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Abstract. In this paper we extend a result regarding the free boundary regularity in a one-
phase problem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.
Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

1. Introduction

Recently De Silva and Jerison [DJ] studied the following one-phase free boundary
problem {

∆u = 0, in Ω+(u) := {x ∈ Ω: u(x) > 0},
|∇u| = 1, on F (u) := ∂Ω+(u) ∩ Ω,

where Ω ⊂ Rn is a cylinder. Specifically they proved that if we assume that Ω+(u)
is an NTA domain and that the free boundary F (u) is a graph in the en-direction,
then F (u) is given by a Lipschitz graph. They prove this by comparing vertical (en-
direction) translates of the solution. In essence they prove that the change in u in the
vertical direction is comparable to the change in u in the direction, normal to each
level surface. This is equivalent with level surfaces being Lipschitz, with uniform
bound. In this paper we extend this result to non-divergence equations, with the
matrix {aij} independent of the en-direction. This allows us to compare solutions
with their vertical translates. Specifically we consider the following problem

(1.1)

{
Lu = 0, in Ω+(u),

|∇u| = 1, on F (u),

for operators L of the form

(1.2) Lu =
n∑

i,j=1

aij
∂2u

∂xi∂xj

= 0,

where the matrix aij is uniformly elliptic, i.e.

(1.3) λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2,

and that ∂aij

∂xn
= 0, aij ∈ C0,1(Rn). We will be concerned with the question wether

the free boundary is Lipschitz, assuming that Ω+(u) is an NTA domain and F (u) a
graph in the en, direction. To properly state our results we need to introduce some
notation. Points in Euclidean n-space Rn are denoted by x = (x1, . . . , xn) or (x′, xn)
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where x′ = (x1, . . . , xn−1) ∈ Rn−1. Let Ē, ∂E, diam E be the closure, boundary, and
diameter of E. Let · denote the standard inner product on Rn, |x| = (x · x)1/2, the
Euclidean norm of x, and let dx be Lebesgue n-measure on Rn. Given x ∈ Rn and
r > 0, let Br(x) = {y ∈ Rn : |x − y| < r}, B′

r(x) = {y ∈ Rn−1 : |x − y| < r}, for
short we write Br := Br(0), and B′

r := B′
r(0). Given E, F ⊂ Rn, let d(E,F ) be the

Euclidean distance from E to F . In case E = {y}, we write d(y, F ).
If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then by W 1,q(O), we denote the space of

equivalence classes of functions f with distributional gradient ∇f = (fx1 , . . . , fxn),
both of which are q-th power integrable on O. Let

‖f‖W 1,q(O) = ‖f‖Lq(O) + ‖|∇f |‖Lq(O),

be the norm in W 1,q(O) where ‖ · ‖Lq(O) denotes the usual Lebesgue q-norm in O.
Next let C∞

0 (O) be the set of infinitely differentiable functions with compact support
in O. By ∇· we denote the divergence operator. Finally, given n ≥ 1 we let Hk, for
k ∈ {1, . . . , n}, denote the k-dimensional Hausdorff measure on Rn.

Let Ω ⊂ Rn be a bounded domain and let ∆(w, r) = ∂Ω ∩ B(w, r) whenever
w ∈ ∂Ω, 0 < r. Given Ω we will in the following always let σ denote the restriction
of the (n− 1)-dimensional Hausdorff measure to ∂Ω.

Given a matrix A = {aij} : Rn → Rn ×Rn and a domain Ω ∈ Rn, we define ωx
∇

as the elliptic measure at x relative Ω for the operator ∇·A∇·, and ωx
L as the elliptic

measure at x relative Ω for the operator L·, also denoted as the L-elliptic measure.
Let

(1.4) C(R, K) := {|x′| < R} × (−K, K) ⊂ Rn, CK := C(1, K).

Definition 1.1. Let Ω ⊂ Rn be a domain, then we say that a function u ∈
W 2,p

loc (Ω) for some 1 < p < ∞ is a strong solution to Lu = f , if Lu = f holds a.e. in
Ω.

Note that if f ∈ L∞loc(Ω) then a strong solution lies in W 2,p
loc (Ω) for any 1 < p < ∞.

As in [DJ], we define solutions to the one-phase problem (1.1), with the modifi-
cation of strong solutions instead of viscosity solutions.

Definition 1.2. Let u be a non-negative function in C(Ω)∩W 2,p
loc (Ω+(u)) for all

1 < p < ∞. We say that u is a solution to (1.1) in Ω if and only if the following
conditions are satisfied:

(1) If u is a strong solution to Lu = 0 in Ω+(u);
(2) If x0 ∈ F (u) and F (u) has at x0 a tangent ball Bε from either the positive or

the zero side, then for ν the unit radial direction of ∂Bε at x0 into Ω+(u),

u(x) = 〈x− x0, ν〉+ + o(|x− x0|), as x → x0.

Definition 1.3. A solution u to (1.1) with Ω = B(0, 1), is non-degenerate if
there is a constant c > 0 such that u(x) > cd(x), for all x ∈ B(0, 1)+(u).

Lemma 1.4. [GT, Theorem 9.19] Let u ∈ W 2,p
loc (Ω), be a solution to Lu = f a.e.

in Ω, where the coefficients of L belong to Ck−1,1(Ω), f ∈ W k,q
loc (Ω), with 1 < p, q < ∞,

k ≥ 0. Then u ∈ W k+2,q
loc (Ω).

We remark that in general a strong solution is different from a viscosity solution,
however since our coefficients are Lipschitz continuous, we see from the above lemma
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together with Sobolev embedding, that they are equivalent. See e.g. [C]. In this
paper we prove the following generalization of Theorem 1.3 in [DJ].

Theorem 1.5. Let u be a solution to (1.1) as in Definition 1.2, in the cylinder
CK , for some K > 0. Suppose that u is monotone in the vertical direction,

∂u

∂xn

> 0, on C+
K(u),

and its free boundary is given as the graph of a continuous function φ, i.e. F (u) =
{(x′, xn) : x′ ∈ B′

1 : xn = φ(x′)}. Suppose that the oscillation of φ is bounded,

max
x′∈B′1

|φ(x′)| ≤ K − 1,

and finally, that there is a non-tangentially accessible (NTA) domain D such that

C(9/10, K − 1/2) ∩ C+
K(u) ⊂ D ⊂ C+

K(u).

Then
sup

x′∈B′
1/2

|∇φ(x′)| ≤ C,

for a constant C depending only on K, λ, Λ, the NTA constants M, r0 and n.

2. Basic estimates

Definition 2.1. A bounded domain Ω is called non-tangentially accessible (NTA)
if there exist M ≥ 1 and r0 such that the following are fulfilled:

(i) corkscrew condition: for any w ∈ ∂Ω, 0 < r < r0, there exists ar(w) ∈ Ω
satisfying M−1r < |ar(w)− w| < r, d(ar(w), ∂Ω) > M−1r,

(ii) Rn \ Ω satisfies the corkscrew condition,
(iii) uniform condition: if w ∈ ∂Ω, 0 < r < r0, and w1, w2 ∈ B(w, r) ∩ Ω, then

there exists a rectifiable curve γ : [0, 1]→Ω with γ(0) = w1, γ(1) = w2, and
such that
(a) H1(γ) ≤ M |w1 − w2|,
(b) min{H1(γ([0, t])), H1(γ([t, 1]))} ≤ Md(γ(t), ∂Ω).

In this section we consider Ω ⊂ Rn to be an NTA domain with constants M, r0.
We also consider the operator L as in (1.2),(1.3). We need some preliminary lemmas.

Lemma 2.2. If Ω is an NTA domain, then for any w ∈ ∂Ω and r < r0, there
exists an NTA domain D ⊂ Ω such that

BM−1r(w) ∩ Ω ⊂ D ⊂ BMr(w) ∩ Ω.

Furthermore, the constant M in the NTA definition for D is independent of w, r.

Proof. See [J]. ¤

Lemma 2.3. Suppose that u, v are positive solutions to Lû = 0 in Ω, where
r < r0 and w ∈ ∂Ω which vanish continuously on Br ∩ ∂Ω. Then for r′ < r

c−1u(ar(w))

v(ar(w))
≤ u(x)

v(x)
≤ c

u(ar(w))

v(ar(w))
,

for all x ∈ Br′(w) ∩ Ω, where c = c(r − r′) ≥ 1.

Proof. See [K]. ¤
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Lemma 2.4. Let Ω ⊂ Rn satisfy the exterior corkscrew condition, for some
M, r0, and let aij ∈ C(Ω). Let L̂ be the operator

L̂ =
n∑

i,j=1

aij
∂2

∂i∂j

+
n∑

i=1

bi
∂

∂i

,

with

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2 ∀x ∈ Ω, ξ ∈ Rn,

d(x, ∂Ω)
n∑

i=1

|bi(x)| = o(1) as d(x, ∂Ω) → 0, x ∈ Ω.

Then the Dirichlet problem

L̂u = f almost everywhere in Ω,

u = 0 on ∂Ω,

with f locally bounded and satisfying

|f(x)| ≤ d(x, ∂Ω)2−β,

for some β ∈ (0, 1) near ∂Ω, admits a unique solution u ∈ C(Ω)∩W 2,p
loc (Ω) for any p,

1 < p < ∞. Moreover, the following estimate holds

sup
Ω
|d(x, ∂Ω)−βu(x)| ≤ Cβ sup

Ω
|d(x, ∂Ω)2−βf(x)|.

Proof. See [A]. ¤

Lemma 2.5. Let Ω ⊂ Rn be a bounded NTA-domain with constants M, r0.
Then the L-elliptic measure at x with respect to Ω, called ωx

L is mutually absolutely
continuous with respect to the elliptic measure ωx

∇ at x with respect to ∇ · (A∇·),
and Ω.

Proof. Let x ∈ Ω, and let E ⊂ ∂Ω be such that ωx
∇(E) = 0. Set

u(x) =

∫

∂Ω

χE(y) dωx
L(y),

then we see that

∇ · (A∇u) =
n∑

i,j=1

[aijuij + (∂iaij)uj] =
n∑

i,j=1

(∂iaij)uj =: B∇u =: f,

with Bi = (∂iaij), 1 ≤ i ≤ n. From interior Schauder estimates we see that L̂ =

L+B∇, f, Ω satisfies Lemma 2.4, hence we can find a solution v to L̂v = f , v = 0 on
∂Ω which is obviously a weak solution to ∇ · (A∇v) = f . Then ∇ · (A∇(u− v)) = 0,
hence if

(u− v)(x) =

∫
(u− v)(y) dωx

∇(y) =

∫
u(y) dωx

∇(y) = 0,

telling us that if ωx
∇(E) = 0 then ωx

L(E) = 0. To prove the other way around, let
E ⊂ ∂Ω be such that ωx

L(E) = 0 for some x ∈ Ω, take

u(x) =

∫

∂Ω

χE(y) dωx
∇(y).
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Then we see that Lu = −B∇u =: f . Let now v be the solution according to Lemma
2.4 to the equation Lv = f , with v = 0 on ∂Ω. Since L(u− v) = 0 we see that

(u− v)(x) =

∫

∂Ω

(u− v)(y) dωx
L(y) =

∫

∂Ω

χE(y) dωx
L(y) = 0. ¤

This next lemma replaces the fact that for harmonic function, the absolute value
of the gradient is a subsolution. In the variable coefficients case we have to add a
correction term |x|2 to obtain a subsolution.

Lemma 2.6. Let Ω ⊂ Rn be a domain. Let w ≥ 0 be a positive strong solution
to Lw = 0 in Ω, assume also that there exists constants CA, Cw ≥ 0 such that
|∇w| < Cw and |∂ajk/∂xi| < CA for all 1 ≤ i, j, k ≤ n. Then there exists a constant
C2 = C2(Cw, CA, n, 1/λ) such that u = |∇w|2 + C2|x|2 is a subsolution.

Proof. Let A = {aij}, then let us look at v = |∇w|2, where w is such that
Lw = 0. Then we see that

Lv =
n∑

i=1

Lw2
i =

n∑
i=1

[2wiLwi + A∇wi · ∇wi]

=
n∑

i=1

[
A∇wi · ∇wi − 2wi Tr

(
∂A

∂xi

∇2w

)]
≥

n∑
i=1

λ|∇wi|2 − 2CwCA

n∑

k,l=1

|wij|.

In order to bound the above right-hand side, we estimate the following

∣∣∣∣∇2w
∣∣∣∣ = sup

|ξ|=1

|(∇2w)ξ| = sup
|ξ|=1

( n∑
j=1

|∇wj · ξ|2
)1/2 ≤ ( n∑

j=1

|∇wj|2
)1/2

.

Hence ||∇2w||2 ≤ ∑n
j=1 |∇wj|2. Let ξk = ek, then

n2
∣∣∣∣∇2w

∣∣∣∣2 ≥ n

n∑

j,k=1

|∇wj · ξk|2 = n

n∑

j,k=1

|wjk|2 ≥
( n∑

j,k=1

|wjk|
)2

.

This yields

Lv ≥
n∑

i=1

λ|∇wi|2 − 2CwCA

n∑

k,l=1

|wij| ≥ λ
∣∣∣∣∇2w

∣∣∣∣2 − 2CwCAn
∣∣∣∣∇2w

∣∣∣∣ .

Hence if at x ∈ Ω

(2.1)
∣∣∣∣∇2w

∣∣∣∣ ≥ 2CwCAn/λ.

Then |∇w|2 is a subsolution at x. Else if at x ∈ Ω, (2.1) does not hold,

Lv ≥
∣∣∣∣∇2w

∣∣∣∣ (
λ

∣∣∣∣∇2w
∣∣∣∣− 2CwCAn

)

≥ CwCAn(−2CwCAn)/λ = −C1 = −C1(Cw, CA, n, 1/λ).

In both cases u = v + C1

λn
|x|2 satisfies Lu ≥ 0. ¤
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3. Refined estimates for solutions to (1.1) in CK

In this section we prove estimates needed for us to be able to use the proof
designed by De Silva and Jerison in [DJ] to prove Theorem 1.5. We begin with a
Lipschitz bound.

Lemma 3.1. Let u be a solution to (1.1) as in Theorem 1.5. Then there exist a
constant C, such that

(1) |∇u| ≤ C on C(1/2, K/2)+(u),
(2) u ≤ Cd on C(1/2, K/2)+(u).

Proof. The proof follows closely that of Lemma 2.1 in [DS]. We start by proving
that if x0 ∈ C(1/2, K/2)+(u) and d = d(x0, F (u)), then

(3.1) u(x0) ≤ Cd.

Let x0 ∈ C+
1/2(u). Then v(x) = 1

d
u(x0 + dx) is a solution to a non-divergence form

equation of the same type as in (1.2), (1.3), i.e. L̂v = 0 in B1. By Harnack’s inequality
we see that

v(x) ≥ cv(0) in B1/2(0).

Let us choose β < 0 such that the radially symmetric function

g(x) =
cv(0)

2−β − 1
(|x|β − 1),

satisfies L̂g ≥ 0 in the annulus B1 \B1/2. Consider ĝ = |x|β, and x ∈ B1 \B1/2. Then

ĝi(x) = βxi|x|β−2,

ĝij(x) = β(β − 2)xixj|x|β−4 + βδij|x|β−2,

Lĝ ≥ [λβ(β − 2) + Λnβ]|x|β−2 = |x|β−2(λβ2 + (2λ + Λn)β) ≥ 0,

if β < −(2λ+Λn). Choosing β = −2(2λ+Λn) we see that Lg ≥ 0, g = 0 on ∂B1 and
g = cv(0) on ∂B1/2. Then by the maximum principle g(x) ≤ v(x). Now let x1 ∈ ∂B1

be such that v(x1) = 0. Let ν be the inward normal to ∂B1 at x1. Then at x1,

1 = |∇v(x1)| ≥ vν ≥ gν ≥ Cv(0),

which yields (3.1) for x0 ∈ C+
1/2(u). It now follows from Harnack’s inequality and

interior Schauder estimates that (1) and (2) hold. ¤
The next lemma is for us a technical necessity in proving Lemma 3.3.

Lemma 3.2. Let u be a solution as in Theorem 1.5, then ∇u has non-tangential
limits ωL-almost everywhere on F (u) ∩D.

Lemma 3.3. Let u be a solution as in Theorem 1.5, u non-degenerate in B3/4,
and 0 ∈ F (u). Then, F (u) ∩ B1/2 is smooth almost everywhere with respect to the
L-elliptic measure.

Proof. Using Lemma 3.2, we can proceed as in [DJ, Lemma 2.7]. ¤
Proof of Lemma 3.2. Let k = 1, 2, . . . , n. Then ∂ku = h solves the following

equation

Lh = −
n∑

i,j=1

(∂kaij)
∂2u

∂i∂j

=: f.
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From Lemma 3.1 we see that using standard interior Schauder estimates, L, f,D
satisfies the requirements of Lemma 2.4, and hence there exists a solution v to Lv = f
and v = 0 on ∂D. Let g = h − v, then Lg = 0. We need to prove that g has non-
tangential limits ωL-a.e., since this implies the same for h. To begin, let us observe
that if θ ∈ C∞

0 (D) is a test-function, then by integration by parts

0 =
n∑

i,j=1

∫
aij

∂2g

∂xi∂xj

θ dx = −
n∑

i,j=1

∫
∂aij

∂xj

∂g

∂xi

θ dx−
n∑

i,j=1

∫
aij

∂g

∂xi

∂θ

∂xj

dx.

Thus we see that g is a weak solution to the equation ∇ · A∇g −B · ∇g = 0, where
Bj =

∑n
i=1

∂aij

∂xi
. We immediately see that Bj ∈ L∞(D), hence there exists a unique,

weak solution ũ to ∇·A∇ũ−B∇ũ = 0, ũ = 0 on ∂D and continuous in D (see [GT,
Theorem 8.31]). Using a version of Fatou’s theorem in [JK], we obtain that g− ũ has
non-tangential limits ω∇-a.e. on F (u) ∩ D, and hence we see that g has by Lemma
2.5 non-tangential limits ωL-almost everywhere. ¤

Next we prove the existence of a subsolution which is crucial to the proof of
Theorem 1.5, inspired by the subsolution in [DJ].

Lemma 3.4. There exists a function g(x) = φ(|x′|2)eAxn , with φ a C2(R+∪{0})
function, and a constant A = A(λ, Λ, n) > 0, such that φ satisfies

φ(r) =

{
1, if r < 1/4,

0, if r ≥ 7/10,

φ(r) ≥ 0 for all r ∈ R+ ∪ {0}, and such that g satisfies

Lg(x) ≥ 0 in Rn.

Proof. To prove this lemma, we will make an explicit choice of the function φ.
Let A be a positive constant to be chosen later. Take φ as the following function

φ(s) =





0, s ≥ 7/10,

exp
(

(s−1/4)3

s−7/10

)
, 7/10 ≥ s ≥ 1/4,

1, s < 1/4,

one easily sees that this function is in C2(R+). Let s = |x′|2. Then

∇g(x) =

{
2x′φ′(s)

∣∣∣∣ A

}
g(x),

∇2g(x) =





4x′ ⊗ x′φ′′(s)− 2I(n−1)×(n−1)φ
′(s) 2Ax′φ′(s)

2Ax′φ′(s) A2φ(s)





eAxn .

We can now calculate Lg

Lg =
n−1∑
i,j=1

aijgij +
n−1∑
i=1

[aingin + anigni] + anngnn,
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where
n−1∑
i,j=1

aij [4xixjφ
′′(s)− 2δijφ

′(s)] eAxn ≥ [
4λs2φ′′(s)− 2Λ(n− 1)nφ′(s)

]
eAxn ,

and
n−1∑
i=1

[aingin + anigni] = −
n−1∑
i=1

aij2Axiφ
′(s)eAxn ≥ −2Λsφ′(s)eAxn .

We obtain

Lg ≥ [
4λs2φ′′(s) + (−4nΛ(n− 1)− 4nsΛ)φ′(s) + λA2φ(s)

]
eAxn .

By inspection we see that the above expression is non-negative for 1/4 ≤ s < 7/10,
when A = A(λ, Λ, n) large enough, i.e. Lg ≥ 0. When s < 1/4, Lg(x) = A2g(x) > 0,
and if s ≥ 7/10, we have Lg = 0. ¤

4. Proof of Theorem 1.5

To prove Theorem 1.5 we follow the game plan of [DJ].

Step 1. Non-degeneracy and separation of level sets at the top. We
first show the non-degeneracy of u, namely that if Bρ(x0) ⊂ C+

L (u), ρ < 1, then

(4.1) u(x0) ≥ γρ,

for a constant γ = γ(λ, Λ, n) > 0. Let g(x) = an

1−2β (1−|x|β), where β < 0 is as in the
proof of Lemma 3.1, then g is a strict supersolution in B2 \ B1, g = an on ∂B2 and
g = 0 on ∂B1, choose an = 1−2β

2|β| , then |∇g| < 1 on ∂B1.
Notice that since aij are independent on the xn direction we have Luxn = 0.

Using this fact we can apply the argument of step1 in [DJ] to obtain (4.1).
Next we prove that the level sets near the top of the cylinder are separated by

an appropriate amount. Let ε > 0 and define

v(x) := u(x− εen).

Since u is strictly monotone in the vertical direction, we have v(x) < u(x) on C+
K(u).

Using Lemma 3.1 together with the argument of step1 in [DJ] we obtain

v(x) ≤ u(x)− cε on B9/10(0)× {K − 1/2}.
Step 2. Construction of a family of supersolutions. From the hypotheses

of Theorem 1.5, there exists by Lemma 2.2 an NTA domain between any pair C(r1, L−
a1) and C(r2, L − a2) for r1 < r2 ≤ 9/10 and a1 > a2 ≥ 1/2. Thus the boundary
Harnack inequality, (Lemma 2.3) has the following corollary.

Corollary 4.1. Let u be as in Theorem 1.5, and let r1 < r2 ≤ 9/10 and a1 >
a2 ≥ 1/2. Then there is a constant C depending on K, M, r0, r2−r1 > 0, and a1−a2 >
0 such that if h1 and h2 are positive solutions to Lh = 0 on C(r2, K − a2) ∩ C+

K(u),
vanishing on ∂D ∩ C(r2, L− a2), then

h1(x)

h2(x)
≤ C

h1(y)

h2(y)
,

for every x and y in C(r1, K − a1) ∩ C+
K(u).
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Let us call C1 = C(9/10, K − 1/2), C2 = C(8/10,M2), and C3 = C(7/10,M3),
K − 1 < M3 < M2 < K − 1/2. Let w be a solution to Lw = 0 in C+

1 (u), satisfying
the following boundary conditions

w = 0, on F (u),

v < w ≤ u, on C+
1 (u) ∩ ∂C1,

v +
c1

4
ε < w < u− c1

4
ε, on C1 ∩Rn × {K − 1/2}.

(4.2)

By step 1, we have separated our level sets at the top, hence we can achieve (4.2).
Since Lv ≥ 0 and Lu = Lw = 0, we have by the maximum principle

v < w < u in C+
1 (u).

Moreover C+
1 (w) = C+

1 (u), with coinciding free boundaries inside C1. We claim next
that in the smaller cylinder C2,

|∇w|(x) ≤ C1, x ∈ C2.

Define d(x) = d(x, F (u)). At points x ∈ C2 ∩ C+
1 (u) such that d(x) ≥ 1/10, this

follows from standard interior Schauder estimates and the fact that w is bounded.
On the other hand, at points that are close to F (u), we have that Bd(x)(x) ⊂ C+

1 (u)
and from Lemma 3.1 we see that

w(x) < u(x) < Cd(x).

Using interior Schauder estimates we get the claim.
Set h = u−w. Then Lh = 0, h > 0, inside C+

1 (u) with coinciding free boundary
with u in C1. Now let H be a solution to LH = 0, inside B′

9/10 × (K − 1, K − 1/2)

such that H = c1/2 on the top and vanishing elsewhere on the boundary. Then in
view of (4.2) we see that h ≥ εH. Thus, h(x1) ≥ c1ε/4, at x1 = (K − 1/2 − δn)en

for a small constant δn depending on the dimension and the ellipticity. Moreover by
the Lipschitz continuity of u we get that h(x1) < (u − v)(x1) ≤ Nε. Using non-
degeneracy and Lipschitz continuity of u we also have that bn ≤ u(x1) ≤ 2KN . Thus
Corollary 4.1 gives

h(x)

u(x)
≤ C

h(x1)

u(x1)
≤ C

Nε

bn

,

and
c1ε/4

2KN
≤ h(x1)

u(x1)
≤ C

h(x)

u(x)
.

Hence we see that
1

C
εu(x) ≤ h(x) ≤ Cεu(x),

where C = C(c1, K, N, bn), on C+
2 (u). The upper bound on h above implies

(4.3) (1− C2ε)u ≤ w ≤ (1− c2ε)u on C+
2 (u),

In particular, if F (u) is smooth around a point x0 ∈ C2 then |∇u|(x0) = 1, which
combined with (4.3) gives

|∇w|(x0) ≤ 1− c2ε.

But according to Lemma 3.3, we have

(4.4) |∇w| ≤ 1− c2ε, ωL a.e. on F (u) ∩ C2.
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Next we use (4.4) to show that, by restricting to the smaller cylinder C3, we have

(4.5) |∇w|2 ≤ (1− c2ε)
2 + C4

√
u on C+

3 (u).

To do this we let f be the solution to Lf = 0, f(x) = C2
1 + C∗

2 |x|2 in ∂C+
2 (u) \ ∂F (u)

such that (C∗
2 is C2 from Lemma 2.6), and

f(x) = (1− c2ε)
2 + C∗

2 |x|2 on F (u) ∩ C2.

From this we see that f ≥ |∇w|2 + C∗
2 |x|2. We can split f into two parts, f = h + g,

where Lh, g = 0, h = (1 − c2ε)
2 on F (u) ∩ C2 and h = C2

1 on ∂C+
2 (u) \ ∂F (u),

g = C∗
2 |x|2 on ∂C+

2 (u). Then h− (1− c2ε)
2 is a positive L-harmonic function, we can

use Corollary 4.1 to obtain

h− (1− c2ε)
2 ≤ C3u,

giving us the estimate

|∇w|2 ≤ (1− c2ε)
2 + C3u + g − C∗

2 |x|2.
To estimate P = g − C∗

2 |x|2, we note that P = 0 on ∂C+
2 (u), and −λC ≥ LP ≥

−ΛC. It now follows from Lemma 2.4 that for any β̂ ∈ (0, 1) we have

sup
C+

2 (u)

∣∣∣∣
P (x)

d(x, ∂Ω)β̂

∣∣∣∣ ≤ C sup
C+

2 (u)

∣∣∣d(x, ∂Ω)2−β̂ΛC
∣∣∣ ≤ C∗

3(β̂),

which tells us that
P (x) ≤ C∗

3d(x, ∂Ω)β̂, β ∈ (0, 1),

in C+
2 (u). From the non-degeneracy, boundedness of u, and choosing β̂ = 1/2, we

have
|∇w|2 ≤ (1− c2ε)

2 + C3u + C∗
3u

β̂ ≤ (1− c2ε)
2 + C4

√
u,

in C+
3 (u). Hence (4.5) holds.
Let us now define the following family of supersolutions, for t ≥ 0,

wt(x) = w(x)− tg(x), x ∈ C1,

with g(x) as in Lemma 3.4. Thus wt is a L-supersolution on C+
1 (wt). Moreover (4.5)

together with (4.3) we get

|∇wt| ≤ |∇w|+ t|∇g| ≤
√

(1− c2ε)2 + C5

√
w + t|∇g|

in C+
3 (u). In particular on F (wt) ∩ C3 we have w = tg and hence

|∇wt| ≤ 1− c2ε

2

provided 0 < t < c3ε, with c3 small enough depending on c2, C5 and the constant A
from Lemma 3.4.

Step 3. Arguing in the same way as in Step 3 [DJ] we obtain the conclusion of
Theorem 1.5.
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5. Concluding remarks

Regarding what is done in [DJ], we are at this point in time not able to prove
that a general one-phase free boundary is NTA and a graph. This is due to the
lack of a monotonicity formula, as in [ACF], if we had such a formula then we could
probably proceed as in [DS2] to prove that the free boundary of a monotone solution
as in Theorem 1.5 is NTA and a graph in the en-direction. Regarding the assumption
that the coefficients in our equation where invariant with respect to the en direction,
we see that this is essential to the argument developed by De Silva and Jerison [DJ].
However, it would be interesting to see if this could be done without this assumption,
with some additional continuity assumption on the coefficients, and using an estimate
for the difference between solutions, whose coefficients are close.
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