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Abstract. We construct an infinite martingale sequence on the dual symbolic space from
a uniformly quasisymmetric circle endomorphism preserving the Lebesgue measure. This infinite
martingale sequence is uniformly bounded. Thus from the martingale convergence theorem, there
is a limiting martingale which is the unique L1 limit of this uniformly bounded infinite martingale
sequence. Moreover, we prove that the classical Hilbert transform gives an almost complex structure
on the space of all uniformly quasisymmetric circle endomorphisms preserving the Lebesgue measure.
Furthermore, we discuss the complex manifold structure which is the integration of the almost
complex structure. We further discuss the comparison between the global Kobayashi’s metric and
the global Teichmüller metric on the fiber of the forgetful map at the basepoint. We prove that
these two metrics are not equivalent.

1. Introduction

Tossing a coin is an old game in the gambling business. For a fair coin, the head
and the tail of the coin have equal chances to occur. From the modern mathematical
language of Kolmogorov, the probability of the head or the tail is 1/2 when one
tosses a fair coin. If one tosses a fair coin n-times, there are 2n outcome events. Each
event has the probability 1/2n. The relative probability from the (n − 1)th tossing
to the nth tossing is still 1/2 because they are independent events. Thus if one let
Xn = 1/2 denote the relative probability of the nth tossing by given the result of
the (n − 1)th tossing. It is a random variable. The sequence of random variables
{Xn}∞n=1 thus forms an infinite martingale sequence. The limiting martingale exists
and is a random variable X = 1/2 defined on the space of all infinite sequences of
head’s and tail’s. Therefore, from the long term predication point of view, a fair coin
is predicable.
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If one tosses an infinite sequence of unfair coins, the story will be completely
different. The long term predication could fail. The main purpose of this paper is
to make sure that the long term predication is still valid if we propose a quasisym-
metric condition (see (1)) and an invariant condition (see (6)). That is, under the
quasisymmetric condition and the invariant condition, we have a uniformly bounded
infinite martingale sequence whose limit exists and is a bounded random variable.
More importantly, the quasisymmetric property enables us to construct a Teichmüller
structure and an almost complex structure over the space of all these martingales
using the universal Teichmüller space. Therefore, the long term prediction for the
infinite sequences of unfair coins which are considered in this paper not only are pred-
icable but also together have a well defined complex manifold structure. We further
study some properties about the almost complex manifold structure and the complex
manifold structure. In particular, we prove that the complex manifold structure is
the integration of the almost complex structure. The comparison between the global
Kobayashi’s metric and the global Teichmüller metric on the fiber of the forgetful
map at the basepoint is also studied. We prove that these two metrics are not equiva-
lent. This is an opposite result to a result obtained by Gardiner and Lakic in [9] (see
Theorem 12). Their result says that the infinitesimal Kobayashi’s density and the
infinitesimal Teichmüller density on the fiber of the forgetful map at the basepoint
are equivalent.

The paper is organized as follows. In §2, we study uniformly quasisymmetric cir-
cle endomorphisms fixing 1. In §3, we give the symbolic coding for all uniformly qua-
sisymmetric circle endomorphisms with a fixed degree. In §4, we study the bounded
geometry and bounded nearby geometry of a sequence of nested Markov partition.
In §5, we give a brief review of the theory of martingales in the probability theory. In
§6, we construct the uniformly bounded infinite martingale sequence for every uni-
formly quasisymmetric circle endomorphism preserving the Lebesgue measure and
prove that the limiting martingale exists and is a L1 limit of the uniformly bounded
infinite martingale sequence. In §7, we prove that the classical Hilbert transform
gives an almost complex structure on the space of all uniformly quasisymmetric cir-
cle endomorphisms fixing 1 and preserving the Lebesgue measure. In §8, we construct
the complex manifold structure on the space of all uniformly quasisymmetric circle
endomorphisms fixing 1 and preserving the Lebesgue measure through the construc-
tion of the complex manifold structure on the space of all uniformly quasisymmetric
circle endomorphisms fixing 1. We prove that this complex manifold structure is the
same as the complex manifold structure of the Teichmüller space of Riemann surfaces
with the punctured disk as the basepoint. We also show that this complex manifold
structure is the integration of the almost complex manifold structure. There is the
forgetful map from the Teichmüller space of Riemann surfaces with the punctured
disk as the basepoint to the universal Teichmüller space. The fiber of the basepoint
is a one dimensional complex manifold. Gardiner and Lakic proved that on this fiber,
the infinitesimal Kobayashi’s density and the infinitesimal Teichmüller density at the
basepoint are equivalent. We give a proof of this result in §9 (see Theorem 12).
More importantly, in §9, we prove that globally, this is not true. More precisely, in
§9, we study the comparison between the global Kobayashi’s metric and the global
Teichmüller metric on the fiber of the forgetful map at the basepoint. We prove that
these two metrics are not equivalent (see Theorem 13).
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2. Uniformly quasisymmetric circle endomorphisms

Let T = {z ∈ C | |z| = 1} be the unit circle in the complex plane C. Suppose

f : T → T

is an orientation-preserving covering map of degree d ≥ 2. We call it a circle endo-
morphism. Suppose

h : T → T

is an orientation-preserving homeomorphism. We call it in this paper a circle home-
omorphism.

For a circle endomorphism f , it has a fixed point. By conjugating a rotation of
the circle, we will always assume that 1 is a fixed point of f , that is, f(1) = 1.

The universal cover of T is the real line R with a covering map

π(x) = e2πix : R → T.

Then every circle endomorphism f can be lifted to an orientation-preserving home-
omorphism

F : R → R, F (x + 1) = F (x) + d, ∀x ∈ R.

We will assume that F (0) = 0. Then there is a one-to-one correspondence between
f and F . Therefore, we also call such an F a circle endomorphism.

Every orientation-preserving circle homeomorphism h can be lifted to an orientation-
preserving homeomorphism

H : R → R, H(x + 1) = H(x) + 1, ∀x ∈ R.

We will assume throughout this paper that 0 ≤ H(0) < 1. Then there is a one-to-
one correspondence between h and H. Therefore, we also call such an H a circle
homeomorphism.

Definition 1. A circle homeomorphism h is called quasisymmetric if there is a
constant M ≥ 1 such that

M−1 ≤ |H(x + t)−H(x)|
|H(x)−H(x− t)| ≤ M, ∀x ∈ R, ∀t > 0.

Definition 2. A circle endomorphism f is called uniformly quasisymmetric if
there is a constant M > 0 such that

(1) M−1 ≤ |F−n(x + t)− F−n(x)|
|F−n(x)− F−n(x− t)| ≤ M

for all x ∈ R and t > 0 and any n > 0.

The following example of a uniformly quasisymmetric circle endomorphisms can
be found in [13, 19].
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A circle endomorphism f is C1 if the first derivative F ′ exists and is continuous.
And, furthermore, it is called C1+α for some 0 < α ≤ 1 if F ′ is α-Hölder continuous,
that is,

sup
x 6=y∈R

|F ′(x)− F ′(y)|
|x− y|α = sup

x 6=y∈[0,1]

|F ′(x)− F ′(y)|
|x− y|α < ∞.

A C1 circle endomorphism f is called expanding if there are constants C > 0 and
λ > 1 such that

(F n)′(x) ≥ Cλn, n = 1, 2, · · · .

Example 1. A C1+α, for some 0 < α ≤ 1, circle expanding endomorphism f is
uniformly quasisymmetric.

Consider the map q(z) = zd for d > 1. Then it is a circle endomorphism of degree
d. Let

f = h ◦ q ◦ h−1

where h is a circle homeomorphism.

Theorem 1. The circle endomorphism f is uniformly quasisymmetric if and
only if h is a quasisymmetric homeomorphism.

Refer to [17, 19] (or refer to [12, 13]) for this theorem. Thus, we consider two
spaces

F = {f | f is a uniformly quasisymmetric circle endomorphism with f(1) = 1}
and

H = {h | h is a quasisymmetric circle homeomorphism with h(1) = 1}.
The map

β : H → F ; β(h) = h ◦ q ◦ h−1

is a bijective map (see [17]).

3. Circle endomorphisms and their symbolic representation

Suppose f is a circle endomorphism in F . Consider the preimage f−1(1). Then
f−1(1) cuts T into d closed intervals J0, J1, · · · , Jd−1, ordered by the counter-clockwise
order of T . Suppose J0 has an endpoint 1. Then Jd−1 also has an endpoint 1. Let

$0 = {J0, J1, · · · , Jd−1}.

Figure 1.
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Then it is a Markov partition, that is,
i. T =

⋃d−1
k=0 Jk,

ii. the restriction of f to the interior of Ji is injective for every 0 ≤ i ≤ d− 1,
iii. f(Ji) = T for every 0 ≤ i ≤ d− 1.
Let I0, I1, · · · , Id−1 be the lifts of J0, J1, · · · , Jd−1 in [0, 1]. Then we have that
i) [0, 1] =

⋃d−1
k=0 Ik,

ii) F (Ii) = [i, i + 1] for every 0 ≤ i ≤ d− 1.
Let

η0 = {I0, I1, · · · , Id−1}.
Then it is a partition of [0, 1].

Consider the pull-back partition $n = f−n$0 of $0 by fn. It contains dn+1

intervals and is also a Markov partition of T . Intervals J in $n can be labeled as
follows. Let wn = i0i1 · · · in−1 be a word of length n of 0′s, 1′s, · · · , and (d − 1)′s.
Then Jwn ∈ $n if fk(Jwn) ⊂ Jik for 0 ≤ k ≤ n− 1. Then

$n = {Jwn | wn = i0i1 · · · in−1, ik ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · , d− 1}.
Let ηn be the corresponding lift partition of $n in [0, 1] with the same labelings.
Then

ηn = {Iwn | wn = i0i1 · · · in−1, ik ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · , d− 1}.
Add a digit at the end means subinterval and add a digit in the front means

preimage.
Consider the space

Σ =
∞∏

n=0

{0, 1, · · · , d− 1}

= {w = i0i1 · · · ik · · · in−1 · · · | ik ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · }
with the product topology. It is a compact topological space. A cylinder for a fixed
word wn = i0i1 · · · in−1 of length n is

[wn] = {w′ = i0i1 · · · in−1i
′
ni
′
n+1 · · · | i′n+k ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · }.

All left cylinders form a topological basis of Σ. We call it the left topology. The
space Σ with this left topology is called the symbolic space.

For any w = i0i1 · · · in−1in · · · , let
σ(w) = i1 · · · in−1in · · ·

be the shift map. Then (Σ, σ) is called a symbolic dynamical system.
For a point w = i0 · · · in−1in · · · ∈ Σ, let wn = i0 · · · in−1. Then

· · · ⊂ Jwn ⊂ Jwn−1 ⊂ · · · Jw1 ⊂ T.

Since each Jwn is compact,

Jw =
∞⋂

n=1

Jwn 6= ∅.

If every Jw = {xw} contains only one point, then we define the projection πf from Σ
onto T as

πf (w) = xw.



120 Yunchun Hu, Yunping Jiang and Zhe Wang

The projection πf is 1− 1 except for a countable set

B = {w = i0i1 · · · in−11000 · · · , i0i1 · · · in−10(d− 1)(d− 1)(d− 1) · · · }.
From our construction, one can check that

πf ◦ σ(w) = f ◦ πf (w), w ∈ Σ.

This situation, we say that f is semi-conjugate to σ by the semi-conjugacy πf .
For any interval I = [a, b] in [0, 1], we use |I| = b−a to mean its Lebesgue length.

Let
ιn,f = max

wn

|Iwn |,
where wn runs over all words of {0, 1, · · · , d− 1} of length n.

Two circle endomorphisms f and g are topologically conjugate if there is an
orientation-preserving circle homeomorphism h of T such that

f ◦ h = h ◦ g.

The following result was first proved by Shub for C2 expanding circle endomorphisms
1960’s by using the contracting mapping theorem.

Theorem 2. Let f and g be two circle endomorphisms such that both ιn,f and
ιn,g tend to zero as n →∞. Then f and g are topologically conjugate if and only if
their topological degrees are the same.

Refer to [19, 17] for a proof.
From the bounded nearby geometry property for any f ∈ F which we will discuss

in the next section, we have that ιn,f tends to zero as n → ∞ for any f ∈ F . And
from Theorem 1, we have that

Theorem 3. For any f, g ∈ F , f and g are topologically conjugate. And the
conjugacy h (that is, h ◦ f = g ◦ h) is quasisymmetric. Furthermore, f is always
semi-conjugate to σ by the semi-conjugacy πf .

From the above theorem the symbolic dynamical system (Σ, σ) is the topological
representation for all maps in F .

4. Bounded nearby geometry

In this section, we show that the uniformly quasisymmetric condition is equivalent
to the bounded nearby geometry defined in [11, 12, 13].

Definition 3. The sequence {$n}∞n=0 of nested partitions of T is said to have
bounded geometry if there is a constant C > 0 such that

(2)
|Jσ(wn)|
|Jwn |

≤ C, ∀J ∈ $n; ∀n ≥ 0.

Definition 4. The sequence {$n}∞n=0 of nested partitions of T is said to have
bounded nearby geometry if there is a constant C > 0 such that

(3)
|J |
|J ′| ≥ C, ∀J, J ′ ∈ $n with a common endpoint; ∀n ≥ 0.

Theorem 4. Suppose f is a circle endomorphisms. Then f is uniformly qua-
sisymmetric if and only if the sequence {$n}∞n=0 of nested partitions of T has the
bounded nearby geometry.
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Proof. We first prove the “only if” part. Let F with F (0) = 0 be the lift of f .
Define

Gk(x) = F−1(x + k) : [0, 1] → [0, 1], for k = 0, 1, · · · , n− 1.

For any word wn = i0i1 · · · in−1, define

Gwn = Gi0 ◦Gi1 ◦ · · · ◦Gin−1 .

Then
Iwn = Gwn([0, 1]) = F−n([m,m + 1]),

where m = in−1 + in−2d + · · · + i0d
n−1. Suppose I ′wn

is an interval in ηn having a
common endpoint with Iwn modulo 1. Then

I ′wn
= F−n([m + 1,m + 2]) or F−n([m,m + 1]).

Thus
C−1 ≤ |Iwn |

|I ′wn
| ≤ C,

where C > 0 is the constant in Definition 2. Since Iwn and I ′wn
are just lifts of J and

J ′, we have

(4) C−1 ≤ |J |
|J ′| ≤ C

for any intervals J, J ′ ∈ $n with a common endpoint and n = 0, 1, · · · .
The “if” part can follows the exact argument in [12, Theorem B, pp. 645–646]

(also, refer to [13, pp. 90–91]). We give a outline of the proof here. Consider f =
h ◦ q ◦ h−1. Recall that q(z) = zd where d > 1 is the degree of f . Then from
Theorem 1, f is uniformly quasisymmetric if and only if h is quasisymmetric. Let
$n,q be the nth-partition for q and $n be the nth-partition for f . For any intervals
J, J ′ ∈ $n,q with a common endpoint and any n = 0, 1, · · · , we have |J |/|J ′| = 1 and
h(J), h(J ′) ∈ $n with a common endpoint. The bounded nearby geometry says that
we have a constant C > 0, independent of J, J ′, and n, such that

(5) C−1 ≤ |h(J)|
|h(J ′)| ≤ C.

This says that h is quasisymmetric at the common endpoint of J and J ′ with a fixed
quasisymmetric constant C. But these common endpoints form a dense subset of the
unit circle. This implies the “if” part. ¤

Remark 1. From Theorem 4, for any f ∈ F , ιn,f = maxwn |Iwn| tends to zero
exponentially as n goes to infinity.

5. Martingales in probability theory

In this section, we give a brief review of the theory of martingales in probability
theory. The standard reference which we used is [22]. Suppose that we have a
probability space (Ω,B, P ) consisting of a space Ω, a σ-field B of subsets of Ω, and a
probability measure P on the σ-field B.

Definition 5. A random variable or measurable function with respect to the
σ-field B is a map f : Ω → R, i.e., a real-valued function f(w) on Ω, such that for
every Borel set B ⊂ R, f−1(B) ∈ B.
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Definition 6. Suppose B′ is a sub-σ-field of B. Suppose that f and g are L1

integrable random variables with respect to B and B′ respectively. We call g the
conditional expectation of f for the given sub-σ-field B′ and denote it by g = E[f |B′]
if ˆ

A

g(w) dP =

ˆ

A

f(w) dP

for all A ∈ B′.
The Radon–Nikodym theorem shows the existence of conditional expectation for

any L1 integrable random variable with respect to B for any given sub-σ-field of B
(refer to [22]). The conditional expectation is unique up to measure zero set (also
refer to [22]).

Definition 7. Suppose (Ω,B, P ) is a probability space. Suppose that {Bn}∞n=1 is
a sequence of sub-σ-fields of B and suppose that {Xn}∞n=1 is a sequence of functions.
Then {(Xn,Bn)}∞n=1 is called an infinite martingale sequence if

(1) Xn is a L1 integrable random variable with respect to Bn for all n ≥ 1;
(2) Bn ⊂ Bn+1 for all n ≥ 1;
(3) Xn = E[Xn+1|Bn] almost everywhere with respect to the probability measure

P .

An infinite martingale sequence {(Xn,Bn)}∞n=1 is called uniformly integrable if
there is a constant C > 0 such thatˆ

Ω

Xn(w)dP ≤ C, ∀n ≥ 1.

Theorem 5. (Martingale Convergence Theorem) Suppose {(Xn,Bn)}∞n=1 is an
uniformly integrable infinite martingale sequence. Then there is a random variable
X with respect to B such that

Xn = E[X|Bn],

and then, of course, Xn → X in L1 as n goes to ∞.

The main purpose of this paper is to construct a uniformly bounded infinite
martingale sequence {(Xn,Bn)}∞n=1 from a uniformly quasisymmetric circle endo-
morphism f and then apply the above theorem to construct the limiting martingale
X.

6. Dual symbolic representation and quasisymmetric
invariant probability measures

Suppose f is a circle endomorphism in F . Suppose

$n = {Jwn | wn = i0i1 · · · in−1, ik ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · , n− 1},
for n = 0, 1, · · · , and

ηn = {Iwn | wn = i0i1 · · · in−1, ik ∈ {0, 1, · · · , d− 1}, k = 0, 1, · · · , n− 1},
for n = 0, 1, · · · , are the corresponding sequences of nested Markov partitions on T
and [0, 1], respectively.

For any wn = i0i1 · · · in−1, let

w∗
n = jn−1jn−2 · · · j0,
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where jn−1 = i0, · · · , j0 = in−1.
For any fixed w∗

n = jn−1jn−2 · · · j0 and any n ≥ 0, define the right cylinder

[w∗
n] = {w∗ = · · · j′nj′n−1j

′
n−2 · · · j′0 | j′n−1 = jn−1, j

′
n−2 = jn−2, · · · , j′0 = j0}.

Define

Ω =
0∏
−∞
{0, · · · , d− 1} = {w∗ = · · · jn−1 · · · j0}.

For any fixed w∗
n = jn−1jn−2 . . . j0 and any n ≥ 0, define the right cylinder

[w∗
n] = {w∗ = . . . j′nj

′
n−1j

′
n−2 . . . j′0 | j′n−1 = jn−1, j

′
n−2 = jn−2, . . . , j

′
0 = j0}.

Consider

G =
{ N⋃

k=1

[w∗
nk

]
}
∪ {∅}.

The following proposition is easy.

Proposition 1. If n < m, then either [w∗
n] ∩ [w∗

m] = ∅ or [w∗
n] ∩ [w∗

m] = [w∗
m].

Following this, we have that

Proposition 2. The set G is a field.

Proof. From Property 1, we can assume every element in G is a disjoint union of
finitely many right cylinders {[w∗

nk
]}N

k=1.
First

Ω =
d−1⋃

k=0

[k∗] ∈ G

and ∅ ∈ G.
If A,B ∈ G, then A ∪B and A ∩B are in G. If w∗

n = jn−1jn−2 . . . j0, then

[w∗
n]c =

⋃

0≤k 6=jn−1≤d−1

[kw∗
n−1]

⋃ ⋃

w̃∗n−1 6=w∗n−1

[w̃∗
n−1] ∈ G

and

(
N⋃

k=1

[w∗
nk

])c =
N⋂

k=1

[w∗
nk

]c ∈ G.

Thus G is a field. ¤
Let B be the σ-field generated by the field G. Then we have a space

(Ω,B).

Now we are going to associate a non-atomic probability measure Pf on this space
with some uniformly quasisymmetric circle endomorphism f . Before we are able to
do this, we need to have the following important invariant condition. We use Leb(·)
to denote the Lebesgue measure on T .

Definition 8. We say that a circle endomorphism f preserves the Lebesgue
measure if for any Lebesgue measurable set A in the unit circle T ,

(6) Leb(f−1(A)) = Leb(A).
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This is equivalent to the following condition, for any interval I in the unit interval
[0, 1],

(7)
d−1∑

k=0

|F−1(I + k)| = |I|.

One easy example of a circle endomorphism preserves the Lebesgue measure is
q(z) = zd for any d > 1. Actually, there are many circle endomorphisms preserve the
Lebesgue measure. A well-known example among experts is a Blaschke product fixing
zero and mapping the unit disk onto itself (for example, see [18]). More precisely,
consider the Blaschke product

(8) f(z) = zj
∏

1≤i≤d−j

z − ai

1− aiz
: T → T,

where 1 ≤ j ≤ d and |ai| < 1, 1 ≤ i ≤ d − j. Then it is a circle endomorphism of
degree d > 1.

Example 2. Every f in the form of (8) preserves the Lebesgue measure.

Proof. For reader’s convenience, we include a detailed proof. The equality (6) is
equivalent to

(9)
ˆ

T

φ(f(z))dz =

ˆ

T

φ(z)dz

for all continuous functions φ on T .
Now let φ be a continuous function on T . Consider the harmonic partial differ-

ential equation on the unit disk D = {z ∈ C | |z| < 1}:
{

∆u = 0;

u|T = φ.

Then it has a unique solution u which is a harmonic function on D. Since f is
analytic on C, u ◦ f is also a harmonic function on D with a continuous extension to
the boundary T of D. By the mean value theorem in harmonic analysis,ˆ

T

φ(f(z)) dz = 2πiu(f(0)) and
ˆ

T

φ(z) dz = 2πiu(0).

But f(0) = 0, so we verified the equality (9) is true. ¤

Remark 2. Actually, there are much more circle endomorphisms preserving the
Lebesgue measure. It is known that for any C1+α expanding circle endomorphism
f̃ , there is a C1+α-diffeomorphism h of T such that f = h ◦ f̃ ◦ h−1 preserves the
Lebesque measure (see, for example, [16]).

Remark 3. In addition, a circle endomorphism f is called uniformly symmetric
if there is a bounded function ε(t) > 0 such that ε(t) → 0 as t → 0+ and such that

1

1 + ε(t)
≤ |F−n(x + t)− F−n(x)|
|F−n(x)− F−n(x− t)| ≤ 1 + ε(t)

for all x ∈ R and t > 0 and any n > 0. A C1+α expanding circle endomorphism
is uniformly symmetric (see [19, 17]). It is clear that a uniformly symmetric circle
endomorphism is uniformly quasisymmetric. It has been proved in [19] that for any
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uniformly symmetric circle endomorphism f̃ , there is a symmetric homeomorphism
h of T with h(1) = 1 such that f = h ◦ f̃ ◦ h−1 is still uniformly symmetric and
preserves the Lebesgue measure.

Remark 4. However, for arbitrary uniformly quasisymmetric circle endomor-
phism f̃ , we do not have a similar statement to Remark 3. The reason is that if f
preserves the Lebesgue measure then the local quasiconformal dilatations of f at the
grand orbit

GO(x) =
∞⋃

m=0

∞⋃
n=0

f−n(fm(x))

of any point x must be the same. This property will not be changed by conjugating by
a symmetric circle homeomorphism. But it is easy to construct a counter-example
f of a uniformly quasisymmetric circle endomorphism such that the local quasi-
conformal dilatations at x and one point of f−1(x) are different. So the following
problem is interesting for us. Find conditions on a uniformly quasisymmetric circle
endomorphism f̃ such that there is a symmetric circle homeomorphism h such that
f = h ◦ f̃ ◦ h−1 preserves the Lebesgue measure. (Refer to [19, 17] for the relevant
materials to study this problem.)

Suppose f ∈ F preserves the Lebesgue measure. We define a P = Pf on G as

P (∅) = 0, P ([w∗
n]) = |Iw∗n |, and P (

N⋃

k=1

[w∗
nk

]) =
N∑

k=1

|Iw∗nk
|,

where
⋃N

k=1[w
∗
nk

] is a disjoint union. Then P (Ω) = |I0|+ |I1| · · ·+ |Id−1| = 1.
For any right cylinder [w∗

n], [kw∗
n], k = 0, · · · , d − 1, are all the sub-cylinders of

one level lower and

[w∗
n] =

d−1⋃

k=0

[kw∗
n].

This implies that

f−1(Jw∗n) =
d−1⋃

k=0

Jkw∗n .

Since f preserves the Lebesgue measure, we have that

|Iw∗n| =
d−1∑

k=0

|Ikw∗n|.

This implies that

P ([w∗
n]) =

d−1∑

k=0

P ([kw∗
n]).

So P is a probability measure on G. This fact plus the Kolmogorov extension principle
(or the Carathéodory Theorem), P can be extended to a probability measure on the
σ-field B, which we still denote as Pf or simply P if there is no confusion. The
probability measure P is non-atomic. Thus we construct a probability space

(Ω,B, P )

for every f ∈ F preserving the Lebesgue measure.
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Define a right shift map σ∗ as

σ∗(w∗
n) = jn−1jn−2 · · · j1

for w∗
n = jn−1jn−2 · · · j1j0. It is extended to the right shift, we still denote as σ∗ : Ω →

Ω, as
σ∗(w∗) = · · · jn−1jn−2 · · · j1

for w∗ = · · · jn−1jn−2 · · · j1j0.
Define the adding machine as

add(jn−1 · · · j1j0) = jn−1 · · · (jk + 1)0 · · · 0
if 0 ≤ k < n− 1 is the first integer such that 0 ≤ jk < d− 1 and

add((d− 1) · · · (d− 1)) = 0 · · · 0.
From Theorem 4, we have the following result.

Theorem 6. The probability measure P is σ∗-invariant, that is,

P ((σ∗)−1(A)) = P (A)

for any A ∈ B. Moreover, there is a constant C > 0 such that

(10) C−1 ≤ P ([w∗
n])

P (add([w∗
n]))

≤ C

for all w∗
n = jn−1 · · · j1j0.

Following the proof of Theorem 4 and the construction of Pf , we have also that

Theorem 7. For any non-atomic σ∗-invariant probability measure P on (Ω,B)
satisfying the condition (10), there is an f ∈ F preserving the Lebesgue measure
such that Pf = P .

Define the space

Finv = {f ∈ F | f preserves the Lebesgue measure}.
Then the corresponding space in H is

Hinv = {h ∈ H | Leb(h(q−1(A))) = Leb(h(A)) for any measurable set A}.
The Leb-invariant condition in the definition of Hinv can be translated into the fol-
lowing condition for the lift H of h:

(11)
k=d−1∑

k=0

(
H

(
x + k

d

)
−H

(
k

d

))
= H(x).

Define the probability measure space

Minv = {P | P is a non-atomic σ∗-invariant probability measure P on (Ω,B)

satisfying the condition (10)}.
We call a measure in Minv a quasisymmetric invariant probability measure.

Then
β : Hinv → Finv

is bijective. Define
γ : Finv →Minv
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by γ(f) = Pf . Then it is also surjective. We are still interested in the injectivity of
γ. This is equivalent to the following conjecture.

Conjecture 1. Given any two f, g ∈ Finv. Then f = g if and only if there is a
sequence ε(n) → 0 as n →∞ such that

∣∣∣ Pf ([w
∗
n])

Pf (add([w∗
n]))

− Pg([w
∗
n])

Pg(add([w∗
n]))

∣∣∣ ≤ ε(n)

for all n > 0.

A related conjecture is that

Conjecture 2. Suppose f, g ∈ Finv are conjugate by a symmetric homeomor-
phism h, that is, h ◦ f = g ◦ h. Then h must be the identity.

The reader who is interested in Conjecture 2 can refer to [18] for the proof of this
conjecture under the smooth assumption and for the proof of this conjecture under
the assumption that one of f and g is z 7→ zd. The reader who is interested in the
equivalence between Conjecture 1 and Conjecture 2 can refer to [5] for some metric
property of symmetric homeomorphisms.

7. Martingales revisited

For any fixed n ≥ 0, define Bn as the σ-field generated by all right cylinders
{[w∗

s ], 0 ≤ s ≤ n}. Then Bn is a sub-σ-field and we have a filter

· · · ⊂ Bn ⊂ Bn+1 ⊂ · · · ⊂ B.

Consider P = Pf for any f ∈ Finv. Define

Xn(w∗) =
P ([σ∗(w∗

n)])

P ([w∗
n])

and define
BXn(w∗) =

P ([add(w∗
n)])

P ([w∗
n))

for any w∗ = · · ·w∗
n ∈ [w∗

n]. Then {Xn}∞n=0 and {BXn}∞n=0 are two sequences of
random variables defined on Ω. We have the following theorem.

Theorem 8. Suppose f is a uniformly quasisymmetric circle endomorphism pre-
serving the Lebesgue measure. Both sequences {(Xn,Bn)}∞n=0 and {(BXn,Bn)}∞n=0

are uniformly bounded infinite martingale sequences and bounded away from 0 uni-
formly. Therefore, there are two bounded L1 functions X(w) and BX(w) bounded
away from 0 defined on (Ω,B, P ) such that

Xn(w∗) → X(w∗) and BXn(w∗) → BX(w∗)

in the L1-norm.

Proof. First, on every right cylinder [w∗
n],

Xn(w∗) =
P ([σ∗(w∗

n)])

P ([w∗
n])

=
|Iσ∗(w∗n)|
|Iw∗n |

is a constant. So {Xn(w∗) ≤ x} is the union of some open set [wnk
∗] ∈ Bn on which

the function Xn(w∗) =
|Iσ∗(w∗nk

)|
|Iw∗nk

| is a constant less than or equal to x for every k.

Hence Xn(w∗) is Bn-measurable.
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Markov partition of the unit interval for a 
degree 2 map f(z).

f
f

-1

Figure 2.

Second, Xn(w∗) is uniformly integrable as follows. The expectation

E[Xn] =
∑
w∗n

|Iσ∗(w∗n)|
|Iw∗n|

· P ([w∗
n]) =

∑
w∗n

|Iσ∗(w∗n)|
|Iw∗n|

· |Iw∗n| =
∑
w∗n

|Iσ∗(w∗n)| ≤ d < ∞.

Third, we have the following important relation for the conditional expectation
E[Xn|Bn−1]:

Xn−1 = E[Xn|Bn−1]

almost everywhere with respect to P. That is equivalent to say thatˆ

[w∗n−1]

Xn−1(w
∗) dP (w∗) =

ˆ

[w∗n−1]

Xn(w∗) dP (w∗)

for every right cylinder [w∗
n−1] ∈ Bn−1. The reason is as follows.

Let

RHS =

ˆ

[w∗n−1]

Xn(w∗) dP (w∗) and LHS =

ˆ

[w∗n−1]

Xn−1(w
∗) dP (w∗).

Then

RHS =

ˆ

[w∗n−1]

|Iσ∗(w∗n)|
|Iw∗n|

dP (w∗) =
d−1∑

k=0

ˆ

[kw∗n−1]

|Iσ∗(w∗n)|
|Iw∗n|

dP (w∗).

So

RHS =
d−1∑

k=0

|Iσ∗(kw∗n−1)|
|Ikw∗n−1

| · |Ikw∗n−1
| =

d−1∑

k=0

|Iσ∗(kw∗n−1)| = |Iσ∗(w∗n−1)|.

The last equality is because f preserves the Lebesgue measure.
Now

LHS =

ˆ

[w∗n−1]

|Iσ∗(w∗n−1)|
|Iw∗n−1

| dP (w∗) =
|Iσ∗(w∗n−1)|
|Iw∗n−1

| · |Iw∗n−1
| = |Iσ∗(w∗n−1)|.

We got that RHS = LHS.
From the bounded nearby geometry in §4, we have constants 0 < m < M such

that
m < Xn(w∗) ≤ M

for all w∗ ∈ Ω and n ≥ 0. Therefore, {(Xn,Bn)}∞n=0 is a bounded martingale and
bounded away from 0 uniformly.
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From the martingale convergence theorem, we have a bounded L1 function X(w∗)
on the probability space (Ω,B, P ) such that

Xn(w∗) → X(w∗)

in the L1-norm. We completed the proof for {(Xn,Bn)}∞n=0.
The proof for {(BXn,Bn)}∞n=0 is similar. We leave it as an exercise for the

reader. ¤
We call the random variable (or function) X(w∗) in the above theorem a limiting

martingale and the random variable (or function) BX(w∗) in the above theorem a
limiting nearby martingale.

Remark 5. In Theorem 8, the condition f being uniformly quasisymmetric im-
plies that the corresponding Markov partition has bounded nearby geometry. The
bounded nearby geometry implies the bounded geometry. However the other direc-
tion doesn’t work (see the following example). Note that, for the existence of X(w∗),
the Morkov partition only needs to have bounded geometry which is a weaker con-
dition.

Example 3. Assume F (x) = 3x for x ∈ [0, 1
3
] and F (x) = 3

2
(x− 1

3
) for x ∈ [1

3
, 1].

Then F (x) has bounded geometry, but not bounded nearby geometry.

Remark 6. If f̃ is a C1+α expanding map, then it is uniformly quasisymmetric
(see [19]) and there is a unique C1+α-diffeomorphism h of T with h(1) = 1 such that
f = h ◦ f̃ ◦ h−1 preserves the Lebesgue measure (see Remark 3) and the martingales
{(Xn,Bn)}∞n=0 and {(BXn,Bn)}∞n=0 induced from f converge to the limiting martin-
gale X(w∗) and the limiting nearby martingale BX(w∗) exponentially. That is, there
is a constant C > 0 and 0 < τ < 1 such that

max
w∗∈Ω

|Xn(w∗)−X(w∗)| ≤ Cτn, ∀n ≥ 0

and
max
w∗∈Ω

|BXn(w∗)−BX(w∗)| ≤ Cτn, ∀n ≥ 0.

Moreover, the limiting martingale X(w∗) and the limiting nearby martingale BX(w∗)
are Hölder continuous functions in the meaning that there is a constant C > 0 and
0 < τ < 1 such that

|X(w∗)−X(w̃∗)| ≤ Cτn and |BX(w∗)−BX(w̃∗)| ≤ Cτn

for all w∗ = · · · jnw
∗
n and w̃∗ = · · · j̃nw

∗
n and w∗

n = jn−1 · · · j0. In [19], X(w∗) is called
the dual derivative and is used in the study of dual Gibbs measure theory for Hölder
continuous potentials. The reader who is interested in this result can go to [19].

Remark 7. The space Ω is also a metric space with a standard metric

d(w∗, w̃∗) =
∞∑

n=1

|jn−1 − j̃n−1|
dn

where w∗ = · · · jn−1 · · · j0 and w̃∗ = · · · j̃n−1 · · · j̃0. Suppose f̃ is a uniformly symmet-
ric circle endomorphism (see Remark 3). Then there is a symmetric homeomorphism
h of T with h(1) = 1 such that f = h◦f̃◦h−1 preserves the Lebesgue measure (see [19])
and the martingales {Xn,Bn}∞n=0 and {BXn,Bn}∞n=0 induced from f converge to the
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limiting martingale X(w∗) the limiting nearby martingale BX(w∗) uniformly with
respect to the metric d(·, ·). That is,

max
w∗∈Ω

|Xn(w∗)−X(w∗)| → 0, as n →∞,

and
max
w∗∈Ω

|BXn(w∗)−BX(w∗)| → 0, as n →∞.

Moreover, the limiting martingale X(w∗) and the limiting nearby martingale BX(w∗)
are continuous functions. In [19], X(w∗) is also called the dual derivative and is used
in the study of dual Gibbs measure theory for continuous potentials. The reader who
is interested in this result can go to [19].

Remark 8. The limiting martingale X and the limiting nearby martingale BX
are symmetric invariants. This means that if f1 and f2 are both uniformly quasisym-
metric circle endomorphisms and conjugated by a symmetric homeomorphism h, that
is, f1 = h ◦ f2 ◦ h−1 and if X1 and X2 are limiting martingales and BX1 and BX2

are limiting nearby martingales, then X1 = X2 and BX1 = BX2. Actually, in [17]
(see also [19]), it has been proved that

lim
n→∞

‖Xn,1 −Xn,2‖ = 0 and lim
n→∞

‖BXn,1 −BXn,2‖ = 0

for any circle endomorphisms f1 and f2 conjugated by a symmetric circle homeomor-
phism h, does not matter the limits exist or not for Xn,1 or Xn,2 or BXn,1 or BXn,2,
where ‖ · ‖ means the maximum norm.

Concluding from this section, we proved that Finv is the space where we can
define limiting martingales and limiting nearby martingales on the space (Ω,B). If
two maps in Finv are symmetrically conjugate, then their limiting martingales are
the same and their limiting nearby martingales are the same. Define MT as the
space of all limiting martingales Xf with the probability measure Pf for f ∈ Finv and
define BMT as the space of all limiting nearby martingales BXf with the probability
measure Pf for f ∈ Finv. We are still interested in the following problem.

Problem 1. Given a characterization of Xf for any f ∈ Finv such that for any
P ∈Minv and any L1 function X with respect to (Ω,B, P ) satisfying this character-
ization, there is an f ∈ Finv such that Xf = X.

Furthermore, we have the following conjecture.

Conjecture 3. Suppose the limiting martingales or the limiting nearby martin-
gales corresponding to f1 and f2 in Finv are the same, that is, X1 = X2 and P1 ∼ P2

or BX1 = BX2 and P1 ∼ P2 where P1 ∼ P2 means that P1 is absolutely continuous
with respect to P2 and P2 is absolutely continuous with respect to P1. Then f1 = f2.

This conjecture is closely related to Conjecture 1.

Remark 9. If both of f1 and f2 are C1+α, 0 < α ≤ 1, expanding circle endomor-
phisms and preserving the Lebesgue measure, it has been proved in [14, 15, 18] that
if the limiting martingales or the limiting nearby martingales corresponding to f1

and f2 are the same, that is, X1 = X2 or BX1 = BX2, then f1 and f2 are smoothly
conjugate. More precisely, there is a C1+α diffeomorphism h of T such that

f1 = h ◦ f2 ◦ h−1.

Furthermore, h is the identity. Thus f1 = f2 and P1 = P2.
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When f1 and f2 are both uniformly symmetric circle endomorphisms, the reader
can refer to [19, 17, 18] for some related results.

8. Hilbert transform and almost complex structure

In the rest of the paper, we would like to discuss an almost complex structure
and complex manifold structure on Finv (as well as Hinv). The relation between the
classical Hilbert transform and the complex structure on the universal Teichmüller
space has been studied deeply (refer to [8, 4, 20]). We will use this idea to study
an almost complex structure and complex structure on Finv. In this section, we will
prove that the Hilbert transform defines a natural almost complex structure on Finv.

The space Finv is a subspace of F . There is a bijective map β from H to F
such that it is also a bijective map from Hinv to Finv. We will prove that the Hilbert
transform defined on H preserves the space Hinv. Thus the Hilbert transform defines
a natural almost complex structure on Hinv as well as on Finv.

Following the study of the universal Teichmüller space (refer to [8]), the tangent
space V of Hinv at the identity is the space of all Zygmund functions on the real line
satisfying that

(12) V (0) = 0 and V (x + 1) = V (x)

and

(13)
d−1∑

k=0

(
V

(
x + k

d

)
− V

(
k

d

))
= V (x).

Example 4. When the degree d = 2,

V (x) =
∞∑

n=1

2−n sin(2nπx)

is a vector in the tangent space V of Hinv since

V (0) = 0, V (x + 1) = V (x) and V
(x

2

)
+ V

(
1 + x

2

)
− V

(
1

2

)
= V (x).

The Hilbert transform J on V is defined by

J V (x) =
1

π

ˆ ∞

−∞
V (y)R(x, y) dy,

where
R(x, y) =

1

y − x
− x

y − 1
+

x− 1

y
.

Let ζ = ξ + iη be a complex number. Then ζ = ξ − iη. By Stokes’ formula,

J V (x) =
1

π

ˆ ∞

−∞
V (ζ)R(x, ζ) dζ =

2i

π

¨

H

∂V (ζ)R(x, ζ) dξ dη + iV (x),

where H is the upper-half plane and ∂V = ∂V /∂ζ.
Let µ(ζ) = ∂V (ζ), then

J V (x) =
2i

π

¨

H

µ(ζ)R(x, ζ) dξ dη + iV (x) =
−2i

π

¨

L

µ(ζ)R(x, ζ) dξ dη − iV (x),

where L is the lower-half plane.



132 Yunchun Hu, Yunping Jiang and Zhe Wang

Define

µ̃(ζ) =

{
−iµ(ζ), ζ ∈ H;

iµ(ζ), ζ ∈ L.

Then
J V (x) =

−1

π

¨

C

µ̃(ζ)R(x, ζ) dξ dη.

And we also have

∂(J V ) = −iµ and ∂(H2V ) = i2µ = −µ.

This implies
J 2V = −V.

Hence the Hilbert transform J gives an almost complex structure on the space of all
Zygmund functions on the real line.

The following theorem shows that the Hilbert transform J also gives an almost
complex structure on the space Hinv. Let I denote the identity map on Hinv.

Theorem 9. Let J V be the Hilbert transform of V ∈ V , then J V satisfies the
equations (12) and (13). Therefore, J V ∈ V . Since J : V → V and J 2 = −I, it is
an almost complex structure on Hinv.

Proof. Note that

J V (x) =
1

π

ˆ ∞

−∞
V (y)

( 1

y − x
− x

y − 1
+

x− 1

y

)
dy.

From V (x + 1) = V (x), we have

1

π

ˆ ∞

−∞

xV (y)

y − 1
dy =

1

π

ˆ ∞

−∞

xV (y + 1)

y
dy =

1

π

ˆ ∞

−∞

xV (y)

y
dy.

Hence

J V (x) =
1

π

ˆ +∞

−∞

V (y)

y − x
dy− 1

π

ˆ ∞

−∞

V (y)

y
dy =

1

π

ˆ +∞

−∞

V (y + x)

y
dy− 1

π

ˆ ∞

−∞

V (y)

y
dy.

From this form of the Hilbert transform, it is easy to check J V (0) = 0 and J V (x +
1) = J V (x) since V (y + 1) = V (y). These are the equations in (12).

To prove the equation (13) for J V , we only need to show

1

π

ˆ +∞

−∞

∑d−1
k=0(V (y + x+k

d
)− V (y + k

d
)) + V (y)− V (y + x)

y
dy = 0.

Since
d−1∑

k=0

(
V

(
x + k

d

)
− V

(
k

d

))
= V (x),

we have that
d−1∑

k=0

(
V

(
y +

x + k

d

)
− V

(
k

d

))
= V (yd + x)

and
d−1∑

k=0

(
V

(
y +

k

d

)
− V

(
k

d

))
= V (yd).
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The difference of these two equations is
d−1∑

k=0

(
V

(
y +

x + k

d

)
− V

(
y +

k

d

))
= V (yd + x)− V (yd).

Hence the numerator of the fraction inside the equation in the previous integral is
d−1∑

k=0

(
V

(
y +

x + k

d

)
− V

(
y +

k

d

))
+ V (y)− V (y + x)

= V (y)− V (y + x) + V (yd + x)− V (yd).

So we need to show
1

π

ˆ +∞

−∞

V (y) + V (yd + x)− V (yd)− V (y + x)

y
dy

=
1

π

ˆ +∞

−∞

V (y)− V (yd)

y
dy +

1

π

ˆ +∞

−∞

V (yd + x)− V (y + x)

y
dy = 0.

It is easy to see that
1

π

ˆ +∞

−∞

V (y)

y
dy =

1

π

ˆ +∞

−∞

V (yd)

yd
d(yd) =

1

π

ˆ +∞

−∞

V (yd)

y
dy.

So
1

π

ˆ +∞

−∞

V (y)− V (yd)

y
dy = 0.

For the term
1

π

ˆ +∞

−∞

V (yd + x)− V (y + x)

y
dy,

we have
1

π

ˆ +∞

−∞

V (y + x)

y
dy =

1

π

ˆ +∞

−∞

V (y)

y − x
dy =

1

π

ˆ +∞

−∞

V (yd + x)

yd
d(yd + x)

=
1

π

ˆ +∞

−∞

V (yd + x)

y
dy.

Thus
1

π

ˆ +∞

−∞

V (yd + x)− V (y + x)

y
dy = 0.

We have proved the theorem. ¤

9. Complex manifold structure

In this section, we will discuss the complex manifold structure on Hinv, therefore,
on Finv. The complex manifold structure which we will discuss is the integration of
the almost complex structure J which we discussed in the previous section.

Consider

H = {h | h is a quasisymmetric circle homeomorphism with h(1) = 1}.
Since Hinv is the subspace of all h ∈ H satisfying the linear equation (11), it is a
smooth submanifold of H. The almost complex structure J : Hinv → Hinv is the
restriction of the almost complex structure J : H → H. Thus, to have our original
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goal, we can discuss the complex manifold structure on H which is the integration of
the almost complex structure J : H → H.

In the following, we will discuss the Teichmüller structure on H and its embed-
ding to the space of all holomorphic functions on the unit disk. This will give a
complex manifold structure on H (as well as F). Furthermore, we will prove that
the almost complex structure induced from this complex manifold structure is the
Hilbert transform J . Thus, the induced complex manifold structure on Hinv (as well
as on Finv) is the integral of the almost complex structure on Hinv (as well as Finv)
defined by the Hilbert transform J .

The covering map from the real line R to the unit circle T is

π(x) = e2πix : R → T.

So any map in H can be lifted to a periodic quasisymmetric homeomorphism H of
R. We denote the space of all lifting map to be H̃, i.e.,

H̃ = {H | H is a quasisymmetric homeomorphism of R

with H(x + 1) = H(x) + 1 and H(0) = 0}.
Since h and H are quasisymmetric, we can extend h and H to quasiconformal

homeomorphisms of C. Let f(z) be the Beurling–Ahlfors extension of H (see [1]),
then f(z + 1) = f(z) + 1 and the corresponding µ = fz/fz satisfies the condition
µ(z) = µ(z + 1). The converse of the previous argument is also true. Suppose µ(z)
is a measurable function defined on C with ‖µ‖∞ < 1. Such a function is called a
Beltrami coefficient. Consider the Beltrami equation

(14) fz = µfz.

A solution of the Beltrami equation (14) is called normalized if it fixes 0, 1, and ∞.
The normalized solution is unique for any given Beltrami coefficient µ.

Lemma 1. Suppose µ is a Beltrami coefficient satisfying that µ(z + 1) = µ(z)
for all z ∈ C. Suppose f(z) is the normalized solution of the corresponding Beltrami
equation (14). Then

f(z + 1) = f(z) + 1, ∀z ∈ C.

Proof. The following function P and T are two operators defined in [1].

Pµ(ζ) = − 1

π

¨
µ(z)(

1

z − ζ
− 1

z
) dx dy

and

Tµ(ζ) = lim
ε→0

− 1

π

¨

|z−ζ|>ε

µ(z)

(z − ζ)2
dx dy.

Since µ(z + 1)=µ(z), P(µ(z)) = P(µ(z + 1)) and T (µ(z)) = T (µ(z + 1)). We have
that both f(z) and f(z + 1) − 1 are the normalized solution of the corresponding
Beltrami equation (14), so f(z + 1) = f(z) + 1. We proved the lemma. ¤

Consider the space Mr of all measurable functions µ defined on the Riemann
sphere C satisfying

• µ(z + 1) = µ(z);
• µ(z) = µ(z) for all z ∈ C;
• ‖µ‖∞ < 1.
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For any µ ∈ Mr, the restriction of the normalized solution f of the corresponding
Betrami equation (14) to the real line R is in H̃. For any H ∈ H̃, let f(z) be
the Beurling-Ahlfors extension of H (see [1]), then f(z + 1) = f(z) + 1 and the
corresponding µ = fz/fz is in Mr. Thus every map in H̃ can be thought as the
restriction of the normalized solution f of a Betrami equation (14) for some Beltrami
coefficient µ ∈Mr.

Consider the space Mc of all measurable functions µ defined on the Riemann
sphere C satisfying

• µ(z) = z2

z2 µ(1/z) for any z ∈ C;
• ‖µ‖∞ < 1.

For any µ ∈ Mc, the restriction of the normalized solution g of the corresponding
Betrami equation (14) to the unit circle T is in H. Similarly, every map in H can
be thought as the restriction of the normalized solution g of a Betrami equation (14)
for some Beltrami coefficient µ ∈Mc.

For any µ ∈Mr, we use fµ to denote the normalized solution of the corresponding
Beltrami equation (14). Then fµ maps the real line R onto itself. For any µ ∈ Mc,
we use gµ to denote the normalized solution of the Beltrami equation (14). Then gµ

maps the unit circle T onto itself.

Definition 9. (Teichmüller Equivalence) Suppose µ and ν in Mr. We say that
they are equivalent, denoted as µ ∼r ν if fµ(x) = fν(x) for all x ∈ R. We use [µ]r to
denote the ∼r-equivalent class of µ ∈Mr. We define the Teichmüller space

Tr = {[µ]r | µ ∈Mr}
as the space of all ∼r-equivalence classes. Suppose µ and ν in Mc. We say that
they are equivalent, denoted as µ ∼c ν if gµ(z) = gν(z) for all z ∈ T . We use [µ]c to
denote the ∼c-equivalent class of µ ∈Mc. We define the Teichmüller space

Tc = {[µ]c | µ ∈Mc}
as the space of all ∼c-equivalence classes.

From the definition and the standard theory for quasiconformal mappings (see [1]),
there is a one-to-one and onto correspondence between H̃ and Tr. Therefore, H̃ can
be thought as another representation of the Teichmüller space Tr. There is a one-
to-one and onto correspondence between H and Tc. Therefore, H can be thought as
another representation of the Teichmüller space Tc. We also know that there is a one-
to-one and onto correspondence between H̃ and H. Therefore, there is a one-to-one
and onto correspondence

(15) τ : Tc → Tr.

9.1. Complex structures on Tc, Tr and T (∆∗). The space Tr is a subspace
of the universal Teichmüller space. From Bers’ embedding (refer to [7]), there is a nat-
ural complex manifold structure on Tr which is given by considering the Schwarzian
derivative

S(fµ) =

(
(fµ)′′

fµ)′

)′
− 1

2

(
(fµ)′′

(fµ)′

)2

on the lower-half plane H∗, where fµ is the normalized solution of the Beltrami
equation (14) with the Beltrami coefficient µ̃ = µ on the upper-half plane and µ̃ = 0
on the lower-half plane.
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Let ∆ = {z ∈ C | |z| < 1} be the open unit disk and ∆∗ = ∆ \ {0} be the
punctured disk. Let T (∆∗) be the Teichmüller space of Riemann surfaces with the
basepoint ∆∗ i.e.,

T (∆∗) = {[µ]∆∗ | µ ∈M},
whereM is the unit ball of L∞(∆∗), is the space of all Teichmüller equivalence classes
[µ]∆∗ . Here µ and ν are said to be Teichmüller equivalent, denoted as µ ∼∆∗ ν, if two
unique solutions f and g of the Beltrami equation (14) with the Beltrami coefficients
µ and ν in ∆ and 1/µ(1/z) and 1/ν(1/z) in C \∆ fixing −1, 1, i agree on the unit
circle T and on 0, that is, f |T = g|T and f(0) = g(0).

On Tc we can define the Teichmüller metric by

dT (x, y) =
1

2
inf

µ∈x,ν∈y
log K(fµ ◦ f−1

ν ),

where fµ and fν are normalized solutions of Beltrami equation (14) with beltrami
coefficients µ and ν and K(fµ ◦ f−1

ν ) is the quasiconformal dilatation of fµ ◦ f−1
ν .

Let d∗(·, ·) be the Teichmüller distance on T (∆∗).

Theorem 10. The space (Tc, dT ) is isometric to the space (T (∆∗), d∗).

Proof. For any x = [µ]c ∈ Tc, h = fµ|T is in H. The map h fixes 1. There exists
a Möbius map

Ma(z) =
z + a

1 + az
· 1 + a

1 + a

such that Ma ◦h is a homeomorphism of T fixing 1, i and −1. Thus Ma ◦h represents
the equivalent class of the Beltrami coefficient of Ma ◦ fµ in T (∆∗). Moreover,
M−1

a ◦ h will map a point h ∈ T (∆∗) to a point in Tc. This correspondence preserves
the metrics dT and d∗. ¤

The pull back of the complex structure, given by the Schwarzian derivative, on
Tr by τ gives a complex complex structure on Tc. From Theorem 10, this also gives
a complex structure on T (∆∗). Therefore, we have a complex manifold structure on
H.

9.2. Almost complex structure. The tangent vector V in the tangent space
of Tr at the identity has the form

V (x) =
−1

π

¨

C

µ(ζ)

ζ(ζ − 1)(ζ − x)
dξ dη,

for any real number x and for some µ which is symmetric, periodic and in L∞(H)/
N(H) (see [7]). So multiplication by −i on Beltrami coefficients µ determines the
standard almost complex structure on Teichmuller space Tr. From the calculation
in Section 7, the Hilbert transform gives the same almost complex structure on V .
This observation for the universal Teichmüller space is due to Kerckhoff (see, for
example, [23]).

So the pull back of Hilbert transform by τ : Tc → Tr gives an almost complex
structure on the tangent space of Tc at the identity. From Theorem 7 in Section 7,
the Hilbert transform keeps the condition (9) and (10) which implies the pull back of
Hilbert transform by τ gives an almost complex structure on the tangent space Finv
at identity, whose integration is the complex manifold we just discussed in Section 8.
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10. The Teichmüller metric and Kobayashi’s metric

Since Tc is a complex manifold, we can define Kobayashi’s metric on Tc (see [6]).
Since the Teichmüller metric is equal to Kobayashi’s metric on T (∆∗) (see [6]), from
Theorem 8, the Teichmüller metric is equal to Kobayashi’s metric on Tc.

The restriction of a Möbius transformation

Ma(z) =
z + a

1 + az
· 1 + a

1 + a

to the unit circle T maps T onto T and fixes 1. It is the boundary map of a quasicon-
formal map fµ of C fixing 0, 1, and∞ for a [µ] ∈ Tc. Note that µ is not ∼c-equivalent
to µ0 ≡ 0. But µ is the Teichmüller equivalent to µ0 ≡ 0 in the universal Teichmüller
space T (∆).

Let P : T (∆∗) → T (∆) be the forgetful map since ∆∗ ⊂ ∆. It is a holomorphic
split submersion, that means that for every point x ∈ T (∆), there is a neighborhood
U about x and a holomorphic map s : U → T (∆∗) such that P ◦ s = id.

Suppose [id] = [0]∆ is the basepoint of T (∆). Let K = P−1([id]). Then

K = {Ma(z) | a ∈ ∆}
is a one dimensional complex manifold of T (∆∗) conformally equivalent to the hy-
perbolic disk ∆. Therefore, we have Kobayashi’s metric on K and the restriction of
Teichmüller metric on K, which we denote as d∗. Comparing these two metrics is an
interesting problem. Gardiner and Lakic [8, 9] have studied this problem infinitesi-
mally in a more general setting as follows:

Definition 10. Suppose Ω is a domain contained in C with three or more bound-
ary points. Its Poincare density is denoted as

ρΩ(p) =
ρ∆(z)

|π′(z)| ,

where ρ∆(z) = |dz|
1−|z|2 and π : ∆ → Ω is the universal covering and p = π(z).

Definition 11. The Teichmüller density λΩ(p) evaluated at a point p in Ω is

λΩ(p) = inf{‖∂(Ṽ )‖∞},
where the infimum is taken over all continuous vector fields Ṽ (z) ∂

∂z
for which Ṽ (p) = 1

and Ṽ (z) = 0 for all z on the boundary of Ω.

Suppose P : T (Ω − p) → T (Ω) is the forgetful map, which is a holomorphic
split submersion, and suppose [id] is the basepoint of T (Ω). Consider the fiber
K = P−1([id]). In [2], Bers shows that when Ω is of finite analytic type, K is
conformally equivalent to the universal covering of Ω. In [8], Gardiner and Lakic
showed that the infinitesimal Kobayashi’s metric at the basepoint for K is equal
to the Poincaré density ρΩ(p) at p in Ω. The infinitesimal Teichmüller’s metric at
the basepoint for K is the Teichmüller density λΩ(p). Furthermore, they have the
following comparison.

Theorem 11. (Gardiner and Lakic [8]) The Teichmüller density λΩ(p) and the
Kobayashi’s density ρΩ(p) are equivalent. In particular,

1

2
ρΩ(p) ≤ λΩ(p) ≤ ρΩ(p).
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The right hand side of the inequality is an easy corollary of Slodkowski’s extension
theorem [21] in the holomorphic motion theory (see also [6]). And they use the
Poincare theta series of a quadratic differential to show the left hand side. The
reader who is interested in this theorem can refer to [8] for more details.

For Ω = ∆ and p = 0, Gardiner and Lakic have a result in [9] recently as follows.
We give a proof of this result in this section.

Theorem 12. (Gardiner and Lakic [9]) Then

λ∆(0) =
1

2
ρ∆(0) =

1

2
.

Proof. Since 1
2
ρ∆(0) = 1

2
, from Theorem 9, we have that

1

2
ρ∆(0) ≤ λ∆(0).

So we only need to show that λ∆(0) ≤ 1
2
as follows.

Since the fiber K is the hyperbolic disk ∆ conformally, we consider the holomor-
phic motion

h(t, z) =

{
z, |z| ≥ 1

z + t(1− |z|), |z| ≤ 1
: ∆× C → C.

The tangent vector of this motion on |z| ≤ 1 is

V (z) =
d(h(t, z))

dt

∣∣∣
t=0

= 1− |z| = 1− z
1
2 z

1
2 .

So V (0) = 1 and V (z) = 0 for |z| = 1.
For any z ∈ ∆,

|∂V (z)| =
∣∣∣∣∣
1

2

z
1
2

z
1
2

∣∣∣∣∣ =
1

2
.

Therefore, ‖∂V ‖∞ = 1
2
and

λ∆(0) = inf{‖∂(Ṽ )‖∞} ≤ 1

2
,

where the infimum is taken over all continuous vector fields Ṽ (z) ∂
∂z

for which Ṽ (0) = 1

and Ṽ (z) = 0 for all z on the boundary of ∆. ¤
The above theorems are about the estimation of the Kobayashi’s density and the

Teichmüller density on the fiber K at the basepoint for the fiber K. In this section,
we prove that this kind of estimations will not exist in the global meaning. That is,
we will prove that from the global point of view, Theorems 9 and 10 will not hold on
the fiber K. More precisely, we prove that

Theorem 13. On the fiber K, the global Teichmüller metric dTei and the global
Kobayashi’s metric dKob on K are not equivalent.

Proof. We use the upper-half plane model for the universal Teichmüller space
T (H). Then p = i. Denote H∗ = H − {i}. Then we have the forgetful map
P : T (H∗) → T (H). Let [id] be the basepoint for T (H). Then the fiber

K = P−1([id]) =
{

fw(z) | f(x) = x,∀x ∈ R, f(i) = w
}

=
{

Mw(z) = ηz + ξ
}

= H,

where w = ξ + ηi ∈ H. Note that Mw(i) = w and Mw(∞) = ∞.
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Given any number K > 1. Suppose fK is a quasi-conformal self homeomorphism
of H such that fK(x) = x for any real x ∈ R and fK(i) = Ki. Take the Beltrami
coefficient µfK

(z) = ∂fK(z)/∂fK(z). Let τK = [µfK
]H∗ be a point in T (H∗). That

is, τK is the equivalence class of all Beltrami coefficient ν on H such that fν |R = id
and fν(i) = Ki. Clearly, τK is a point in the fiber K. Let [id]H∗ be the basepoint
of T (H∗). The Kobayashi’s distance dKob([id]H∗ , τK) on the fiber K is equal to the
Poincaré distance dHyp(i,Ki) = log K on the hyperbolic upper-half plane H.

We will use Strebel’s extremal example to get a upper bound of the Teichmüller
distance dTei([id]H∗ , τK) on the fiber K. Let

z = π(w) =
2

π
log r + 4iθ, w = re2πiθ, r > 0, 0 ≤ θ ≤ 1

2
.

Then it maps the upper-half plane H to the horizontal strip

A = {z = x + yi | −∞ < x < ∞, 0 ≤ y ≤ 2}.
It maps the positive real axis to the real line; the positive imaginary axis to the line
y = 1; the negative real line to the line y = 2.

Let g : A → A be a self quasi-conformal homeomorphism of A defined as

g(z) =

{
z + 2

π
z−z
2i

log K, 0 ≤ y ≤ 1,

z + 2
π

log K(2− z−z
2i

), 1 ≤ y ≤ 2.

Then the Beltrami coefficient is

µg =
− 1

πi
log K

1 + 1
πi

log K
.

Thus the quasiconformal dilatation

K(g) =




√
1 +

(
1

π
log K

)2

+
1

π
log K




2

.

Define f = π−1 ◦ g ◦ π. It is a quasiconformal self homeomorphism of the upper-
half plane H. We have that K(f) = K(g). Since f |R = id and f(i) = Ki, the
Beltrami coefficient µf ∈ τK . This gives us that the Teichmüller distance

dTei([id]H∗ , τK) ≤ log K(f) = 2 log




√
1 +

(
1

π
log K

)2

+
1

π
log K


 .

Hence

dTei([id]H∗ , τK) ≈ 2 log

(
2

π
log K

)
, as K →∞.

Thus we have that

dTei([id]H∗ , τK)

dKob([id]H∗ , τK)
≈ 2 log( 2

π
log K)

log K
→ 0, as K →∞.

We proved our theorem. ¤
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