NONLOCALIZATION OF OPERATORS
 OF SCHRÖDINGER TYPE

Per Sjölin

KTH Royal Institute of Technology, Department of Mathematics

 S-100 44 Stockholm, Sweden; pers@math.kth.se
Abstract

Localization properties are studied for operators of Schrödinger type.

1. Introduction

For f belonging to the Schwartz class $\mathcal{S}(\mathbf{R})$ we define the Fourier transform \hat{f} by setting

$$
\hat{f}(\xi)=\int_{\mathbf{R}} e^{-i \xi x} f(x) d x, \quad \xi \in \mathbf{R} .
$$

For $a>1$ and $f \in \mathcal{S}(\mathbf{R})$ we also set

$$
S_{t} f(x)=\int_{\mathbf{R}} e^{i \xi x} e^{i t|\xi| a} \hat{f}(x) d x, \quad x \in \mathbf{R}, \quad t \geq 0
$$

If we set $u(x, t)=S_{t} f(x) / 2 \pi$, then $u(x, 0)=f(x)$ and in the case $a=2, u$ satisfies the Schrödinger equation $i \partial u / \partial t=\partial^{2} u / \partial x^{2}$. We also set

$$
m(\xi)=e^{i|\xi|^{a}}, \quad \xi \in \mathbf{R},
$$

and let K denote the Fourier transform of m so that $K \in \mathcal{S}^{\prime}(\mathbf{R})$. It is known that $K \in C^{\infty}(\mathbf{R})$ (see Lemma A below) and in the case $t>0$ it is clear that

$$
e^{i t|\xi|^{a}}=m\left(t^{1 / a} \xi\right)
$$

has the Fourier transform

$$
K_{t}(y)=t^{-1 / a} K\left(t^{-1 / a} y\right) .
$$

One has $S_{t} f(x)=K_{t} * f(x)$ for $t>0$ and $f \in \mathcal{S}(\mathbf{R})$ and we set $S_{t} f(x)=K_{t} * f(x)$ for $f \in L^{2}(\mathbf{R})$ with compact support. We introduce Sobolev spaces H_{s} by setting

$$
H_{s}=\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{H_{s}}<\infty\right\}, \quad s \in \mathbf{R}
$$

where

$$
\|f\|_{H_{s}}=\left(\int_{\mathbf{R}}\left(1+\xi^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

It is well-known (see Sjölin [4] and Vega [5] and in the case $a=2$ Carleson [1] and Dahlberg and Kenig [2]) that

$$
\lim _{t \rightarrow 0} \frac{1}{2 \pi} S_{t} f(x)=f(x)
$$

almost everywhere if $f \in H_{1 / 4}$ and f has compact support. Also it is known that $H_{1 / 4}$ cannot be replaced by H_{s} if $s<1 / 4$.
doi:10.5186/aasfm. 2013.3805
2010 Mathematics Subject Classification: Primary 42A63.
Key words: Schrödinger equation, localization.

Now assume that $0 \leq s<1 / 4$.
Here we shall study the problem if there is localization or localization almost everywhere for the above operators S_{t} and functions $f \in H_{s}$ with compact support, that is, do we have

$$
\lim _{t \rightarrow 0} S_{t} f(x)=0
$$

everywhere or almost everywhere in $\mathbf{R} \backslash(\operatorname{supp} f)$? We shall prove that there is no localization or localization almost everywhere of this type for $0 \leq s<1 / 4$. In fact we shall prove that there exist two disjoint compact intervals I and J in \mathbf{R} and a function f which belongs to H_{s} for all $s<1 / 4$, with the properties that supp $f \subset I$ and for every $x \in J$ one does not have

$$
\lim _{t \rightarrow 0} S_{t} f(x)=0
$$

In the special case $a=2$ this was proved in 2009 by P. Sjölin and F. Soria. The proof for $a>1$ in this paper is a generalization of the proof of Sjölin and Soria for $a=2$. We remark that Sjölin and Soria also obtained the corresponding result for $a=2$ and dimension $n \geq 2$.

2. Proofs

We shall use a theorem of Miyachi to obtain some properties of the kernel K defined in the introduction.

Lemma A. One has $K \in C^{\infty}(\mathbf{R})$ and there exists a number $\alpha \geq 0$ such that

$$
\begin{equation*}
|K(x)| \leq C\left(1+|x|^{\alpha}\right) \quad \text { for } x \in \mathbf{R} \tag{1}
\end{equation*}
$$

Proof. Let $\psi \in C^{\infty}(\mathbf{R})$ with

$$
\psi(\xi)=1, \quad|\xi| \geq 2, \quad \text { and } \quad \psi(\xi)=0, \quad|\xi| \leq 1
$$

We have $m=m_{1}+m_{2}$, where

$$
m_{1}(\xi)=(1-\psi(\xi)) e^{i|\xi|^{a}} \quad \text { and } \quad m_{2}(\xi)=\psi(\xi) e^{i|\xi|^{a}}
$$

Let m_{1} and m_{2} have Fourier transforms K_{1} and K_{2} respectively. We have

$$
K_{1}(x)=\int_{|\xi| \leq 2} e^{-i x \xi}(1-\psi(\xi)) e^{i|\xi|^{a}} d \xi, \quad x \in \mathbf{R}
$$

and it is easy to see that K_{1} is bounded and belongs to C^{∞}.
Also Miyachi [3] has proved that $K_{2} \in C^{\infty}$ and that

$$
\left|K_{2}(x)\right| \leq C|x|^{(1-a / 2) /(a-1)}
$$

for $|x|$ large. It follows that $K \in C^{\infty}$ and that (1) holds with $\alpha=0$ for $a \geq 2$ and $\alpha=(1-a / 2) /(a-1)$ for $1<a<2$. Hence Lemma A is proved.

We shall use the inverse Fourier transform defined by

$$
\check{f}(x)=\frac{1}{2 \pi} \int_{\mathbf{R}} e^{i \xi x} f(\xi) d \xi, \quad f \in \mathcal{S}(\mathbf{R}) .
$$

Now choose $g \in \mathcal{S}(\mathbf{R})$ such that supp $\check{g} \subset(-1,1), \check{g}(0) \neq 0$, and set

$$
f_{v}(x)=e^{-i x / v^{2}} \check{g}(x / v), \quad 0<v<1 .
$$

It follows that $\operatorname{supp} f_{v} \subset(-v, v)$ and $f_{v} \in \mathcal{S}(\mathbf{R})$. We shall use the functions f_{v} to construct the counter-example mentioned in the introduction. We remark that similar
functions were used by Dahlberg and Kenig [2]. We need the following lemma, which is essentially contained in [2].

Lemma 1. One has $\hat{f}_{v}(\xi)=v g(v \xi+1 / v)$ for $0<v<1$ and $\left\|f_{v}\right\|_{H_{s}} \leq C v^{1 / 2-2 s}$ for $0<v<1$ and $0<s<1 / 4$.

In our counter-example we shall use the following estimate.
Lemma 2. There exist positive numbers c_{0}, δ and v_{0} such that

$$
\left|S_{x v^{2 a-2} / a} f_{v}(x)\right| \geq c_{0}
$$

for $0<v<v_{0}$ and $0<x<\delta$.
Proof. We have $\int g(\xi) d \xi \neq 0$ and we choose a large number L such that

$$
\int_{|\xi| \geq L}|g(\xi)| d \xi \leq \frac{1}{100}\left|\int g(\xi) d \xi\right|
$$

Setting $\eta=v \xi+1 / v$ we obtain

$$
\begin{aligned}
S_{t} f_{v}(x) & =\int e^{i x \xi} e^{i t|\xi|^{a}} v g(v \xi+1 / v) d \xi \\
& =\int e^{i x\left(\eta / v-1 / v^{2}\right)} e^{i t\left|\eta / v-1 / v^{2}\right| a} g(\eta) d \eta=\int e^{i F} g d \xi
\end{aligned}
$$

where

$$
F=F(x, \xi, t, v)=\frac{x}{v}\left(\xi-\frac{1}{v}\right)+\frac{t}{v^{a}}\left|\xi-\frac{1}{v}\right|^{a} .
$$

We now take $v_{0}=1 /(2 L)$ and v such that $0<v<v_{0}$. One has

$$
S_{t} f(x)=\int_{-L}^{L} e^{i F} g d \xi+\int_{|\xi| \geq L} e^{i F} g d \xi
$$

and

$$
\left|S_{t} f_{v}(x)\right| \geq\left|\int_{-L}^{L} e^{i F} g d \xi\right|-\left|\int_{|\xi| \geq L} e^{i F} g d \xi\right| \geq\left|\int_{-L}^{L} e^{i F} g d \xi\right|-\frac{1}{100}\left|\int g d \xi\right|
$$

For $|\xi| \leq L$ we have

$$
F=\frac{x}{v}\left(\xi-\frac{1}{v}\right)+\frac{t}{v^{a}}\left(\frac{1}{v}-\xi\right)^{a}
$$

and using a Taylor expansion one obtains

$$
\begin{aligned}
\left(\frac{1}{v}-\xi\right)^{a} & =\frac{1}{v^{a}}(1-v \xi)^{a}=\frac{1}{v^{a}}\left(1-a v \xi+\frac{1}{2} a(a-1) v^{2} \xi^{2}+O\left(v^{3}|\xi|^{3}\right)\right) \\
& =\frac{1}{v^{a}}-a \xi v^{1-a}+\frac{1}{2} a(a-1) v^{a-2} \xi^{2}+O\left(v^{3-a}\right)
\end{aligned}
$$

Hence

$$
F=\frac{x \xi}{v}-\frac{x}{v^{2}}+\frac{t}{v^{2 a}}-a \xi t v^{1-2 a}+\frac{1}{2} a(a-1) t v^{2-2 a} \xi^{2}+O\left(t v^{3-2 a}\right) .
$$

Setting $t=x v^{2 a-2} / a$ we get

$$
\begin{aligned}
F & =\frac{x \xi}{v}-\frac{x}{v^{2}}+\frac{x}{a v^{2}}-\xi x v^{2 a-2} v^{1-2 a}+\frac{1}{2}(a-1) x v^{2 a-2} v^{2-2 a} \xi^{2}+O(x v) \\
& =\frac{x \xi}{v}-\frac{x}{v^{2}}+\frac{x}{a v^{2}}-\frac{x \xi}{v}+\frac{1}{2}(a-1) x \xi^{2}+O(x v)
\end{aligned}
$$

for $x>0$. It follows that

$$
F=\frac{x}{a v^{2}}-\frac{x}{v^{2}}+\frac{1}{2}(a-1) x \xi^{2}+O(x v)
$$

and hence

$$
\begin{aligned}
\left|\int_{-L}^{L} e^{i F} g d \xi\right| & =\left|\int_{-L}^{L} e^{i \frac{1}{2}(a-1) x \xi^{2}} e^{i O(x v)} g(\xi) d \xi\right| \\
& =\left|\int_{-L}^{L} e^{i \frac{1}{2}(a-1) x \xi^{2}} g(\xi) d \xi+\int_{-L}^{L} e^{i \frac{1}{2}(a-1) x \xi^{2}}\left(e^{i O(x v)}-1\right) g(\xi) d \xi\right| \\
& \geq\left|\int_{-L}^{L} e^{i \frac{1}{2}(a-1) x \xi^{2}} g(\xi) d \xi\right|-C x \geq \frac{1}{2}\left|\int_{-L}^{L} g(\xi) d \xi\right|
\end{aligned}
$$

for $0<x<\delta$ if δ is small.
We conclude that

$$
\begin{aligned}
\left|S_{x v^{2 a-2} / a} f_{v}(x)\right| & \geq \frac{1}{2}\left|\int_{-L}^{L} g d \xi\right|-\frac{1}{100}\left|\int g d \xi\right| \\
& \geq \frac{1}{2}\left|\int g d \xi\right|-\frac{1}{100}\left|\int g d \xi\right|-\frac{1}{100}\left|\int g d \xi\right| \geq \frac{1}{4}\left|\int g d \xi\right|
\end{aligned}
$$

for $0<v<v_{0}$ and $0<x<\delta$. Hence Lemma 2 is proved.
In the remaining part of this paper δ and v_{0} are given by Lemma 2 and we may also assume that $\delta<1$. We need two more lemmas.

Lemma 3. For $0<v<\min \left(v_{0}, \delta / 4\right), 0<t<1$, and $\delta / 2<x<\delta$ one has

$$
\left|S_{t} f_{v}(x)\right| \leq C \frac{v}{t^{\gamma}}
$$

where $\gamma=(1+\alpha) / a>0$.
Proof. Using the estimate in Lemma A we obtain

$$
\left|K_{t}(y)\right| \leq t^{-1 / a} C\left(1+\left|t^{-1 / a} y\right|^{\alpha}\right) \leq C t^{-1 / a}\left(1+t^{-\alpha / a}\right) \leq C t^{-(1+\alpha) / a}
$$

for $0<t<1$ and $|y| \leq 2$.
One has

$$
S_{t} f_{v}(x)=\int e^{i t|\xi| a} \hat{f}_{v}(\xi) e^{i x \xi} d \xi=\int K_{t}(y) f_{v}(y+x) d y
$$

If $\delta / 2<x<\delta$ and $|y| \geq 2$, we obtain $|y+x| \geq|y|-|x| \geq 2-1=1$ and $f_{v}(y+x)=0$ and hence

$$
S_{t} f_{v}(x)=\int_{|y| \leq 2} K_{t}(y) f_{v}(y+x) d y
$$

for $\delta / 2<x<\delta$. It follows that

$$
\begin{aligned}
\left|S_{t} f_{v}(x)\right| & \leq \int_{|y| \leq 2}\left|K_{t}(y)\right|\left|f_{v}(y+x)\right| d y \leq C t^{-(1+\alpha) / a} \int\left|f_{v}(y)\right| d y \\
& =C t^{-(1+\alpha) / a} \int|\check{g}(y / v)| d y=C \frac{v}{t^{\gamma}}
\end{aligned}
$$

where $\gamma=(1+\alpha) / a$.
Lemma 4. For $0<v<\min \left(v_{0}, \delta / 4\right), 0<t<1$, and $\delta / 2<x<\delta$ one has

$$
\left|S_{t} f_{v}(x)\right| \leq C \frac{t}{v^{\beta}}
$$

where $\beta=2 a$.
Proof. We have

$$
S_{t} f_{v}(x)=\int\left(e^{i t|\xi|^{a}}-1\right) e^{i x \xi} \hat{f}_{v}(\xi) d \xi+\int e^{i x \xi} \hat{f}_{v}(\xi) d \xi
$$

The second integral on the above right hand side equals $2 \pi f_{v}(x)$ which vanishes since $x>\delta / 2$ and $\operatorname{supp} f_{v} \subset(-v, v) \subset(-\delta / 4, \delta / 4)$. Setting $\eta=v \xi$ we obtain

$$
\begin{aligned}
\left|S_{t} f_{v}(x)\right| & \leq \int t|\xi|^{a}\left|\hat{f}_{v}(\xi)\right| d \xi=t \int|\xi|^{a} v|g(v \xi+1 / v)| d \xi \\
& =t \int\left|\frac{\eta}{v}\right|^{a}\left|g\left(\eta+\frac{1}{v}\right)\right| d \eta=\frac{t}{v^{a}} \int|g(\xi)|\left|\xi-\frac{1}{v}\right|^{a} d \xi \\
& \leq \frac{t}{v^{a}}\left(C \int|g(\xi)||\xi|^{a} d \xi+C \int|g(\xi)| \frac{1}{v^{a}} d \xi\right) \leq C \frac{t}{v^{2 a}}
\end{aligned}
$$

and the proof of Lemma 4 is complete.
Now take v_{1} such that $0<v_{1}<\min \left(v_{0}, \delta / 4\right)$ and set $\varepsilon_{k}=2^{-k}$ for $k=1,2,3, \ldots$. Also set

$$
v_{k}=\varepsilon_{k} v_{k-1}^{\mu}, \quad k=2,3,4, \ldots
$$

where

$$
\mu=\max ((2 a-2) \gamma, \beta /(2 a-2))
$$

Since $\beta=2 a$ it is clear that $\mu>1$. By induction we prove that $v_{k}<1$ for $k=$ $1,2,3, \ldots$ It follows that $0<v_{k} \leq \varepsilon_{k}, k=1,2,3, \ldots$.

Also we have $v_{k} \leq \varepsilon_{k} v_{k-1} \leq \frac{1}{2} v_{k-1}$ for $k=2,3,4, \ldots$. It follows that

$$
\sum_{j=k+1}^{\infty} v_{j} \leq 2 v_{k+1}, \quad k=1,2,3, \ldots
$$

and

$$
\sum_{j=1}^{k-1} \frac{1}{v_{j}^{\beta}} \leq C \frac{1}{v_{k-1}^{\beta}}, \quad k=2,3,4, \ldots
$$

Now set $f=\sum_{k=1}^{\infty} f_{v_{k}}$. Then $f \in H_{s}$ for $s<1 / 4$, since

$$
\|f\|_{H_{s}} \leq \sum_{1}^{\infty}\left\|f_{v_{k}}\right\|_{H_{s}} \leq C \sum_{1}^{\infty} v_{k}^{1 / 2-2 s} \leq C \sum_{1}^{\infty} \varepsilon_{k}^{1 / 2-2 s}<\infty
$$

for $0<s<1 / 4$. It is clear that $\operatorname{supp} f \subset(-\delta / 4, \delta / 4)$.

We can now formulate our theorem.
Theorem 1. Let f be the function we have just constructed. With $t_{k}=t_{k}(x)=$ $x v_{k}^{2 a-2} / a$ one has

$$
\left|S_{t_{k}(x)} f(x)\right| \geq c_{0} / 2
$$

for $\delta / 2<x<\delta$ and $k \geq k_{0}$. Here c_{0} denotes a positive constant. Hence we do not have $\lim _{t \rightarrow 0} S_{t} f(x)=0$ in the interval $(\delta / 2, \delta)$. Thus we do not have localization or localization almost everywhere for all functions in H_{s} if $s<1 / 4$.

Proof. We have

$$
S_{t_{k}(x)} f(x)=\sum_{j=1}^{\infty} S_{t_{k}(x)} f_{v_{j}}(x)
$$

and

$$
\left|S_{t_{k}(x)} f(x)\right| \geq\left|S_{t_{k}(x)} f_{v_{k}}(x)\right|-\sum_{j \neq k}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right|
$$

and using Lemma 2 we obtain

$$
\left|S_{t_{k}(x)} f(x)\right| \geq c_{0}-\sum_{j=1}^{k-1}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right|-\sum_{j=k+1}^{\infty}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right|
$$

We shall estimate the two sums on the right hand side for $\delta / 2<x<\delta$. For $j \geq k+1$ we have

$$
\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \frac{v_{j}}{\left(t_{k}(x)\right)^{\gamma}}
$$

according to Lemma 3. Hence

$$
\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \frac{v_{j}}{\left(x v_{k}^{2 a-2}\right)^{\gamma}} \leq C \frac{v_{j}}{v_{k}^{(2 a-2) \gamma}}
$$

and

$$
\sum_{j=k+1}^{\infty}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \frac{1}{v_{k}^{(2 a-2) \gamma}} \sum_{j=k+1}^{\infty} v_{j} \leq C \frac{v_{k+1}}{v_{k}^{(2 a-2) \gamma}}
$$

Since $\mu \geq(2 a-2) \gamma$ we have $v_{k+1} \leq \varepsilon_{k+1} v_{k}^{(2 a-2) \gamma}$ and hence

$$
\sum_{j=k+1}^{\infty}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \varepsilon_{k+1}
$$

For $1 \leq j \leq k-1$ we have

$$
\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \frac{t_{k}(x)}{v_{j}^{\beta}} \leq C \frac{v_{k}^{2 a-2}}{v_{j}^{\beta}}
$$

according to Lemma 4. It follows that

$$
\sum_{j=1}^{k-1}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C v_{k}^{2 a-2} \sum_{j=1}^{k-1} \frac{1}{v_{j}^{\beta}} \leq C v_{k}^{2 a-2} \frac{1}{v_{k-1}^{\beta}}
$$

Since $\mu \geq \beta /(2 a-2)$ we obtain

$$
v_{k} \leq \varepsilon_{k} v_{k-1}^{\beta /(2 a-2)}
$$

and

$$
v_{k}^{2 a-2} \leq \varepsilon_{k}^{2 a-2} v_{k-1}^{\beta} .
$$

We conclude that

$$
\sum_{j=1}^{k-1}\left|S_{t_{k}(x)} f_{v_{j}}(x)\right| \leq C \varepsilon_{k}^{2 a-2}
$$

Thus for $k \geq k_{0}$ one obtains

$$
\left|S_{t_{k}(x)} f(x)\right| \geq c_{0} / 2
$$

for $\delta / 2<x<\delta$ and the proof of the theorem is complete.

References

[1] Carleson, L.: Some analytical problems related to statistical mechanics. - In: Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math. 779, Springer, Berlin, 1980, 5-45.
[2] Dahlberg, B. E. J., and C. E. Kenig: A note on the almost everywhere behaviour of solutions to the Schrödinger equation. - In: Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math. 908, Springer, Berlin-New York, 1982, 205-209.
[3] Miyachi, A.: On some singular Fourier multipliers. - J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 1981, 267-315.
[4] SJölin, P.: Regularity of solutions to the Schrödinger equation. - Duke Math. J. 55, 1987, 699-715.
[5] VEGA, L.: El multiplicador de Schrödinger, la funcion maximal y los operadores de restriccion. - Departamento de Matematicas, Univ. Autonoma de Madrid, 1988.

