)

Suppose f ∈ H2
K . By Theorem 3.1 we obtain that |f ′(z)|2(1−|z|2)1−q is a K-Carleson

measure. We note that

f ( q+1
2

)(z) =
Γ(b + q+1

2
)

Γ(b)

ˆ

D

(1− |w|2)b+ q−3
2

(1− wz)b+ q+1
2

w[ q−1
2

](1− |w|2)1− q+1
2 f ′(w) dA(w).

Lemma 2.3 implies that |f ( q+1
2

)(z)|2 dA(z) is a K-Carleson measure. Since f ( q+1
2

)(z) =

(f ( q−1
2

))′(z), we have f ( q−1
2

) ∈ QK by Theorem 2.1. Now (2) follows. ¤

Remark. Carefully checking the proof of Theorem 3.2, we find that we need a
non-increasing function K(t)/tq1 for q1 ∈ (0, p) in the proof of (1) and a nondecreasing
function K(t)/tq2 in the proof of (2) for q2 ∈ (0, p). Generally, q1 6= q2 unless
K(t) = tq. In this case QK coincides with Qq. Therefore, we have the following
result about Qq which appeared in [10].
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Corollary 3.1. Let 0 < q < 2 and f ∈ H2. Then f ∈ Qq if and only if
f ( 1−q

2
) ∈ H2,q, where

H2,q =

{
f ∈ H2 : sup

I⊂∂D

1

|I|q
ˆ

I

|f(ζ)− fI |2 |dζ| < ∞
}

.

Consequently, f ∈ H2,q if and only if f ( q−1
2

) ∈ Qq.

4. Final remark

The space QK,0 consists of analytic functions f in D with the property that

lim
|a|→1−

ˆ

D

|f ′(z)|2K(1− |ϕa(z)|2) dA(z) = 0.

It can be checked that QK,0 is a closed subspace in QK .
A positive Borel measure µ on D is called a vanishing K-Carleson measure if

lim
|I|→0

ˆ

S(I)

K

(
1− |z|
|I|

)
dµ(z) = 0.

Carefully checking the proofs of Theorem 2.1 and several lemmas in Section 2 and
Theorem 3.1 in [4], we see that the little oh version of Theorem 2.1 holds as well,
from which we obtain the following.

Theorem 4.1. Let K satisfy the conditions (1.3) and (1.4). If α > 1/2, then
f ∈ QK,0 if and only if |f (α)(z)|2(1 − |z|2)2(α−1) dA(z) is a vanishing K-Carleson
measure.

We are also able to give the little oh versions of Theorems 3.1 and 3.2. Here we
omit the details about them.
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