NONLOCALIZATION OF OPERATORS OF SCHRÖDINGER TYPE

Per Sjölin

KTH Royal Institute of Technology, Department of Mathematics S-100 44 Stockholm, Sweden; pers@math.kth.se

Abstract. Localization properties are studied for operators of Schrödinger type.

1. Introduction

For f belonging to the Schwartz class $\mathcal{S}(\mathbf{R})$ we define the Fourier transform f by setting

$$\hat{f}(\xi) = \int_{\mathbf{R}} e^{-i\xi x} f(x) \, dx, \quad \xi \in \mathbf{R}.$$

For a > 1 and $f \in \mathcal{S}(\mathbf{R})$ we also set

$$S_t f(x) = \int_{\mathbf{R}} e^{i\xi x} e^{it|\xi|^a} \hat{f}(x) \, dx, \quad x \in \mathbf{R}, \quad t \ge 0.$$

If we set $u(x,t) = S_t f(x)/2\pi$, then u(x,0) = f(x) and in the case a = 2, u satisfies the Schrödinger equation $i \partial u/\partial t = \partial^2 u/\partial x^2$. We also set

$$m(\xi) = e^{i|\xi|^a}, \quad \xi \in \mathbf{R}$$

and let K denote the Fourier transform of m so that $K \in \mathcal{S}'(\mathbf{R})$. It is known that $K \in C^{\infty}(\mathbf{R})$ (see Lemma A below) and in the case t > 0 it is clear that

$$e^{it|\xi|^a} = m(t^{1/a}\xi)$$

has the Fourier transform

$$K_t(y) = t^{-1/a} K(t^{-1/a} y).$$

One has $S_t f(x) = K_t * f(x)$ for t > 0 and $f \in \mathcal{S}(\mathbf{R})$ and we set $S_t f(x) = K_t * f(x)$ for $f \in L^2(\mathbf{R})$ with compact support. We introduce Sobolev spaces H_s by setting

$$H_s = \left\{ f \in \mathcal{S}'; \ \|f\|_{H_s} < \infty \right\}, \quad s \in \mathbf{R},$$

where

$$||f||_{H_s} = \left(\int_{\mathbf{R}} \left(1 + \xi^2\right)^s \left|\hat{f}(\xi)\right|^2 d\xi\right)^{1/2}.$$

It is well-known (see Sjölin [4] and Vega [5] and in the case a = 2 Carleson [1] and Dahlberg and Kenig [2]) that

$$\lim_{t \to 0} \frac{1}{2\pi} S_t f(x) = f(x)$$

almost everywhere if $f \in H_{1/4}$ and f has compact support. Also it is known that $H_{1/4}$ cannot be replaced by H_s if s < 1/4.

doi:10.5186/aasfm.2013.3805

²⁰¹⁰ Mathematics Subject Classification: Primary 42A63.

Key words: Schrödinger equation, localization.

Per Sjölin

Now assume that $0 \le s < 1/4$.

Here we shall study the problem if there is localization or localization almost everywhere for the above operators S_t and functions $f \in H_s$ with compact support, that is, do we have

$$\lim_{t \to 0} S_t f(x) = 0$$

everywhere or almost everywhere in $\mathbf{R} \setminus (\operatorname{supp} f)$? We shall prove that there is no localization or localization almost everywhere of this type for $0 \leq s < 1/4$. In fact we shall prove that there exist two disjoint compact intervals I and J in \mathbf{R} and a function f which belongs to H_s for all s < 1/4, with the properties that $\operatorname{supp} f \subset I$ and for every $x \in J$ one does not have

$$\lim_{t \to 0} S_t f(x) = 0.$$

In the special case a = 2 this was proved in 2009 by P. Sjölin and F. Soria. The proof for a > 1 in this paper is a generalization of the proof of Sjölin and Soria for a = 2. We remark that Sjölin and Soria also obtained the corresponding result for a = 2 and dimension $n \ge 2$.

2. Proofs

We shall use a theorem of Miyachi to obtain some properties of the kernel K defined in the introduction.

Lemma A. One has $K \in C^{\infty}(\mathbf{R})$ and there exists a number $\alpha \ge 0$ such that (1) $|K(x)| \le C (1 + |x|^{\alpha})$ for $x \in \mathbf{R}$.

Proof. Let $\psi \in C^{\infty}(\mathbf{R})$ with

1

$$\psi(\xi) = 1, \quad |\xi| \ge 2, \text{ and } \psi(\xi) = 0, \quad |\xi| \le 1.$$

We have $m = m_1 + m_2$, where

$$m_1(\xi) = (1 - \psi(\xi)) e^{i|\xi|^a}$$
 and $m_2(\xi) = \psi(\xi) e^{i|\xi|^a}$.

Let m_1 and m_2 have Fourier transforms K_1 and K_2 respectively. We have

$$K_1(x) = \int_{|\xi| \le 2} e^{-ix\xi} \left(1 - \psi(\xi)\right) e^{i|\xi|^a} d\xi, \quad x \in \mathbf{R},$$

and it is easy to see that K_1 is bounded and belongs to C^{∞} .

Also Miyachi [3] has proved that $K_2 \in C^{\infty}$ and that

$$|K_2(x)| \le C |x|^{(1-a/2)/(a-1)}$$

for |x| large. It follows that $K \in C^{\infty}$ and that (1) holds with $\alpha = 0$ for $a \ge 2$ and $\alpha = (1 - a/2)/(a - 1)$ for 1 < a < 2. Hence Lemma A is proved.

We shall use the inverse Fourier transform defined by

$$\check{f}(x) = \frac{1}{2\pi} \int_{\mathbf{R}} e^{i\xi x} f(\xi) \, d\xi, \quad f \in \mathcal{S}(\mathbf{R}).$$

Now choose $g \in \mathcal{S}(\mathbf{R})$ such that supp $\check{g} \subset (-1, 1), \check{g}(0) \neq 0$, and set

$$f_v(x) = e^{-ix/v^2} \check{g}(x/v), \quad 0 < v < 1.$$

It follows that supp $f_v \subset (-v, v)$ and $f_v \in \mathcal{S}(\mathbf{R})$. We shall use the functions f_v to construct the counter-example mentioned in the introduction. We remark that similar

functions were used by Dahlberg and Kenig [2]. We need the following lemma, which is essentially contained in [2].

Lemma 1. One has $\hat{f}_v(\xi) = v g(v\xi + 1/v)$ for 0 < v < 1 and $||f_v||_{H_s} \le C v^{1/2-2s}$ for 0 < v < 1 and 0 < s < 1/4.

In our counter-example we shall use the following estimate.

Lemma 2. There exist positive numbers c_0 , δ and v_0 such that

$$\left|S_{xv^{2a-2}/a}f_v(x)\right| \ge c_0$$

for $0 < v < v_0$ and $0 < x < \delta$.

Proof. We have $\int g(\xi) d\xi \neq 0$ and we choose a large number L such that

$$\int_{|\xi| \ge L} \left| g(\xi) \right| d\xi \le \frac{1}{100} \left| \int g(\xi) \, d\xi \right|.$$

Setting $\eta = v\xi + 1/v$ we obtain

$$S_t f_v(x) = \int e^{ix\xi} e^{it|\xi|^a} v g(v\xi + 1/v) d\xi$$

= $\int e^{ix(\eta/v - 1/v^2)} e^{it|\eta/v - 1/v^2|^a} g(\eta) d\eta = \int e^{iF} g d\xi,$

where

$$F = F(x,\xi,t,v) = \frac{x}{v} \left(\xi - \frac{1}{v}\right) + \frac{t}{v^a} \left|\xi - \frac{1}{v}\right|^a.$$

We now take $v_0 = 1/(2L)$ and v such that $0 < v < v_0$. One has

$$S_t f(x) = \int_{-L}^{L} e^{iF} g \, d\xi + \int_{|\xi| \ge L} e^{iF} g \, d\xi$$

and

$$\left| S_t f_v(x) \right| \ge \left| \int_{-L}^{L} e^{iF} g \, d\xi \right| - \left| \int_{|\xi| \ge L} e^{iF} g \, d\xi \right| \ge \left| \int_{-L}^{L} e^{iF} g \, d\xi \right| - \frac{1}{100} \left| \int g \, d\xi \right|.$$

For $|\xi| \leq L$ we have

$$F = \frac{x}{v} \left(\xi - \frac{1}{v}\right) + \frac{t}{v^a} \left(\frac{1}{v} - \xi\right)^a$$

and using a Taylor expansion one obtains

$$\left(\frac{1}{v}-\xi\right)^{a} = \frac{1}{v^{a}}\left(1-v\xi\right)^{a} = \frac{1}{v^{a}}\left(1-av\xi+\frac{1}{2}a(a-1)v^{2}\xi^{2}+O(v^{3}|\xi|^{3})\right)$$
$$= \frac{1}{v^{a}}-a\xi v^{1-a}+\frac{1}{2}a(a-1)v^{a-2}\xi^{2}+O(v^{3-a}).$$

Hence

$$F = \frac{x\xi}{v} - \frac{x}{v^2} + \frac{t}{v^{2a}} - a\xi tv^{1-2a} + \frac{1}{2}a(a-1)tv^{2-2a}\xi^2 + O(tv^{3-2a}).$$

Setting $t = xv^{2a-2}/a$ we get

$$F = \frac{x\xi}{v} - \frac{x}{v^2} + \frac{x}{av^2} - \xi x v^{2a-2} v^{1-2a} + \frac{1}{2}(a-1)x v^{2a-2} v^{2-2a} \xi^2 + O(xv)$$
$$= \frac{x\xi}{v} - \frac{x}{v^2} + \frac{x}{av^2} - \frac{x\xi}{v} + \frac{1}{2}(a-1)x\xi^2 + O(xv)$$

for x > 0. It follows that

$$F = \frac{x}{av^2} - \frac{x}{v^2} + \frac{1}{2}(a-1)x\xi^2 + O(xv)$$

and hence

$$\begin{aligned} \left| \int_{-L}^{L} e^{iF} g \, d\xi \right| &= \left| \int_{-L}^{L} e^{i\frac{1}{2}(a-1)x\xi^{2}} e^{iO(xv)} g(\xi) \, d\xi \right| \\ &= \left| \int_{-L}^{L} e^{i\frac{1}{2}(a-1)x\xi^{2}} g(\xi) \, d\xi + \int_{-L}^{L} e^{i\frac{1}{2}(a-1)x\xi^{2}} \left(e^{iO(xv)} - 1 \right) g(\xi) \, d\xi \right| \\ &\geq \left| \int_{-L}^{L} e^{i\frac{1}{2}(a-1)x\xi^{2}} g(\xi) \, d\xi \right| - C \, x \ge \frac{1}{2} \left| \int_{-L}^{L} g(\xi) \, d\xi \right| \end{aligned}$$

for $0 < x < \delta$ if δ is small.

We conclude that

$$\begin{aligned} \left| S_{xv^{2a-2}/a} f_v(x) \right| &\geq \frac{1}{2} \left| \int_{-L}^{L} g \, d\xi \right| - \frac{1}{100} \left| \int g \, d\xi \right| \\ &\geq \frac{1}{2} \left| \int g \, d\xi \right| - \frac{1}{100} \left| \int g \, d\xi \right| - \frac{1}{100} \left| \int g \, d\xi \right| \geq \frac{1}{4} \left| \int g \, d\xi \right| \end{aligned}$$

for $0 < v < v_0$ and $0 < x < \delta$. Hence Lemma 2 is proved.

In the remaining part of this paper δ and v_0 are given by Lemma 2 and we may also assume that $\delta < 1$. We need two more lemmas.

Lemma 3. For $0 < v < \min(v_0, \delta/4)$, 0 < t < 1, and $\delta/2 < x < \delta$ one has

$$\left|S_t f_v(x)\right| \le C \, \frac{v}{t^{\gamma}}$$

where $\gamma = (1 + \alpha)/a > 0$.

Proof. Using the estimate in Lemma A we obtain

$$\left| K_t(y) \right| \le t^{-1/a} C \left(1 + |t^{-1/a}y|^{\alpha} \right) \le C t^{-1/a} \left(1 + t^{-\alpha/a} \right) \le C t^{-(1+\alpha)/a}$$

for 0 < t < 1 and $|y| \le 2$.

One has

$$S_t f_v(x) = \int e^{it|\xi|^a} \hat{f}_v(\xi) \, e^{ix\xi} \, d\xi = \int K_t(y) \, f_v(y+x) \, dy.$$

If $\delta/2 < x < \delta$ and $|y| \ge 2$, we obtain $|y+x| \ge |y| - |x| \ge 2 - 1 = 1$ and $f_v(y+x) = 0$ and hence

$$S_t f_v(x) = \int_{|y| \le 2} K_t(y) f_v(y+x) \, dy$$

for $\delta/2 < x < \delta$. It follows that

$$|S_t f_v(x)| \le \int_{|y|\le 2} |K_t(y)| |f_v(y+x)| \, dy \le C \, t^{-(1+\alpha)/a} \int |f_v(y)| \, dy$$
$$= C \, t^{-(1+\alpha)/a} \int |\check{g}(y/v)| \, dy = C \, \frac{v}{t^{\gamma}}$$

where $\gamma = (1 + \alpha)/a$.

Lemma 4. For $0 < v < \min(v_0, \delta/4)$, 0 < t < 1, and $\delta/2 < x < \delta$ one has

$$\left|S_t f_v(x)\right| \le C \, \frac{t}{v^\beta}$$

where $\beta = 2a$.

Proof. We have

$$S_t f_v(x) = \int \left(e^{it|\xi|^a} - 1 \right) e^{ix\xi} \hat{f}_v(\xi) \, d\xi + \int e^{ix\xi} \hat{f}_v(\xi) \, d\xi$$

The second integral on the above right hand side equals $2\pi f_v(x)$ which vanishes since $x > \delta/2$ and supp $f_v \subset (-v, v) \subset (-\delta/4, \delta/4)$. Setting $\eta = v\xi$ we obtain

$$\begin{split} \left| S_t f_v(x) \right| &\leq \int t |\xi|^a \left| \hat{f}_v(\xi) \right| d\xi = t \int |\xi|^a v \left| g(v\xi + 1/v) \right| d\xi \\ &= t \int \left| \frac{\eta}{v} \right|^a \left| g\left(\eta + \frac{1}{v} \right) \right| d\eta = \frac{t}{v^a} \int |g(\xi)| \left| \xi - \frac{1}{v} \right|^a d\xi \\ &\leq \frac{t}{v^a} \left(C \int |g(\xi)| \left| \xi \right|^a d\xi + C \int |g(\xi)| \frac{1}{v^a} d\xi \right) \leq C \frac{t}{v^{2a}}, \end{split}$$
roof of Lemma 4 is complete.

and the proof of Lemma 4 is complete.

Now take v_1 such that $0 < v_1 < \min(v_0, \delta/4)$ and set $\varepsilon_k = 2^{-k}$ for $k = 1, 2, 3, \ldots$ Also set

$$v_k = \varepsilon_k \, v_{k-1}^{\mu}, \quad k = 2, 3, 4, \dots,$$

where

$$\mu = \max((2a-2)\gamma, \beta/(2a-2))$$

Since $\beta = 2a$ it is clear that $\mu > 1$. By induction we prove that $v_k < 1$ for k =1,2,3,.... It follows that $0 < v_k \le \varepsilon_k, \ k = 1,2,3,...$ Also we have $v_k \le \varepsilon_k v_{k-1} \le \frac{1}{2} v_{k-1}$ for k = 2,3,4,... It follows that

$$\sum_{j=k+1}^{\infty} v_j \le 2v_{k+1}, \quad k = 1, 2, 3, \dots,$$

and

$$\sum_{j=1}^{k-1} \frac{1}{v_j^{\beta}} \le C \frac{1}{v_{k-1}^{\beta}}, \quad k = 2, 3, 4, \dots$$

Now set $f = \sum_{k=1}^{\infty} f_{v_k}$. Then $f \in H_s$ for s < 1/4, since

$$\|f\|_{H_s} \le \sum_{1}^{\infty} \|f_{v_k}\|_{H_s} \le C \sum_{1}^{\infty} v_k^{1/2-2s} \le C \sum_{1}^{\infty} \varepsilon_k^{1/2-2s} < \infty$$

for 0 < s < 1/4. It is clear that supp $f \subset (-\delta/4, \delta/4)$.

We can now formulate our theorem.

Theorem 1. Let f be the function we have just constructed. With $t_k = t_k(x) = x v_k^{2a-2}/a$ one has

$$\left|S_{t_k(x)}f(x)\right| \ge c_0/2$$

for $\delta/2 < x < \delta$ and $k \ge k_0$. Here c_0 denotes a positive constant. Hence we do not have $\lim_{t\to 0} S_t f(x) = 0$ in the interval $(\delta/2, \delta)$. Thus we do not have localization or localization almost everywhere for all functions in H_s if s < 1/4.

Proof. We have

$$S_{t_k(x)}f(x) = \sum_{j=1}^{\infty} S_{t_k(x)}f_{v_j}(x)$$

and

$$|S_{t_k(x)}f(x)| \ge |S_{t_k(x)}f_{v_k}(x)| - \sum_{j \ne k} |S_{t_k(x)}f_{v_j}(x)|$$

and using Lemma 2 we obtain

$$|S_{t_k(x)}f(x)| \ge c_0 - \sum_{j=1}^{k-1} |S_{t_k(x)}f_{v_j}(x)| - \sum_{j=k+1}^{\infty} |S_{t_k(x)}f_{v_j}(x)|$$

We shall estimate the two sums on the right hand side for $\delta/2 < x < \delta$. For $j \ge k+1$ we have

$$|S_{t_k(x)}f_{v_j}(x)| \le C \frac{v_j}{(t_k(x))^{\gamma}}$$

according to Lemma 3. Hence

$$|S_{t_k(x)}f_{v_j}(x)| \le C \frac{v_j}{(xv_k^{2a-2})^{\gamma}} \le C \frac{v_j}{v_k^{(2a-2)\gamma}}$$

and

$$\sum_{j=k+1}^{\infty} |S_{t_k(x)} f_{v_j}(x)| \le C \frac{1}{v_k^{(2a-2)\gamma}} \sum_{j=k+1}^{\infty} v_j \le C \frac{v_{k+1}}{v_k^{(2a-2)\gamma}}$$

Since $\mu \ge (2a-2)\gamma$ we have $v_{k+1} \le \varepsilon_{k+1} v_k^{(2a-2)\gamma}$ and hence

$$\sum_{j=k+1}^{\infty} |S_{t_k(x)} f_{v_j}(x)| \le C\varepsilon_{k+1}.$$

For $1 \leq j \leq k-1$ we have

$$|S_{t_k(x)}f_{v_j}(x)| \le C\frac{t_k(x)}{v_j^\beta} \le C\frac{v_k^{2a-2}}{v_j^\beta}$$

according to Lemma 4. It follows that

$$\sum_{j=1}^{k-1} |S_{t_k(x)} f_{v_j}(x)| \le C v_k^{2a-2} \sum_{j=1}^{k-1} \frac{1}{v_j^{\beta}} \le C v_k^{2a-2} \frac{1}{v_{k-1}^{\beta}}.$$

Since $\mu \ge \beta/(2a-2)$ we obtain

$$v_k \le \varepsilon_k v_{k-1}^{\beta/(2a-2)}$$

and

$$v_k^{2a-2} \le \varepsilon_k^{2a-2} v_{k-1}^\beta.$$

We conclude that

$$\sum_{j=1}^{k-1} |S_{t_k(x)} f_{v_j}(x)| \le C \varepsilon_k^{2a-2}.$$

Thus for $k \geq k_0$ one obtains

$$|S_{t_k(x)}f(x)| \ge c_0/2$$

for $\delta/2 < x < \delta$ and the proof of the theorem is complete.

References

- CARLESON, L.: Some analytical problems related to statistical mechanics. In: Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math. 779, Springer, Berlin, 1980, 5–45.
- [2] DAHLBERG, B. E. J., and C. E. KENIG: A note on the almost everywhere behaviour of solutions to the Schrödinger equation. - In: Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math. 908, Springer, Berlin-New York, 1982, 205–209.
- [3] MIYACHI, A.: On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 1981, 267–315.
- [4] SJÖLIN, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55, 1987, 699-715.
- [5] VEGA, L.: El multiplicador de Schrödinger, la funcion maximal y los operadores de restriccion.Departamento de Matematicas, Univ. Autonoma de Madrid, 1988.

Received 23 January 2012 • Accepted 2 July 2012

147