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Abstract. We obtain a priori estimates in Lp(ω) for the generalized Beltrami equation, pro-
vided that the coefficients are compactly supported V MO functions with the expected ellipticity
condition, and the weight ω lies in the Muckenhoupt class Ap. As an application, we obtain improved
regularity for the jacobian of certain quasiconformal mappings.

1. Introduction

In this paper, we consider the inhomogeneous, Beltrami equation

(1) ∂̄ f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = g(z), a.e. z ∈ C,

where µ, ν are L∞(C;C) functions such that ‖|µ|+ |ν|‖∞ ≤ k < 1, and g is a measur-
able, C-valued function. The derivatives ∂f, ∂f are understood in the distributional
sense. In the work [3], the Lp theory of such equation was developed. More precisely,
it was shown that if 1 + k < p < 1 + 1

k
and g ∈ Lp(C) then (1) has a solution

f , unique modulo additive constants, whose differential Df belongs to Lp(C), and
furthermore, the estimate
(2) ‖Df‖Lp(C) ≤ C ‖g‖Lp(C)

holds for some constant C = C(k, p) > 0. For other values of p, (1) the claim may fail
in general. However, in the previous work [9], Iwaniec proved that if µ ∈ V MO(C),
then for any 1 < p < ∞ and any g ∈ Lp(C) one can find exactly one solution f to
the C-linear equation

∂f(z)− µ(z) ∂f(z) = g(z)

with Df ∈ Lp(C). In particular, (2) holds whenever p ∈ (1,∞). Recently, Koski [11]
has extended this result to the generalized equation (1). For results in other spaces
of functions, see [5].

In this paper, we deal with weighted spaces, and so we assume g ∈ Lp(ω), 1 <
p < ∞. Here ω is a measurable function, and ω > 0 at almost every point. By
checking the particular case µ = ν = 0, one sees that, for a weighted version of the
estimate (2) to hold, the Muckenhoupt condition ω ∈ Ap is necessary. It turns out
that, for compactly supported µ ∈ V MO, this condition is also sufficient.

Theorem 1. Let 1 < p < ∞. Let µ be a compactly supported function in
V MO(C), such that ‖µ‖∞ < 1, and let ω ∈ Ap. Then, the equation

∂f(z)− µ(z) ∂f(z) = g(z)
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has, for g ∈ Lp(ω), a solution f with Df ∈ Lp(ω), which is unique up to an additive
constant. Moreover, one has

‖Df‖Lp(ω) ≤ C ‖g‖Lp(ω)

for some C > 0 depending on µ, p and [ω]Ap .

The proof copies the scheme of [9]. In particular, our main tool is the follow-
ing compactness Theorem, which extends a classical result of Uchiyama [18] about
commutators of Calderón–Zygmund singular integral operators and V MO functions.

Theorem 2. Let T be a Calderón–Zygmund singular integral operator. Let ω ∈
Ap with 1 < p < ∞, and let b ∈ V MO(Rn). The commutator [b, T ] : Lp(ω) → Lp(ω)
is compact.

Theorem 2 is obtained from a sufficient condition for compactness in Lp(ω).
When ω = 1, this sufficient condition reduces to the classical Frechet–Kolmogorov
compactness criterion. Theorem 1 is then obtained from Theorem 2 by letting T be
the Beurling–Ahlfors singular integral operator.

A counterpart to Theorem 1 for the generalized Beltrami equation,

(3) ∂f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = g(z),

can also be obtained under the ellipticity condition ‖|µ| + |ν|‖∞ ≤ k < 1 and the
V MO smoothness of the coefficients (see Theorem 8 below). Theorem 2 is again the
main ingredient. However, for (3) the argument in Theorem 1 needs to be modified,
because the involved operators are not C-linear, but only R-linear. In other words,
C-linearity is not essential. See also [11].

It turns out that any linear, elliptic, divergence type equation can be reduced
to equation (3) (see e.g. [2, Theorem 16.1.6]). Therefore the following result is no
surprise.

Corollary 3. Let K ≥ 1. Let A : R2 → R2×2 be a matrix-valued function,
satisfying the ellipticity condition

1

K
≤ vt A(z) v ≤ K, whenever v ∈ R2, |v| = 1,

at almost every point z ∈ R2, and such that A− Id has compactly supported V MO
entries. Let p ∈ (1,∞) be fixed, and ω ∈ Ap. For any g ∈ Lp(ω), the equation

div(A(z)∇u) = div(g)

has a solution u with ∇u ∈ Lp(ω), unique up to an additive constant, and such that

‖∇u‖Lp(ω) ≤ C ‖g‖Lp(ω)

for some constant C = C(A,ω, p).

Other applications of Theorem 1 are found in connection to planar K-quasi-
conformal mappings. Remember that a W 1,2

loc homeomorphism φ : Ω → Ω′ between
domains Ω, Ω′ ⊂ C is called K-quasiconformal if

|∂φ(z)| ≤ K − 1

K + 1
|∂φ(z)| for a.e. z ∈ Ω.

In general, jacobians of K-quasiconformal maps are Muckenhoupt weights belonging
to the class Ap for any p > K (see [2, Theorem 13.4.2 ], or also [3]), and this is sharp.
As a consequence of Theorem 1, we obtain the following improvement.
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Corollary 4. Let µ ∈ V MO be compactly supported, such that ‖µ‖∞ < 1, and
let φ : C → C be a quasiconformal solution of

∂φ(z)− µ(z) ∂φ(z) = 0.

Then, for every 1 < p < ∞ there exists a constant C = C(p) ≥ 1 such that the
estimate

(4)
( 

D

J(z, φ)p dz

) 1
p

≤ Cp

 

D

J(z, φ) dz,

holds for every disk D ⊂ C.

By quasiconformality, the above result is equivalent to say that the inverse map-
ping φ−1 has jacobian determinant J(·, φ−1) ∈ Ap for every p > 1. In turn, Johnson
and Neugebauer [10] proved that this is equivalent to the fact that the composition
with φ−1 quantitatively preserves the Muckenhoupt class A2, and this is what we
actually prove. The above Corollary improves the results in [9], which assert that
J(·, φ) ∈ Lp

loc for every finite p > 1. Note also that general K-quasiconformal maps
need not satisfy the estimate (4) if p ≥ K

K−1
[3].

The paper is structured as follows. In Section 2 we prove Theorem 2. In Section 3
we prove Theorem 1 and its counterpart for the generalized Beltrami equation. In
Section 4 we study some applications. By C we denote a positive constant that may
change at each occurrence. B(x, r) denotes the open ball with center x and radius r,
and 2B means the open ball concentric with B and having double radius.

2. Compactness of commutators

By singular integral operator T , we mean a linear operator on Lp(Rn) that can
be written as

Tf(x) =

ˆ

Rn

f(y) K(x, y) dy.

Here K : Rn ×Rn \ {x = y} → C obeys the bounds
(1) |K(x, y)| ≤ C1

|x−y|n ,

(2) |K(x, y)−K(x, y′)| ≤ C2
|y−y′|

|x−y|n+1 whenever |x− y| ≥ 2|y − y′|,
(3) |K(x, y)−K(x′, y)| ≤ C3

|x−x′|
|x−y|n+1 whenever |x− y| ≥ 2|x− x′|.

One then calls ‖T‖CZ = max{C1, C2, C3} the Calderón–Zygmund constant of T .
Given a singular integral operator T , we define the truncated singular integral as

Tεf(x) =

ˆ

|x−y|≥ε

K(x, y)f(y)dy

and the maximal singular integral by the relationship

T∗f(x) = sup
ε>0

|Tεf(x)| .

As usually, we denote
ffl

E
f(x) dx = 1

|E|
´

E
f(x) dx. A weight is a function ω ∈

L1
loc(R

n) such that ω(x) > 0 almost everywhere. A weight ω is said to belong to the
Muckenhoupt class Ap, 1 < p < ∞, if

(5) [ω]Ap := sup

( 

Q

ω(x) dx

) ( 

Q

ω(x)−
p′
p dx

) p
p′

< ∞,



94 Albert Clop and Victor Cruz

where the supremum is taken over all cubes Q ⊂ Rn, and where 1
p

+ 1
p′ = 1. One

may equivalently consider balls instead of cubes. By Lp(ω) we denote the set of
measurable functions f that satisfy

(6) ‖f‖Lp(ω) =

(ˆ

Rn

|f(x)|pω(x) dx

) 1
p

< ∞.

The quantity ‖f‖Lp(ω) defines a complete norm in Lp(ω). It is well know that if T is
a Calderón–Zygmund operator, then T and also T∗ are bounded in Lp(ω) whenever
ω ∈ Ap (see for instance [7, Cap. IV, Theorems 3.1 and 3.6]). Also the Hardy–
Littlewood maximal operator M is bounded in Lp(ω). For more about Ap classes
and weighted spaces Lp(ω), we refer the reader to [7].

We first show the following sufficient condition for compactness in Lp(ω), ω ∈ Ap.
Remember that a metric space X is totally bounded if for every ε > 0 there exists a
finite number of open balls of radius ε whose union is the space X. In addition, a
metric space is compact if and only if it is complete and totally bounded.

Theorem 5. Let p ∈ (1,∞), ω ∈ Ap, and let F ⊂Lp(ω). Then F is totally
bounded if it satisfies the next three conditions:

(1) F is uniformly bounded, i.e. supf∈F ‖f‖Lp(ω) < ∞.

(2) F is uniformly equicontinuous, i.e. supf∈F ‖f(·+ h)− f(·)‖Lp(ω)
h→0−−→ 0.

(3) F uniformly vanishes at infinity, i.e. supf∈F ‖f−χQ(0,R)f‖Lp(ω)
R→∞−−−→ 0, where

Q(0, R) is the cube with center at the origin and sidelength 2R.

Let us emphasize that Theorem 5 is a strong sufficient condition for compactness
in Lp(ω), because for a general weight ω ∈ Ap the space Lp(ω) is not invariant under
translations. Theorem 5 is proved by adapting the arguments in [8]. In particular,
the following result (which can be found in [8, Lemma 1]) is essential.

Lemma 6. Let X be a metric space. Suppose that for every ε > 0 one can find
a number δ > 0, a metric space W and an mapping Φ: X → W such that Φ(X) is
totally bounded, and the implication

d(Φ(x), Φ(y)) < δ =⇒ d(x, y) < ε

holds for any x, y ∈ X. Then X is totally bounded.

Proof of Theorem 5. Suppose that the family F satisfies the three conditions of
Theorem 5, and let ε > 0 be fixed. According to the third assumption on F, we can
choose a positive quantity R > 0 such that

(7) sup
f∈F

‖f − f χQ(0,R)‖Lp(ω) <
ε

4
.

Let us also find ρ > 0 small enough so that

(8) sup
h∈Q(0,2ρ)

(
sup
f∈F

‖f(·)− f(·+ h)‖Lp(ω)

)
<

ε

22+n/p
.

Such a ρ exists due to the equicontinuity assumption on F. Now, let us choose N
cubes Q1, . . . , QN with sidelength 2ρ, having pairwise disjoint interiors, and such that

(9) Q(0, R) ⊂
⋃
i

Qi.
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Define

(10) Φf(x) =





 

Qi

f(z) dz, x ∈ Qi, i = 1, . . . , N,

0, otherwise.

Since functions in Lp(ω) are locally integrable, Φf is well defined for any f ∈ F.
Moreover,
ˆ

Rn

|Φf(x)|pω(x) dx =
N∑

i=1

∣∣∣∣
 

Qi

f(z) dz

∣∣∣∣
p ˆ

Qi

ω(x) d(x)

≤
N∑

i=1

( 

Qi

|f(z)|pω(z) dz

)( 

Qi

ω
−p′

p (z) dz

) p
p′
ˆ

Qi

ω(x) dx

≤ [ω]Ap‖f‖p
Lp(ω).

In particular, Φ: Lp(ω) → Lp(ω) is a bounded operator. As F is bounded, then Φ(F)
is a bounded subset of a finite dimensional Banach space, and hence Φ(F) is totally
bounded.

On the other hand, by (7) and (9) one gets that

‖f χRn\∪iQi
‖Lp(ω) ≤ ‖f χRn\Q(0,R)‖Lp(ω) <

ε

4
,

for any f ∈ F. Also, by Jensen’s inequality,

‖fχ∪iQi
− Φf‖p

Lp(ω) =
N∑

i=1

ˆ

Qi

∣∣∣∣f(x)−
 

Qi

f(z)dz

∣∣∣∣
p

ω(x) dx

≤
N∑

i=1

1

|Qi|
ˆ

Qi

ˆ

Qi

|f(x)− f(z)|p dz ω(x) dx.

Now, if x, z ∈ Qi, then z−x = h ∈ Q(0, 2ρ). Therefore, after a change of coordinates,

‖fχ∪iQi
− Φf‖p

Lp(ω) ≤
N∑

i=1

1

|Qi|
ˆ

Qi

ˆ

Q(0,2ρ)

|f(x)− f(x + h)|p dh ω(x) dx

=
1

|Q(0, ρ)|
ˆ

Q(0,2ρ)

N∑
i=1

ˆ

Qi

|f(x)− f(x + h)|pω(x) dx dh

≤ 1

|Q(0, ρ)|
ˆ

Q(0,2ρ)

ˆ

Rn

|f(x)− f(x + h)|pω(x) dx dh

= 2n

 

Q(0,2ρ)

‖f(·)− f(·+ h)‖p
Lp(ω) dh

≤ 2n sup
h∈Q(0,2ρ)

(
sup
f∈F

‖f(·)− f(·+ h)‖p
Lp(ω)

)
<

( ε

4

)p

.

Summarizing,

‖f − Φf‖Lp(ω) ≤ ‖f χRn\∪iQi
‖Lp(ω) + ‖f χ∪iQi

− Φf‖Lp(ω) <
ε

2
,
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for any f ∈ F. Hence

(11) ‖f‖Lp(ω) <
ε

2
+ ‖Φf‖Lp(ω), whenever f ∈ F.

Since Φ is linear, this means that

‖f − g‖Lp(ω) <
ε

2
+ ‖Φf − Φg‖Lp(ω), whenever f, g ∈ F.

Set δ = ε/2. The above inequality says that if f, g ∈ F are such that d(Φf, Φg) < δ,
then d(f, g) < ε. By the previous Lemma, it follows that F is totally bounded. ¤

In order to prove Theorem 2, we will first reduce ourselves to smooth symbols
b. Let us recall that commutators Cb = [b, T ] with b ∈ BMO(Rn) are continuous
in Lp(ω) [15, Theorem 2.3]. Moreover, in [13, Theorem 1] the following estimate is
shown,

(12) ‖Cbf‖Lp(ω) ≤ C ‖b‖∗ ‖M2f‖Lp(ω),

where ‖b‖∗ denotes the BMO norm of b, and the constant C may depend on ω, but
not on b. Now, by the boudedness of the Hardy–Littlewood operator M on Lp(ω),
we obtain

‖Cbf‖Lp(ω) ≤ C ‖b‖∗ ‖f‖Lp(ω).

Since by assumption b ∈ V MO(Rn), we can approximate the function b by functions
bj ∈ C∞c (Rn) in the BMO norm, and thus

‖Cbf − Cbj
f‖Lp(ω) = ‖Cb−bj

f‖Lp(ω) ≤ C ‖b− bj‖∗ ‖f‖Lp(ω).

In particular, the commutators with smooth symbol Cbj
converge to Cb in the oper-

ator norm of Lp(ω). Therefore it suffices to prove compactness for the commutator
with smooth symbol.

Another reduction in the proof of Theorem 2 will be made by slightly modifying
the singular integral operator T . This technique comes from Krantz and Li [12].
More precisely, for every η > 0 small enough, let us take a continuous function Kη

defined on Rn ×Rn, taking values in R or C, and such that:
(1) Kη(x, y) = K(x, y) if |x− y| ≥ η,
(2) |Kη(x, y)| ≤ C0

|x−y|n for η
2

< |x− y| < η,
(3) Kη(x, y) = 0 if |x− y| ≤ η

2
,

where C0 is independent of η. Due to the growth properties of K, it is not restrictive
to suppose that condition 2 holds for all x, y ∈ Rn. Now, let

T ηf(x) =

ˆ

Rn

Kη(x, y)f(y) dy,

and let us also denote

Cη
b f(x) = [b, T η]f(x) =

ˆ

Rn

(b(x)− b(y))Kη(x, y)f(y) dy.

We now prove that the commutators Cη
b approximate Cb in the operator norm.

Lemma 7. Let b ∈ C1
c (R

n). There exists a constant C = C(n,C0) such that

|Cbf(x)− Cη
b f(x)| ≤ C η ‖∇b‖∞ Mf(x) almost everywhere,

for every η > 0. As a consequence,

lim
η→0

‖Cη
b − Cb‖Lp(ω)→Lp(ω) = 0
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whenever ω ∈ Ap and 1 < p < ∞.

Proof. Let f ∈ Lp(ω). For every x ∈ Rn we have

Cbf(x)− Cη
b f(x) =

ˆ

|x−y|<η

(b(x)− b(y))K(x, y)f(y) dy

−
ˆ

η
2
≤|x−y|<η

(b(x)− b(y))Kη(x, y)f(y) dy

= I1(x) + I2(x).

Using the smoothness of b and the size estimates of Kη, we have that

|I1(x)| ≤
ˆ

|x−y|<η

|b(y)− b(x)||K(x, y)||f(y)| dy

≤ C0 ‖∇b‖∞
∞∑

j=0

ˆ
η

2j+1 <|x−y|< η

2j

|f(y)|
|x− y|n−1

dy

≤ 2nC0 ‖∇b‖∞
∞∑

j=0

η |B(0, 1)|
2j+1

 

|x−y|< η

2j

|f(y)| dy

≤ η 2n C0 ‖∇b‖∞ |B(0, 1)|Mf(x)

for almost every x. For the other term, similarly

|I2(x)| ≤ η ‖∇b‖∞
ˆ

η
2
<|x−y|<η

|Kη(x, y)| |f(y)| dy

≤ η C0 ‖∇b‖∞
ˆ

η
2
<|x−y|<η

|f(y)|
|x− y|n dy

≤ η 2n C0 ‖∇b‖∞ |B(0, 1)|
 

|x−y|<η

|f(y)| dy

≤ η 2n C0 ‖∇b‖∞ |B(0, 1)|Mf(x).

Therefore, the pointwise estimate follows. Now, the boundedness of M in Lp(ω) for
any Ap weight ω implies that

‖Cbf − Cη
b f‖Lp(ω) ≤ C η ‖∇b‖∞ ‖Mf‖Lp(ω) ≤ C η ‖∇b‖∞ ‖f‖Lp(ω) → 0,

as η → 0. This finishes the proof of Lemma 7. ¤
We are now ready to conclude the proof of Theorem 2. From now on, η > 0

and b ∈ C1
c (R

n) are fixed, and we have to prove that the commutator Cη
b = [b, T η] is

compact. Thus, the constants that will appear may depend on b and η.
We denote F = {Cη

b f ; f ∈ Lp(ω), ‖f‖Lp(ω) ≤ 1}. Then F is uniformly bounded,
because Cη

b is a bounded operator on Lp(ω). To prove the uniform equicontinuity of
F, we must see that

lim
h→0

sup
f∈F

‖Cη
b f(·)− Cη

b f(·+ h)‖Lp(ω) = 0.
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To do this, let us write

Cη
b f(x)− Cη

b f(x + h) = (b(x)− b(x + h))

ˆ

Rn

Kη(x, y)f(y) dy

+

ˆ

Rn

(b(x + h)− b(y))(Kη(x, y)−Kη(x + h, y))f(y) dy

=

ˆ

Rn

I1(x, y, h)dy +

ˆ

Rn

I2(x, y, h) dy.

For I1(x, y, h), using the regularity of the function b and the definition of the operator
T∗, ∣∣∣∣

ˆ

Rn

I1(x, y, h) dy

∣∣∣∣

≤ ‖∇b‖∞|h|
∣∣∣∣∣
ˆ

|x−y|> η
2

(Kη(x, y)−K(x, y)) f(y) dy +

ˆ

|x−y|> η
2

K(x, y)f(y)dy

∣∣∣∣∣

≤ ‖∇b‖∞|h|
(ˆ

|x−y|> η
2

|Kη(x, y)−K(x, y)| |f(y)| dy + T∗f(x)

)

≤ ‖∇b‖∞|h| (C Mf(x) + T∗f(x))

for some constant C > 0 that may depend on η, but not on h. Therefore

(13)
(ˆ ∣∣∣∣

ˆ

Rn

I1(x, y, h) dy

∣∣∣∣
p

ω(x) dx

) 1
p

≤ C |h| ‖f‖Lp(ω),

for C independent of f and h. Here we used the boundedness of M and T∗ on Lp(ω)
(see [7, Chap. IV, Th. 3.6]). We will divide the integral of I2(x, y, h) into three
regions:

A =
{

y ∈ Rn : |x− y| > η

2
, |x + h− y| > η

2

}
,

B =
{

y ∈ Rn : |x− y| > η

2
, |x + h− y| < η

2

}
,

C =
{

y ∈ Rn : |x− y| < η

2
, |x + h− y| > η

2

}
.

Note that I2(x, y, h) = 0 for y ∈ Rn \ A ∪ B ∪ C. Now, for the integral over A, we
use the smoothness of b and Kη,
∣∣∣∣
ˆ

A

I2(x, y, h) dy

∣∣∣∣ ≤ C‖∇b‖∞|h|
ˆ

|x−y|> η
4

|f(y)|
|x− y|n+1

dy

≤ C‖∇b‖∞ |h|
η

∞∑
j=0

2−j

 

|x−y|< 2jη
4

|f(y)| dy ≤ C‖∇b‖∞ |h|
η

Mf(x),

thus (ˆ

Rn

∣∣∣∣
ˆ

A

I2(x, y, h) dy

∣∣∣∣
p

ω(x) dx

) 1
p

≤ C|h| ‖f‖Lp(ω).

for some constant C that may depend on η and b, but not on h. In particular, the
term on the right hand side goes to 0 as |h| → 0.
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The integrals of I2(x, y, h) over B and C are symmetric, so we only give the
details once. For the integral over the set B, let us assume that |h| is very small. We
can first choose R0 > η/2 + |h| such that b vanishes outside the ball B0 = B(0, R0).
It then follows that b(·+ h) has support in 2B0. Then, since B ⊂ B(x, |h|+ η/2), we
have for |x| < 3R0 that B ⊂ 4B0 and therefore

∣∣∣∣
ˆ

B

I2(x, y, h) dy

∣∣∣∣ ≤ C0‖∇b‖∞
ˆ

B∩4B0

|x + h− y| |f(y)|
|x− y|n dy

≤ C0‖∇b‖∞
ˆ

B∩4B0

|f(y)|
|x− y|n−1

dy

≤ C0 ‖∇b‖∞ (2/η)n−1

ˆ

B∩4B0

|f(y)|ω(y)
1
p ω(y)−

1
p dy

≤ C0 ‖∇b‖∞ (2/η)n−1‖f‖Lp(ω)

(ˆ

B∩4B0

ω(y)−
p′
p dy

) 1
p′

whence
ˆ

3B0

∣∣∣∣
ˆ

B

I2(x, y, h) dy

∣∣∣∣
p

ω(x) dx ≤ C ‖f‖p
Lp(ω)

(ˆ

3B0

ω(x) dx

)(ˆ

B∩4B0

ω(y)−
p′
p dy

) p
p′

for some constant C that might depend on η, but not on h. If, instead, we have
|x| ≥ 3R0, then b(x + h) = 0 (because |h| < R0 so that |x + h| > 2R0). Note also
that for y ∈ B one has |x| ≤ C|x− y| where C depends only on η. Therefore

∣∣∣∣
ˆ

B

I2(x, y, h) dy

∣∣∣∣ ≤ C‖b‖∞
ˆ

B∩4B0

|f(y)|
|x− y|n dy ≤ C‖b‖∞

|x|n
ˆ

B∩4B0

|f(y)| dy

≤ C‖b‖∞
|x|n ‖f‖Lp(ω)

(ˆ

B∩4B0

ω(y)−
p′
p dy

) 1
p′

.

This implies that
ˆ

Rn\3B0

∣∣∣∣
ˆ

B

I2(x, y, h)dy

∣∣∣∣
p

ω(x) dx

≤ C‖b‖p
∞‖f‖p

Lp(ω)

(ˆ

Rn\3B0

ω(x)

|x|np
dx

) (ˆ

B∩4B0

ω(y)−
p′
p dy

) p
p′

.

Summarizing,
ˆ

Rn

∣∣∣∣
ˆ

B

I2(x, y, h)dy

∣∣∣∣
p

ω(x) dx

≤ C ‖f‖p
Lp(ω)

(ˆ

B∩4B0

ω(y)−
p′
p dy

) p
p′

(ˆ

3B0

ω(x) dx +

ˆ

Rn\3B0

ω(x)

|x|np
dx

)
.

(14)

After proving that ˆ

|x|>3R0

ω(x)

|x|np
dx < ∞,

the left hand side of (14) will converge to 0 as |h| → 0 since |B| → 0 as |h| → 0.
To prove the above claim, let us choose q < p such that ω ∈ Aq [7, Theorem 2.6,
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Ch. IV]. For such q, we have
ˆ

|x|>R

ω(x)

|x|np
dx =

∞∑
j=1

ˆ

2j−1<
|x|
R

<2j

ω(x)

|x|np
dx ≤

∞∑
j=1

(2j−1R)−npω(B(0, 2jR)).

By [7, Lemma 2.2], we have

(15)
ˆ

|x|>R

ω(x)

|x|np
dx ≤

∞∑
j=1

(2j−1R)−np(2jR)nqω(B(0, 1)) =
C

Rn(p−q)
< ∞

as desired. The equicontinuity of F follows.
Finally, we show the decay at infinity of the elements of F . Let x be such that

|x| > R > R0. Then, x 6∈ supp b, and

|Cη
b f(x)| =

∣∣∣∣
ˆ

Rn

(b(x)− b(y))Kη(x, y)f(y) dy

∣∣∣∣ ≤ C0‖b‖∞
ˆ

supp b

|f(y)|
|x− y|n dy

≤ C‖b‖∞
|x|n

ˆ

supp b

|f(y)| dy ≤ C‖b‖∞
|x|n ‖f‖Lp(ω)

(ˆ

supp b

ω(y)−
p′
p dy

) 1
p′

whence
(ˆ

|x|>R

|Cη
b f(x)|pω(x) dx

) 1
p

≤ C‖b‖∞‖f‖Lp(ω)

(ˆ

|x|>R

ω(x)

|x|np
dx

) 1
p

.

The right hand side above converges to 0 as R →∞, due to (15). By Theorem 5, F
is totally bounded. Theorem 2 follows.

3. A priori estimates for Beltrami equations

We first prove Theorem 1. To do this, let us remember that the Beurling–Ahlfors
singular integral operator is defined by the following principal value

Bf(z) = − 1

π
P.V.

ˆ
f(w)

(z − w)2
dw.

This operator can be seen as the formal ∂ derivative of the Cauchy transform,

Cf(z) =
1

π

ˆ
f(w)

z − w
dw.

At the frequency side, B corresponds to the Fourier multiplier m(ξ) = ξ̄
ξ
, so that

B is an isometry in L2(C). Moreover, this Fourier representation also explains the
important relation

B(∂f) = ∂f

for smooth enough functions f . By B∗ we mean the singular integral operator ob-
tained by simply conjugating the kernel of B, that is,

B∗(f)(z) = − 1

π
P.V.

ˆ
f(w)

(z̄ − w̄)2
dw.

Note that B∗ has Fourier multiplier m∗(ξ) = ξ
ξ̄
. Thus,

BB∗ = B∗B = Id.
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In other words, B∗ is the L2-inverse of B. It also appears as the C-linear adjoint of
B, ˆ

C

Bf(z) g(z) dz =

ˆ

C

f(z)B∗g(z) dz.

The complex conjugate operator B is the composition of B with the complex conju-
gation operator Cf = f , that is,

B(f) = CB(f) = B(f).

It then follows that
B = CB = B∗C.

Note that B and B∗ are C-linear operators, while B is only R-linear. See [2, Chapter 4]
for more about the Beurling–Ahlfors transform.

Proof of Theorem 1. We follow Iwaniec’s idea [9, pp. 42–43]. For every N =
1, 2, . . ., let

PN = Id + µB + · · ·+ (µB)N .

Then

(16) (Id− µB)PN−1 = PN−1(Id− µB) = Id− µNBN + KN ,

where KN = µNBN − (µB)N . Each KN consists of a finite sum of operators that
contain the commutator [µ,B] as a factor. Thus, by Theorem 2, each KN is compact
in Lp(ω). On the other hand, the N -th iterate BN of the Beurling transform is
another convolution-type Calderón–Zygmund operator, whose kernel is

bN(z) =
(−1)NN

π

z̄N−1

zN+1

(see for instance [16, p. 73]). Arguing as in [6, Lemma 7.9 & Theorem 7.11], one sees
that the operator norm ‖BN‖Lp(ω) depends linearly on both the unweighted norm
‖BN‖Lp(Rn) and the Calderón–Zygmund constant ‖BN‖CZ . Since both quantities
are bounded by a constant multiple of N2, one immediately sees that

(17) ‖BN‖Lp(ω) ≤ CN2,

with constant C that depends on [ω]Ap , but not on N . As a consequence,

‖µNBNf‖Lp(ω) ≤ CN2‖µ‖N
∞‖f‖Lp(ω),

and therefore, for large enough N , the operator Id − µNBN is invertible. This,
together with (16), says that Id−µB is an Fredholm operator. Now apply the index
theory to Id− µB. The continuous deformation Id− tµB, 0 ≤ t ≤ 1, is a homotopy
from the identity operator to Id− µB. By the homotopical invariance of Index,

Index(Id− µB) = Index(Id) = 0.

Since injective operators with 0 index are onto, for the invertibility of Id−µB it just
remains to show that it is injective. So let f ∈ Lp(ω) be such that f = µBf . Then
f has compact support. Now, since belonging to Ap is an open-ended condition (see



102 Albert Clop and Victor Cruz

e.g. [7, Theorem IV.2.6]), there exists δ > 0 such that p− δ > 1 and ω ∈ Ap−δ. Then
ω−

1
p−δ ∈ L1

loc(C). Taking ε = δ
p−δ

, we obtain

(18)

ˆ

C

|f(x)|1+ε dx ≤
(ˆ

supp f

|f(x)|pω(x) dx

) 1+ε
p

(ˆ

supp f

ω(x)−
1+ε

p−(1+ε) dx

) p−(1+ε)
p

≤ ‖f‖1+ε
Lp(ω)

(ˆ

supp f

ω(x)−
1+ε

p−(1+ε) dx

) p−(1+ε)
p

< ∞,

therefore f ∈ L1+ε(C). But Id − µB is injective on Lp(C), 1 < p < ∞, when
µ ∈ V MO(C), by Iwaniec’s Theorem. Hence, f ≡ 0.

Finally, since Id−µB : Lp(ω) → Lp(ω) is linear, bounded, and invertible, it then
follows that it has a bounded inverse, so the inequality

‖g‖Lp(ω) ≤ C ‖(Id− µB)g‖Lp(ω)

holds for every g ∈ Lp(ω). Here the constant C > 0 depends only on the Lp(ω) norm
of Id − µB, and therefore on p, k and [ω]Ap , but not on g. As a consequence, given
g ∈ Lp(ω), and setting

f := C(Id− µB)−1g,

we immediately see that f satisfies ∂f − µ∂f = g. Moreover, since ω ∈ Ap,

‖Df‖Lp(ω) ≤ ‖∂f‖Lp(ω) + ‖∂f‖Lp(ω)

= ‖B(Id− µB)−1g‖Lp(ω) + ‖(Id− µB)−1g‖Lp(ω) ≤ C‖g‖Lp(ω),

where still C depends only on p, k and [ω]Ap .
For the uniqueness, let us choose two solutions f1, f2 to the inhomogeneous

equation. The difference F = f1− f2 defines a solution to the homogeneous equation
∂F − µ ∂F = 0. Moreover, one has that DF ∈ Lp(ω) and, arguing as before, one
sees that DF ∈ L1+ε(C). In particular, this says that (I − µB)(∂F ) = 0. But for
µ ∈ V MO(C), it follows from Iwaniec’s Theorem that Id− µB is injective in Lp(C)
for any 1 < p < ∞, whence ∂F = 0. Thus DF = 0 and so F is a constant. ¤

The C-linear Beltrami equation is a particular case of the following one,

∂f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = g(z),

which we will refer to as the generalized Beltrami equation. It is well known that, in
the plane, any linear, elliptic system, with two unknowns and two first-order equa-
tions on the derivatives, reduces to the above equation (modulo complex conjugation),
whence the interest in understanding it is very big. An especially interesting exam-
ple is obtained by setting µ = 0, when one obtains the so-called conjugate Beltrami
equation,

∂f(z)− ν(z) ∂f(z) = g(z).

A direct adaptation of the above proof immediately drives the problem towards
the commutator [ν,B]. Unfortunately, as an operator from Lp(ω) onto itself, such
commutator is not compact in general, even when ω = 1. To show this, let us choose

ν = i ν0 χD + ν1χC\D,
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where the constant ν0 ∈ R and the function ν1 are chosen so that ν is continuous on
C, compactly supported in 2D, with ‖ν‖∞ < 1. Let us also consider

E = {f ∈ Lp; ‖f‖Lp ≤ 1, supp(f) ⊂ D} ,

which is a bounded subset of Lp. For every f ∈ E, one has

ν B(f)− B(νf) = χDiν0B(f) + χC\D ν1 B(f)− B(iν0f)

= χDiν0B(f) + χC\D ν1 B(f) + iν0B(f)

= χD2iν0B(f) + χC\D (iν0 + ν1)B(f).

In view of this relation, and since B is not compact, we have just cooked a con-
crete example of function ν ∈ V MO for wich the commutator [ν,B] is not compact.
Nevertheless, it turns out that still a priori estimates hold, even for the generalized
equation.

Theorem 8. Let 1 < p < ∞, ω ∈ Ap, and let µ, ν ∈ V MO(C) be compactly
supported, such that ‖|µ|+ |ν|‖∞ < 1. Let g ∈ Lp(ω). Then the equation

∂f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = g(z)

has a solution f with Df ∈ Lp(ω) and
‖Df‖Lp(ω) ≤ C ‖g‖Lp(ω).

This solution is unique, modulo an additive constant.

A previous proof for the above result has been shown in [11] for the constant
weight ω = 1. For the weighted counterpart, the arguments are based on a Neumann
series argument similar to that in [11], with some minor modification. We write it
here for completeness. The following Lemma will be needed.

Lemma 9. Let µ, ν ∈ L∞(C) be measurable, bounded with compact support,
such that ‖|µ|+ |ν|‖∞ < 1. If 1 < p < ∞ and p′ = p

p−1
, then the following statements

are equivalent:
(1) The operator Id− µB − ν B : Lp(C) → Lp(C) is bijective.
(2) The operator Id− µB∗ − ν B∗ : Lp′(C) → Lp′(C) is bijective.

Proof. When ν = 0, the above result is well known, and follows as an easy
consequence of the fact that, with respect to the dual pairing

(19) 〈f, g〉 =

ˆ

C

f(z) g(z) dz,

the operator Id − µB : Lp(C) → Lp(C) has precisely Id − B∗µ : Lp′(C) → Lp′(C)
as its C-linear adjoint. Unfortunately, when ν does not identically vanish, R-linear
operators do not have an adjoint with respect to this dual pairing. An alternative
proof can be found in [11]. We will think the space of C-valued Lp functions Lp(C)
as an R-linear space,

Lp(C) = Lp
R(C)⊕ Lp

R(C),

by means of the obvious identification u + iv = (u, v). According to this product
structure, every bounded R-linear operator T : Lp

R(C)⊕ Lp
R(C) → Lp

R(C)⊕ Lp
R(C)

has an obvious matrix representation

T (u + iv) = T

(
u
v

)
=

(
T11 T12

T21 T22

)(
u
v

)
,
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where every Tij : Lp
R(C) → Lp

R(C) is bounded. Similarly, bounded linear functionals
U : Lp

R(C)⊕ Lp
R(C) → R are represented by

U

(
u
v

)
=

(
U1 U2

) (
u
v

)
,

where every Uj : Lp
R(C) → R is bounded. By the Riesz Representation Theorem, we

get that Lp
R(C)⊕Lp

R(C) has precisely Lp′
R(C)⊕Lp′

R(C) as its topological dual space.
In fact, we have an R-bilinear dual pairing,〈(

u
v

)
,

(
u′

v′

)〉
=

ˆ
u(z) u′(z) dz +

ˆ
v(z) v′(z) dz,

whenever (u, v) ∈ Lp
R(C) ⊕ Lp

R(C) and (u′, v′) ∈ Lp′
R(C) ⊕ Lp′

R(C), and which is
nothing but the real part of (19). Under this new dual pairing, every R-linear
opeartor T : Lp

R(C)⊕Lp
R(C) → Lp

R(C)⊕Lp
R(C) can be associated another operator

T ′ : Lp′
R(C)⊕ Lp′

R(C) → Lp′
R(C)⊕ Lp′

R(C),

called the R-adjoint operator of T , defined by the common rule〈(
u
v

)
, T ′

(
u′

v′

)〉
=

〈
T

(
u
v

)
,

(
u′

v′

)〉
.

If T is a C-linear operator, then T ′ is the same as the C-adjoint T ∗ (i.e. the adjoint
with respect to (19)) so in particular for the Beurling–Ahlfors transform B we have
an R-adjoint B′, and moreover B∗ = B′. Similarly, the pointwise multiplication by
µ and ν are also C-linear operators. Thus their R-adjoints µ′, ν ′ agree with their
respectives C-adjoints µ∗, ν∗. But these are precisely the pointwise multiplication
with the respective complex conjugates. Symbollically, µ′ = µ and ν ′ = ν. In
contrast, general R-linear operators need not have a C-adjoint. For example, for the
complex conjugation,

C =

(
Id 0
0 −Id

)

one simply has C′ = C. Putting all these things together, one easily sees that

(Id− µB − νB)′ = (Id− µB − νCB)′ = Id− (µB)′ − (νCB)′

= Id− B′µ′ − B′C′ν ′ = Id− B∗µ− B∗Cν

= B∗ (Id− µB∗ −CνB∗)B = B∗ (Id− µB∗ − νCB∗)B,

where we used the fact that B∗B = BB∗ = Id. As a consequence, and using that
both B and B∗ are bijective in Lp(C), we obtain that the bijectivity of the operator
Id − µB − νB in Lp

R(C) ⊕ Lp
R(C) is equivalent to that of Id − µB∗ − νCB∗ in the

dual space Lp′
R(C)⊕ Lp′

R(C). Similarly, one proves that

(Id− µB∗ − νCB∗)′ = B(Id− µB − ν B)B∗.
Hence, the bijectivity of Id − µB∗ − νCB∗ in Lp

R(C) ⊕ Lp
R(C) is equivalent to the

bijectivity of Id− µB − ν B in Lp′
R(C)⊕ Lp′

R(C). ¤

Lemma 10. If 1 < p < ∞, ω ∈ Ap, µ, ν ∈ V MO have compact support, and
‖|µ|+ |ν|‖∞ ≤ k < 1, then the operators

Id− µB − νB and Id− µB∗ − νB∗
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are Fredholm operators in Lp(ω).

Proof. We will show the claim for the operator Id−µB−νB. For Id−µB∗−νB∗
the proof follows similarly. It will be more convenient for us to write B = CB. As in
the proof of Theorem 1, we set

PN =
N∑

j=0

(µB + νCB)j.

Then
(Id− µB − νCB) ◦ PN−1 = Id− (µB + νCB)N ,

PN−1 ◦ (Id− µB + νCB) = Id− (µB + νCB)N .

We will show that

(20) (µB + νCB)N = RN + KN

where KN is a compact operator, and RN is a bounded, linear operator such that

‖RNf‖Lp(ω) ≤ C kN N3 ‖f‖Lp(ω).

Then, the Fredholm property follows immediately. To prove (20), let us write, for
any two operators T1, T2,

(T1 + T2)
N =

∑

σ∈{1,2}N

Tσ,

where σ ∈ {1, 2}N means that σ = (σ(1), . . . , σ(N)) and σ(j) ∈ {1, 2} for all j =
1, . . . , N , and

Tσ = Tσ(1)Tσ(2) . . . Tσ(N).

By choosing T1 = µB and T2 = νCB, one sees that every Tσ(j) can be written as

Tσ(j) = Mσ(j)Cσ(j)B
being M1 = µ, M2 = ν, C1 = Id and C2 = C. Thus

Tσ = Mσ(1)Cσ(1)BMσ(2)Cσ(2)B . . . Mσ(N)Cσ(N)B.

Our main task consists of rewriting Tσ as

(21) Tσ = Mσ(1)Cσ(1)Mσ(2)Cσ(2) . . .Mσ(N)Cσ(N) Bσ + Kσ.

for some compact operator Kσ and some bounded operator Bσ ∈ {B,B∗}N . If this
is possible, then one gets that

(T1 + T2)
N =

∑

σ∈{1,2}N

Mσ(1)Cσ(1)Mσ(2)Cσ(2) . . .Mσ(N)Cσ(N) Bσ +
∑

σ∈{1,2}N

Kσ

= RN + KN .

It is clear that KN is compact (it is a finite sum of compact operators). Moreover,
from Bσ ∈ {B,B∗}N , one has

|Bσf(z)| ≤
N∑

j=1

|Bnf(z)|+
N∑

j=1

|(B∗)nf(z)|.
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Thus

|RNf(z)| ≤
∑

σ∈{1,2}N

|Mσ(1)Cσ(1) . . . Mσ(N)Cσ(N) Bσf(z)|

≤
∑

σ∈{1,2}N

|Mσ(1)(z)| . . . |Mσ(N)(z)|
(

N∑
n=1

|Bnf(z)|+
N∑

j=1

|(B∗)nf(z)|
)

=

(
N∑

n=1

|Bnf(z)|+
N∑

j=1

|(B∗)nf(z)|
)

. (|M1(z)|+ |M2(z)|)N

Now, since ‖Bjf‖Lp(ω) ≤ Cω j2 ‖f‖Lp(ω) (and similarly for (B∗)n, see (17)), one gets
that

‖RNf‖Lp(ω) ≤ ‖|M1|+ |M2|‖N
∞ Cω

(
N∑

j=1

j2

)
‖f‖Lp(ω) = C kN N3 ‖f‖Lp(ω)

and so (20) follows from the representation (21). To prove that representation (21)
can be found, we need the help of Theorem 2, according to which the differences
Kj = BMσ(j) −Mσ(j)B are compact. Thus,

Tσ = Mσ(1)Cσ(1)BMσ(2)Cσ(2)B . . .Mσ(N)Cσ(N)B
= Mσ(1)Cσ(1)Mσ(2)BCσ(2)Mσ(3) . . .BCσ(N)B + Kσ

where all the factors containning Kj are includded in Kσ. In particular, Kσ is com-
pact. Now, by reminding that

CB = B∗C,

we have that BCσ(j+1) = Cσ(j+1)Bj for some Bj ∈ {B,B∗}. Thus
Tσ = Mσ(1)Cσ(1)Mσ(2)Cσ(2)B1 Mσ(3) . . . Cσ(N)BN−1B + Kσ

Now, one can start again. On one hand, the differences Bj Mσ(j+2) − Mσ(j+2)Bj

are again compact, because Bj ∈ {B,B∗} and Mσ(j+2) ∈ V MO. Moreover, the
composition BjCσ(j+2) can be writen as Cσ(j+2)B̃j, where B̃j need not be the same
as Bj but still B̃j ∈ {B,B∗}. So, with a little abbuse of notation, and after repeating
this algorythm a total of N − 1 times, one obtains (21). The claim follows. ¤

Proof of Theorem 8. The equation we want to solve can be rewritten, at least
formally, in the following terms

(Id− µB − νB)(∂f) = g,

so that we need to understand the R-linear operator T = Id−µB−νB. By Lemma 10,
we know that T is a Fredholm operator in Lp(ω), 1 < p < ∞. Now, we prove that it
is also injective. Indeed, if

T (h) = 0

for some h ∈ Lp(ω) and ω ∈ Ap, it then follows that

h = µB(h) + νB(h)

so that h has compact support, and thus h ∈ L1+ε(C) for some ε > 0 (arguing as in
(18)). We are then reduced to show that

T : L1+ε(C) → L1+ε(C) is injective.
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Let us first see how the proof finishes. Injectivity of T in L1+ε(C) gives us that h = 0.
Therefore, T is injective also in Lp(ω). Being as well Fredholm, it is also surjective,
so by the open map Theorem it has a bounded inverse T−1 : Lp(ω) → Lp(ω). As a
consequence, given any g ∈ Lp(ω), the function

f = CT−1(g)

is well defined, and has derivatives in Lp(ω) satisfying the estimate

‖Df‖Lp(ω) ≤ ‖∂f‖Lp(ω) + ‖∂f‖Lp(ω) = ‖BT−1(g)‖Lp(ω) + ‖T−1(g)‖Lp(ω)

≤ (C + 1) ‖T−1(g)‖Lp(ω) ≤ C ‖g‖Lp(ω),

because ω ∈ Ap. Moreover, we see that f solves the inhomogeneous equation

∂f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = g(z).

Finally, if there were two such solutions f1, f2, then their difference F = f1 − f2

solves the homogeneous equation, and also DF ∈ Lp(ω). Thus

T (∂F ) = 0.

By the injectivity of T we get that ∂F = 0, and from DF ∈ Lp(ω) we get that
∂F = 0, whence F must be a constant.

We now prove the injectivity of T in Lp(C), 1 < p < ∞. First, if p ≥ 2 and
h ∈ Lp(C) is such that T (h) = 0, then h has compact support, whence h ∈ L2(C).
But B,B are isometries in L2(C), whence

‖h‖2 ≤ k ‖Bh‖2 = k‖f‖2

and thus h = 0, as desired. For p < 2, we recall from Lemma 9 that the bijectivity of
T in Lp(C) is equivalent to that of T ′ = Id−µB∗−νB∗ in the dual space Lp(C). For
this, note that the injectivity of T ′ in Lp′(C) follows as above (since p′ ≥ 2). Note
also that, by Lemma 10 we know that T ′ is a Fredholm operator in Lp′(C), since µ
and ν are compactly supported V MO functions. The claim follows. ¤

4. Applications

We start this section by recalling that if µ, ν ∈ L∞(C) are compactly supported
with ‖|µ|+ |ν|‖∞ ≤ k < 1 then the equation

∂φ(z)− µ(z) ∂φ(z)− ν(z) ∂φ(z) = 0

admits a unique homeomorphic W 1,2
loc (C) solution φ : C → C such that |φ(z)−z| → 0

as |z| → ∞. We call it the principal solution, and it defines a global K-quasiconformal
map, K = 1+k

1−k
. See the monograph [1].

Applications of Theorem 1 are based in the following change of variables lemma,
which is already proved in [3, Lemma 14]. We rewrite it here for completeness.

Lemma 11. Given a compactly supported function µ ∈ L∞(C) such that ‖µ‖∞ ≤
k < 1, let φ denote the principal solution to the equation

∂φ(z)− µ(z) ∂φ(z) = 0.

For a fixed weight ω, let us define

η(ζ) = ω(φ−1(ζ)) J(ζ, φ−1)1− p
2 .

The following statements are equivalent:
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(a) For every h ∈ Lp(ω), the inhomogeneous equation

(22) ∂f(z)− µ(z) ∂f(z) = h(z)

has a solution f with Df ∈ Lp(ω) and

(23) ‖Df‖Lp(ω) ≤ C1 ‖h‖Lp(ω).

(b) For every h̃ ∈ Lp(η), the equation

(24) ∂g(ζ) = h̃(ζ)

has a solution g with Dg ∈ Lp(η) and

(25) ‖Dg‖Lp(η) ≤ C2 ‖h̃‖Lp(η).

Proof. Let us first assume that (b) holds. To get (a), we have to find a solution
f of (22) such that Df ∈ Lp(ω) with the estimate (23). To this end, we make in (22)
the change of coordinates g = f ◦ φ−1. We obtain for g the following equation

(26) ∂g(ζ) = h̃(ζ),

where ζ = φ(z) and

h̃(ζ) = h(z)
∂φ(z)

J(z, φ)
.

In order to apply the assumption (b), we must check that h̃ ∈ Lp(η). However,

‖h̃‖p
Lp(η) =

ˆ
|h̃(ζ)|p η(ζ) dζ =

ˆ
|h̃(φ(z))|p ω(z) J(z, φ)

p
2 dz

=

ˆ
|h(z) |p ω(z)

(1− |µ(z)|2) p
2

dz ≤ 1

(1− k2)
p
2

‖h‖p
Lp(ω).

Since h̃ ∈ Lp(η), (b) applies, and a solution g to (26) can be found with the estimate

‖Dg‖Lp(η) ≤ C2 ‖h̃‖Lp(η) ≤ C2

(1− k2)
1
2

‖h‖Lp(ω).

With such a g, the function f = g ◦ φ is well defined, andˆ
|Df(z)|p ω(z) dz =

ˆ
|Dg(φ(z)) Dφ(z)|p ω(z) dz

=

ˆ
|Dg(ζ) Dφ(φ−1(ζ))|p ω(φ−1(ζ)) J(ζ, φ−1)dζ

≤
(

1 + k

1− k

) p
2
ˆ
|Dg(ζ)|p J(φ−1(ζ), φ)

p
2 ω(φ−1(ζ)) J(ζ, φ−1)dζ

=

(
1 + k

1− k

) p
2
ˆ
|Dg(ζ)|p η(ζ) dζ.

due to the 1+k
1−k

-quasiconformality of φ. Moreover, f satisfies the desired equation,
and so (a) follows, with constant C1 = C2

1−k
.

To show that (a) implies (b), for a given h̃ ∈ Lp(η) we have to find a solution
of (24) satisfying the estimate (25). Since this is a ∂-equation, this could be done
by simply convolving h̃ with the Cauchy kernel 1

πz
, but then the desired estimate for

the solution g cannot be obtained in this way, because at this point the weight η is



Weighted estimates for Beltrami equations 109

not known to belong to Ap. So we will proceed in a different maner. Namely, let
h̃ ∈ Lp(η) be fixed, and set h(z) = h̃(φ(z)) ∂φ(z) (1− |µ(z)|2). Then

ˆ
|h(z)|p ω(z) dz =

ˆ
|h̃(ζ)|p (1− |µ(φ−1(ζ))|2)p/2 η(ζ) dζ ≤

ˆ
|h̃(ζ)|p η(ζ) dζ,

and so h ∈ Lp(ω). By (a), the equation

∂f(z)− µ(z) ∂f(z) = h(z)

has a unique solution f with Df ∈ Lp(ω), and furthermore ‖Df‖Lp(ω) ≤ C1 ‖h̃‖Lp(η).
Now we simply set g = f ◦ φ−1. By the chain rule, one gets that ∂g = h̃, andˆ

|Dg(ζ)|pη(ζ) dζ =

ˆ
|Dg(φ−1(z))|pJ(z, φ−1)η(φ−1(z)) dz

=

ˆ
|D(g ◦ φ−1)(z) (Dφ−1(z))−1|pJ(z, φ−1)η(φ−1(z)) dz

≤
ˆ
|Df(z)|p |Dφ(φ−1(z))|pJ(z, φ−1)η(φ−1(z)) dz

≤
(

1 + k

1− k

) p
2
ˆ
|Df(z))|p J(φ−1(z), φ)

p
2 J(z, φ−1)η(φ−1(z)) dz

=

(
1 + k

1− k

) p
2
ˆ
|Df(z))|p ω(z) dz.

Thus, ‖Dg‖Lp(η) ≤ C2 ‖h̃‖Lp(η) with C2 =
(

1+k
1−k

) 1
2 C1, and (b) follows. ¤

According to the previous Lemma, a priori estimates for ∂ − µ ∂ in Lp(ω) are
equivalent to a priori estimates for ∂ in Lp(η). However, by Theorem 1, if ω is taken
in Ap, the first statement holds, at least, when µ is compactly supported and belongs
to V MO. We then obtain the following consequence.

Corollary 12. Let µ ∈ V MO be compactly supported, such that ‖µ‖∞ < 1,
and let φ be the principal solution of

∂φ(z)− µ(z) ∂φ(z) = 0.

If 1 < p < ∞ and ω ∈ Ap, then the weight

η(z) = ω(φ−1(z)) J(z, φ−1)1−p/2

belongs to Ap. Moreover, its Ap constant [η]Ap can be bounded in terms of µ, p and
[ω]Ap .

Proof. Under the above assumptions, by Theorem 1, we know that if h ∈ Lp(ω)
then the equation ∂f − µ ∂f = h can be found a solution f with Df ∈ Lp(ω) and
such that ‖Df‖Lp(ω) ≤ C0 ‖h‖Lp(ω), for some constant C0 > 0 depending on k, p and
[ω]Ap . Equivalently, by Lemma 11, for every h̃ ∈ Lp(η) we can find a solution g of
the inhomogeneous Cauchy–Riemann equation

∂g = h̃,

with Dg ∈ Lp(η) and in such a way that the estimate

‖Dg‖Lp(η) ≤ C ‖h̃‖Lp(η)
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holds for some constant C depending on C0, k and p. Now, let us choose ϕ ∈ C∞0 (C)

and set h̃ = ∂ϕ. Then of course g = ϕ and ∂ϕ = B(∂ϕ), and the above inequality
says that

‖|∂ϕ|+ |∂ϕ|‖Lp(η) ≤ C ‖∂ϕ‖Lp(η),

whence the estimate

(27) ‖B(ψ)‖Lp(η) ≤ (Cp − 1)
1
p ‖ψ‖Lp(η)

holds for any ψ ∈ D∗ = {ψ ∈ C∞c (C) :
´

ψ = 0}. It turns out that D∗ is a dense
subclass of Lp(η), provided that η ∈ L1

loc is a positive function with infinite mass.
But this is actually the case. Indeed, one hasˆ

D(0,R)

η(ζ) dζ =

ˆ

φ−1(D(0,R))

ω(z) J(z, φ)
p
2 dz.

Above, the integral on the right hand side certainly grows to infinite as R → ∞.
Otherwise, one would have that J(·, φ)

1
2 ∈ Lp(ω). But φ is a principal quasiconformal

map, hence J(z, φ) = 1 + O(1/|z|2) as |z| → ∞. Thus for large enough N > M > 0,ˆ

M<|z|<N

J(z, φ)
p
2 ω(z) dz ≥ C

ˆ

M<|z|<N

ω(z) dz

and the last integral above blows up as N →∞, because ω is an Ap weight.
Therefore, the estimate (27) holds for all ψ in Lp(η). By [17, Ch. V, Proposition

7], this implies that η ∈ Ap, and moreover, [η]Ap depends only on the constant
(Cp − 1)

1
p , that is, on k, p and [ω]Ap . ¤

The above Corollary is especially interesting in two particular cases. First, for
the constant weight ω = 1 the above result says that

J(·, φ−1)1−p/2 ∈ Ap, 1 < p < ∞.

Without the V MO assumption, this is only true for the smaller range 1 + ‖µ‖∞ <
p < 1 + 1

‖µ‖∞ (see e.g. [2, Theorem 13.4.2]). Secondly, by setting p = 2 in Corollary
12 we get the following.

Corollary 13. Let µ ∈ V MO be compactly supported, and assume that ‖µ‖∞ <
1. Let φ be the principal solution of

∂φ(z)− µ(z) ∂φ(z) = 0.

Then, for every ω ∈ A2 one has ω ◦ φ−1 ∈ A2.

The above result drives us to the problem of finding what homeomorphisms φ
preserve the Ap classes under composition with φ−1. Note that preserving Ap forces
also the preservation of the space BMO of functions with bounded mean oscillation,
and thus such homeomorphisms φ must be quasiconformal [14]. However, at level of
Muckenhoupt weights, the question is deeper. As an example, simply consider the
weight

ω(z) =
1

|z|α ,

and its composition with the inverse of a radial stretching φ(z) = z|z|K−1. It is clear
that the values of p for which Ap contains ω and ω ◦ φ−1 are not the same, whence
preservation of Ap requires something else. This question was solved by Johnson and
Neugebauer [10] as follows.
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Theorem 14. Let φ : C → C be K-quasiconformal. Then, the following state-
ments are equivalent:

(1) If ω ∈ A2 then ω ◦ φ−1 ∈ A2 quantitatively.
(2) For a fixed p ∈ (1,∞), if ω ∈ Ap then ω ◦ φ−1 ∈ Ap quantitatively.
(3) J(·, φ−1) ∈ Ap for every p ∈ (1,∞).

It follows from Corollary 13 and Theorem 14 that, if µ ∈ V MO is compactly
supported, ‖µ‖∞ ≤ k < 1 and φ is the principal solution to the C-linear equation
∂φ = µ ∂φ, then

J(·, φ−1) ∈ Ap, for every p > 1.

By quasisymmetry, the Ap condition (5) for J(·, φ−1) also holds if D is quasidisk.
But then, after a change of coordinates, one gets for any disk D′ and D = φ(D′) that

( 

D

J(·, φ−1)

) ( 

D

J(·, φ−1)1−p′
)p−1

=

(( 

D′
J(·, φ)

)−1 ( 

D′
J(·, φ)p′

) 1
p′

)p

,

where p′ = p
p−1

. As a consequence, we get that J(·, φ) satisfies the reverse Hölder
estimate (4) for any 1 < p′ < ∞. This shows Corollary 4.

It is not clear to the authors what is the role of C-linearity in the above results.
In other words, there seems to be no reason for Theorem 13 to fail if one replaces the
C-linear equation by the generalized one, while mantainning the ellipticity, compact
support and smoothness on the coefficients. Thus one may ask what is the class of
weights ω > 0 for which the estimate

‖Df‖L2(ω) ≤ C ‖∂f − µ ∂f − ν ∂f‖L2(ω)

holds for any f ∈ C∞0 (C). The following result, which is a counterpart of Lemma 11,
explains this class contains Ap.

Lemma 15. To each pair µ, ν ∈ L∞(C) of compactly supported functions with
‖|µ| + |ν|‖∞ ≤ k < 1, let us associate, on one hand, the principal solution φ to the
equation

∂φ(z)− µ(z) ∂φ(z)− ν(z) ∂φ(z) = 0,

and on the other, the function λ defined by λ ◦ φ = −2iν
1−|µ|2+|ν|2 . For a fixed weight ω,

let us define
η(ζ) = ω(φ−1(ζ)) J(ζ, φ−1)1− p

2 .

The following statements are equivalent:
(a) For every h ∈ Lp(ω), the equation

∂f(z)− µ(z) ∂f(z)− ν(z) ∂f(z) = h(z)

has a solution f with Df ∈ Lp(ω) and ‖Df‖Lp(ω) ≤ C ‖h‖Lp(ω).
(b) For every h̃ ∈ Lp(η), the equation

∂g(ζ)− λ(ζ) Im(∂g(ζ)) = h̃(ζ)

has a solution g with Dg ∈ Lp(η) and ‖Dg‖Lp(η) ≤ C ‖h̃‖Lp(η).

Although the proof requires quite tedious calculations, it follows the scheme of
Lemma 11, and thus we omit it. From this Lemma, the following one is a natu-
ral question to ask.
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Question 16. Let ω ∈ L1
loc(C) be such that ω(z) > 0 almost everywhere, and

let λ ∈ L∞(C) be a compactly supported V MO function, such that ‖λ‖∞ < 1. If
the estimate

‖Df‖Lp(ω) ≤ C ‖∂f − λ Im(∂f)‖Lp(ω)

holds for every f ∈ C∞0 , is it true that ω ∈ A2?

What we actually want is to find planar, elliptic, first order differential operators,
different from the ∂, that can be used to characterize the Muckenhoupt classes Ap. In
this direction, an affirmative answer tho Question 16 would allow us to characterize
A2 weights as follows: given µ, ν ∈ V MO uniformly elliptic and compactly supported,
a positive a.e. function ω ∈ L1

loc is an A2 weight if and only if there is a constant
C ≥ 1 such that

(28) ‖Df‖L2(ω) ≤ C ‖∂f − µ ∂f − ν ∂f‖L2(ω), for every f ∈ C∞0 (C).

Note that if one assumes ‖|µ|+ |ν|‖∞ < ε for some ε > 0, then (28) implies that

‖∂f‖2
L2(ω) + ‖∂f‖L2(ω) ≤ C ‖∂f‖L2(ω) + C ε ‖∂f‖L2(ω).

In particular, if for some reason ε < 1
C
then one gets

‖∂f‖L2(ω) ≤ C − 1

1− Cε
‖∂f‖L2(ω).

From the above estimate, weighted bounds for B easily follow, and so in this case
such a characterization holds.
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