WEIGHTED ESTIMATES FOR BELTRAMI EQUATIONS

Albert Clop and Victor Cruz

Universitat Autònoma de Barcelona, Departament de Matemàtiques 08193 Bellaterra, Barcelona, Catalonia; albertcp@mat.uab.cat

Universidad Tecnológica de la Mixteca, Instituto de Física y Matemáticas 69000 Huajauapan de León, Oaxaca, México; victorcruz@mixteco.utm.mx

Abstract. We obtain a priori estimates in $L^p(\omega)$ for the generalized Beltrami equation, provided that the coefficients are compactly supported VMO functions with the expected ellipticity condition, and the weight ω lies in the Muckenhoupt class A_p . As an application, we obtain improved regularity for the jacobian of certain quasiconformal mappings.

1. Introduction

In this paper, we consider the inhomogeneous, Beltrami equation

(1)
$$\overline{\partial} f(z) - \mu(z) \partial f(z) - \nu(z) \overline{\partial f(z)} = g(z), \quad \text{a.e. } z \in \mathbf{C},$$

where μ , ν are $L^{\infty}(\mathbf{C}; \mathbf{C})$ functions such that $|||\mu| + |\nu|||_{\infty} \leq k < 1$, and g is a measurable, **C**-valued function. The derivatives $\partial f, \overline{\partial} f$ are understood in the distributional sense. In the work [3], the L^p theory of such equation was developed. More precisely, it was shown that if $1 + k and <math>g \in L^p(\mathbf{C})$ then (1) has a solution f, unique modulo additive constants, whose differential Df belongs to $L^p(\mathbf{C})$, and furthermore, the estimate

(2)
$$\|Df\|_{L^{p}(\mathbf{C})} \leq C \|g\|_{L^{p}(\mathbf{C})}$$

holds for some constant C = C(k, p) > 0. For other values of p, (1) the claim may fail in general. However, in the previous work [9], Iwaniec proved that if $\mu \in VMO(\mathbf{C})$, then for any $1 and any <math>g \in L^p(\mathbf{C})$ one can find exactly one solution f to the **C**-linear equation

$$\partial f(z) - \mu(z) \,\partial f(z) = g(z)$$

with $Df \in L^p(\mathbf{C})$. In particular, (2) holds whenever $p \in (1, \infty)$. Recently, Koski [11] has extended this result to the generalized equation (1). For results in other spaces of functions, see [5].

In this paper, we deal with weighted spaces, and so we assume $g \in L^p(\omega)$, $1 . Here <math>\omega$ is a measurable function, and $\omega > 0$ at almost every point. By checking the particular case $\mu = \nu = 0$, one sees that, for a weighted version of the estimate (2) to hold, the Muckenhoupt condition $\omega \in A_p$ is necessary. It turns out that, for compactly supported $\mu \in VMO$, this condition is also sufficient.

Theorem 1. Let $1 . Let <math>\mu$ be a compactly supported function in $VMO(\mathbf{C})$, such that $\|\mu\|_{\infty} < 1$, and let $\omega \in A_p$. Then, the equation

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) = g(z)$$

doi:10.5186/aasfm.2013.3818

²⁰¹⁰ Mathematics Subject Classification: Primary 30C62, 35J15, 42B37.

Key words: Beltrami equation, quasiconformal mapping, Muckenhoupt weight.

has, for $g \in L^{p}(\omega)$, a solution f with $Df \in L^{p}(\omega)$, which is unique up to an additive constant. Moreover, one has

$$\|Df\|_{L^p(\omega)} \le C \, \|g\|_{L^p(\omega)}$$

for some C > 0 depending on μ , p and $[\omega]_{A_p}$.

The proof copies the scheme of [9]. In particular, our main tool is the following compactness Theorem, which extends a classical result of Uchiyama [18] about commutators of Calderón–Zygmund singular integral operators and VMO functions.

Theorem 2. Let T be a Calderón–Zygmund singular integral operator. Let $\omega \in A_p$ with $1 , and let <math>b \in VMO(\mathbb{R}^n)$. The commutator $[b, T]: L^p(\omega) \to L^p(\omega)$ is compact.

Theorem 2 is obtained from a sufficient condition for compactness in $L^p(\omega)$. When $\omega = 1$, this sufficient condition reduces to the classical Frechet-Kolmogorov compactness criterion. Theorem 1 is then obtained from Theorem 2 by letting T be the Beurling-Ahlfors singular integral operator.

A counterpart to Theorem 1 for the generalized Beltrami equation,

(3)
$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) - \nu(z)\,\overline{\partial f(z)} = g(z),$$

can also be obtained under the ellipticity condition $\||\mu| + |\nu|\|_{\infty} \leq k < 1$ and the VMO smoothness of the coefficients (see Theorem 8 below). Theorem 2 is again the main ingredient. However, for (3) the argument in Theorem 1 needs to be modified, because the involved operators are not **C**-linear, but only **R**-linear. In other words, **C**-linearity is not essential. See also [11].

It turns out that any linear, elliptic, divergence type equation can be reduced to equation (3) (see e.g. [2, Theorem 16.1.6]). Therefore the following result is no surprise.

Corollary 3. Let $K \ge 1$. Let $A: \mathbb{R}^2 \to \mathbb{R}^{2 \times 2}$ be a matrix-valued function, satisfying the ellipticity condition

$$\frac{1}{K} \le v^t A(z) v \le K, \quad \text{whenever } v \in \mathbf{R}^2, \ |v| = 1,$$

at almost every point $z \in \mathbf{R}^2$, and such that $A - \mathbf{Id}$ has compactly supported VMO entries. Let $p \in (1, \infty)$ be fixed, and $\omega \in A_p$. For any $g \in L^p(\omega)$, the equation

$$\operatorname{div}(A(z)\,\nabla u) = \operatorname{div}(g)$$

has a solution u with $\nabla u \in L^p(\omega)$, unique up to an additive constant, and such that

$$\|\nabla u\|_{L^p(\omega)} \le C \|g\|_{L^p(\omega)}$$

for some constant $C = C(A, \omega, p)$.

Other applications of Theorem 1 are found in connection to planar K-quasiconformal mappings. Remember that a $W_{\text{loc}}^{1,2}$ homeomorphism $\phi: \Omega \to \Omega'$ between domains $\Omega, \Omega' \subset \mathbf{C}$ is called K-quasiconformal if

$$|\overline{\partial}\phi(z)| \le \frac{K-1}{K+1} |\partial\phi(z)|$$
 for a.e. $z \in \Omega$.

In general, jacobians of K-quasiconformal maps are Muckenhoupt weights belonging to the class A_p for any p > K (see [2, Theorem 13.4.2], or also [3]), and this is sharp. As a consequence of Theorem 1, we obtain the following improvement.

Corollary 4. Let $\mu \in VMO$ be compactly supported, such that $\|\mu\|_{\infty} < 1$, and let $\phi \colon \mathbf{C} \to \mathbf{C}$ be a quasiconformal solution of

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) = 0.$$

Then, for every $1 there exists a constant <math>C = C(p) \ge 1$ such that the estimate

(4)
$$\left(\oint_D J(z,\phi)^p \, \mathrm{d}z \right)^{\frac{1}{p}} \le C_p \oint_D J(z,\phi) \, \mathrm{d}z,$$

holds for every disk $D \subset \mathbf{C}$.

By quasiconformality, the above result is equivalent to say that the inverse mapping ϕ^{-1} has jacobian determinant $J(\cdot, \phi^{-1}) \in A_p$ for every p > 1. In turn, Johnson and Neugebauer [10] proved that this is equivalent to the fact that the composition with ϕ^{-1} quantitatively preserves the Muckenhoupt class A_2 , and this is what we actually prove. The above Corollary improves the results in [9], which assert that $J(\cdot,\phi) \in L^p_{loc}$ for every finite p > 1. Note also that general K-quasiconformal maps need not satisfy the estimate (4) if $p \ge \frac{K}{K-1}$ [3].

The paper is structured as follows. In Section 2 we prove Theorem 2. In Section 3 we prove Theorem 1 and its counterpart for the generalized Beltrami equation. In Section 4 we study some applications. By C we denote a positive constant that may change at each occurrence. B(x,r) denotes the open ball with center x and radius r, and 2B means the open ball concentric with B and having double radius.

2. Compactness of commutators

By singular integral operator T, we mean a linear operator on $L^p(\mathbf{R}^n)$ that can be written as

$$Tf(x) = \int_{\mathbf{R}^n} f(y) K(x, y) \, \mathrm{d}y.$$

Here $K: \mathbf{R}^n \times \mathbf{R}^n \setminus \{x = y\} \to \mathbf{C}$ obeys the bounds

- (1) $|K(x,y)| \le \frac{C_1}{|x-y|^n}$,
- (2) $|K(x,y) K(x,y')| \le C_2 \frac{|y-y'|}{|x-y|^{n+1}}$ whenever $|x-y| \ge 2|y-y'|$, (3) $|K(x,y) K(x',y)| \le C_3 \frac{|x-x'|}{|x-y|^{n+1}}$ whenever $|x-y| \ge 2|x-x'|$.

One then calls $||T||_{CZ} = \max\{C_1, C_2, C_3\}$ the Calderón–Zygmund constant of T. Given a singular integral operator T, we define the truncated singular integral as

$$T_{\epsilon}f(x) = \int_{|x-y| \ge \epsilon} K(x,y)f(y) dy$$

and the maximal singular integral by the relationship

$$T_*f(x) = \sup_{\epsilon > 0} |T_\epsilon f(x)|.$$

As usually, we denote $\oint_E f(x) dx = \frac{1}{|E|} \int_E f(x) dx$. A weight is a function $\omega \in$ $L^1_{\text{loc}}(\mathbf{R}^n)$ such that $\omega(x) > 0$ almost everywhere. A weight ω is said to belong to the Muckenhoupt class A_p , 1 , if

(5)
$$[\omega]_{A_p} := \sup\left(\int_Q \omega(x) \,\mathrm{d}x\right) \left(\int_Q \omega(x)^{-\frac{p'}{p}} \,\mathrm{d}x\right)^{\frac{p}{p'}} < \infty,$$

where the supremum is taken over all cubes $Q \subset \mathbf{R}^n$, and where $\frac{1}{p} + \frac{1}{p'} = 1$. One may equivalently consider balls instead of cubes. By $L^p(\omega)$ we denote the set of measurable functions f that satisfy

(6)
$$||f||_{L^p(\omega)} = \left(\int_{\mathbf{R}^n} |f(x)|^p \omega(x) \,\mathrm{d}x\right)^{\frac{1}{p}} < \infty.$$

The quantity $||f||_{L^{p}(\omega)}$ defines a complete norm in $L^{p}(\omega)$. It is well know that if T is a Calderón–Zygmund operator, then T and also T_{*} are bounded in $L^{p}(\omega)$ whenever $\omega \in A_{p}$ (see for instance [7, Cap. IV, Theorems 3.1 and 3.6]). Also the Hardy– Littlewood maximal operator M is bounded in $L^{p}(\omega)$. For more about A_{p} classes and weighted spaces $L^{p}(\omega)$, we refer the reader to [7].

We first show the following sufficient condition for compactness in $L^p(\omega)$, $\omega \in A_p$. Remember that a metric space X is *totally bounded* if for every $\epsilon > 0$ there exists a finite number of open balls of radius ϵ whose union is the space X. In addition, a metric space is compact if and only if it is complete and totally bounded.

Theorem 5. Let $p \in (1, \infty)$, $\omega \in A_p$, and let $\mathfrak{F} \subset L^p(\omega)$. Then \mathfrak{F} is totally bounded if it satisfies the next three conditions:

- (1) \mathfrak{F} is uniformly bounded, i.e. $\sup_{f \in \mathfrak{F}} \|f\|_{L^p(\omega)} < \infty$.
- (2) \mathfrak{F} is uniformly equicontinuous, i.e. $\sup_{f \in \mathfrak{F}} \|f(\cdot + h) f(\cdot)\|_{L^p(\omega)} \xrightarrow{h \to 0} 0.$
- (3) \mathfrak{F} uniformly vanishes at infinity, i.e. $\sup_{f \in \mathfrak{F}} \|f \chi_{Q(0,R)}f\|_{L^p(\omega)} \xrightarrow{R \to \infty} 0$, where Q(0,R) is the cube with center at the origin and sidelength 2R.

Let us emphasize that Theorem 5 is a strong sufficient condition for compactness in $L^p(\omega)$, because for a general weight $\omega \in A_p$ the space $L^p(\omega)$ is not invariant under translations. Theorem 5 is proved by adapting the arguments in [8]. In particular, the following result (which can be found in [8, Lemma 1]) is essential.

Lemma 6. Let X be a metric space. Suppose that for every $\epsilon > 0$ one can find a number $\delta > 0$, a metric space W and an mapping $\Phi: X \to W$ such that $\Phi(X)$ is totally bounded, and the implication

$$d(\Phi(x), \Phi(y)) < \delta \implies d(x, y) < \epsilon$$

holds for any $x, y \in X$. Then X is totally bounded.

Proof of Theorem 5. Suppose that the family \mathfrak{F} satisfies the three conditions of Theorem 5, and let $\epsilon > 0$ be fixed. According to the third assumption on \mathfrak{F} , we can choose a positive quantity R > 0 such that

(7)
$$\sup_{f\in\mathfrak{F}} \|f - f\chi_{Q(0,R)}\|_{L^p(\omega)} < \frac{\epsilon}{4}.$$

Let us also find $\rho > 0$ small enough so that

(8)
$$\sup_{h\in Q(0,2\rho)} \left(\sup_{f\in\mathfrak{F}} \|f(\cdot) - f(\cdot+h)\|_{L^p(\omega)} \right) < \frac{\epsilon}{2^{2+n/p}}.$$

Such a ρ exists due to the equicontinuity assumption on \mathfrak{F} . Now, let us choose N cubes Q_1, \ldots, Q_N with sidelength 2ρ , having pairwise disjoint interiors, and such that

(9)
$$\overline{Q(0,R)} \subset \overline{\bigcup_{i} Q_{i}}.$$

Define

(10)
$$\Phi f(x) = \begin{cases} \oint_{Q_i} f(z) \, \mathrm{d}z, & x \in Q_i, i = 1, \dots, N, \\ 0, & \text{otherwise.} \end{cases}$$

Since functions in $L^p(\omega)$ are locally integrable, Φf is well defined for any $f \in \mathfrak{F}$. Moreover,

$$\begin{split} \int_{\mathbf{R}^n} |\Phi f(x)|^p \omega(x) \, \mathrm{d}x &= \sum_{i=1}^N \left| \int_{Q_i} f(z) \, \mathrm{d}z \right|^p \int_{Q_i} \omega(x) \, \mathrm{d}(x) \\ &\leq \sum_{i=1}^N \left(\int_{Q_i} |f(z)|^p \omega(z) \, \mathrm{d}z \right) \left(\int_{Q_i} \omega^{\frac{-p'}{p}}(z) \, \mathrm{d}z \right)^{\frac{p}{p'}} \int_{Q_i} \omega(x) \, \mathrm{d}x \\ &\leq [\omega]_{A_p} \|f\|_{L^p(\omega)}^p. \end{split}$$

In particular, $\Phi: L^p(\omega) \to L^p(\omega)$ is a bounded operator. As \mathfrak{F} is bounded, then $\Phi(\mathfrak{F})$ is a bounded subset of a finite dimensional Banach space, and hence $\Phi(\mathfrak{F})$ is totally bounded.

On the other hand, by (7) and (9) one gets that

$$\|f\chi_{\mathbf{R}^n\setminus\cup_iQ_i}\|_{L^p(\omega)} \le \|f\chi_{\mathbf{R}^n\setminus Q(0,R)}\|_{L^p(\omega)} < \frac{\epsilon}{4};$$

for any $f \in \mathfrak{F}$. Also, by Jensen's inequality,

$$\|f\chi_{\cup_{i}Q_{i}} - \Phi f\|_{L^{p}(\omega)}^{p} = \sum_{i=1}^{N} \int_{Q_{i}} \left|f(x) - \oint_{Q_{i}} f(z)dz\right|^{p} \omega(x) dx$$
$$\leq \sum_{i=1}^{N} \frac{1}{|Q_{i}|} \int_{Q_{i}} \int_{Q_{i}} \int_{Q_{i}} |f(x) - f(z)|^{p} dz \,\omega(x) dx.$$

Now, if $x, z \in Q_i$, then $z - x = h \in Q(0, 2\rho)$. Therefore, after a change of coordinates,

$$\begin{split} \|f\chi_{\cup_{i}Q_{i}} - \Phi f\|_{L^{p}(\omega)}^{p} &\leq \sum_{i=1}^{N} \frac{1}{|Q_{i}|} \int_{Q_{i}} \int_{Q(0,2\rho)} \int_{Q(0,2\rho)} |f(x) - f(x+h)|^{p} dh \,\omega(x) \, dx \\ &= \frac{1}{|Q(0,\rho)|} \int_{Q(0,2\rho)} \sum_{i=1}^{N} \int_{Q_{i}} |f(x) - f(x+h)|^{p} \omega(x) \, dx \, dh \\ &\leq \frac{1}{|Q(0,\rho)|} \int_{Q(0,2\rho)} \int_{\mathbf{R}^{n}} |f(x) - f(x+h)|^{p} \omega(x) \, dx \, dh \\ &= 2^{n} \int_{Q(0,2\rho)} \|f(\cdot) - f(\cdot+h)\|_{L^{p}(\omega)}^{p} \, dh \\ &\leq 2^{n} \sup_{h \in Q(0,2\rho)} \left(\sup_{f \in \mathfrak{F}} \|f(\cdot) - f(\cdot+h)\|_{L^{p}(\omega)}^{p} \right) < \left(\frac{\epsilon}{4}\right)^{p}. \end{split}$$

Summarizing,

$$\|f - \Phi f\|_{L^p(\omega)} \le \|f \chi_{\mathbf{R}^n \setminus \cup_i Q_i}\|_{L^p(\omega)} + \|f \chi_{\cup_i Q_i} - \Phi f\|_{L^p(\omega)} < \frac{\epsilon}{2},$$

for any $f \in \mathfrak{F}$. Hence

(11)
$$||f||_{L^p(\omega)} < \frac{\epsilon}{2} + ||\Phi f||_{L^p(\omega)}, \text{ whenever } f \in \mathfrak{F}.$$

Since Φ is linear, this means that

$$||f-g||_{L^p(\omega)} < \frac{\epsilon}{2} + ||\Phi f - \Phi g||_{L^p(\omega)}, \text{ whenever } f, g \in \mathfrak{F}.$$

Set $\delta = \epsilon/2$. The above inequality says that if $f, g \in \mathfrak{F}$ are such that $d(\Phi f, \Phi g) < \delta$, then $d(f, g) < \epsilon$. By the previous Lemma, it follows that \mathfrak{F} is totally bounded. \Box

In order to prove Theorem 2, we will first reduce ourselves to smooth symbols b. Let us recall that commutators $C_b = [b, T]$ with $b \in BMO(\mathbf{R}^n)$ are continuous in $L^p(\omega)$ [15, Theorem 2.3]. Moreover, in [13, Theorem 1] the following estimate is shown,

(12)
$$\|C_b f\|_{L^p(\omega)} \le C \|b\|_* \|M^2 f\|_{L^p(\omega)}$$

where $||b||_*$ denotes the *BMO* norm of *b*, and the constant *C* may depend on ω , but not on *b*. Now, by the boudedness of the Hardy–Littlewood operator *M* on $L^p(\omega)$, we obtain

$$\|C_b f\|_{L^p(\omega)} \le C \, \|b\|_* \, \|f\|_{L^p(\omega)}$$

Since by assumption $b \in VMO(\mathbb{R}^n)$, we can approximate the function b by functions $b_j \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ in the *BMO* norm, and thus

$$||C_b f - C_{b_j} f||_{L^p(\omega)} = ||C_{b-b_j} f||_{L^p(\omega)} \le C ||b - b_j||_* ||f||_{L^p(\omega)}.$$

In particular, the commutators with smooth symbol C_{b_j} converge to C_b in the operator norm of $L^p(\omega)$. Therefore it suffices to prove compactness for the commutator with smooth symbol.

Another reduction in the proof of Theorem 2 will be made by slightly modifying the singular integral operator T. This technique comes from Krantz and Li [12]. More precisely, for every $\eta > 0$ small enough, let us take a continuous function K^{η} defined on $\mathbf{R}^n \times \mathbf{R}^n$, taking values in \mathbf{R} or \mathbf{C} , and such that:

(1)
$$K^{\eta}(x,y) = K(x,y)$$
 if $|x-y| \ge \eta$,

(2)
$$|K^{\eta}(x,y)| \leq \frac{C_0}{|x-y|^n}$$
 for $\frac{\eta}{2} < |x-y| < \eta$,

(3)
$$K^{\eta}(x,y) = 0$$
 if $|x-y| \le \frac{\eta}{2}$,

where C_0 is independent of η . Due to the growth properties of K, it is not restrictive to suppose that condition 2 holds for all $x, y \in \mathbf{R}^n$. Now, let

$$T^{\eta}f(x) = \int_{\mathbf{R}^n} K^{\eta}(x, y) f(y) \, \mathrm{d}y,$$

and let us also denote

$$C_b^{\eta} f(x) = [b, T^{\eta}] f(x) = \int_{\mathbf{R}^n} (b(x) - b(y)) K^{\eta}(x, y) f(y) \, \mathrm{d}y.$$

We now prove that the commutators C_b^{η} approximate C_b in the operator norm.

Lemma 7. Let $b \in \mathcal{C}^1_c(\mathbf{R}^n)$. There exists a constant $C = C(n, C_0)$ such that

 $|C_b f(x) - C_b^{\eta} f(x)| \le C \eta \|\nabla b\|_{\infty} M f(x)$ almost everywhere,

for every $\eta > 0$. As a consequence,

$$\lim_{\eta \to 0} \|C_b^{\eta} - C_b\|_{L^p(\omega) \to L^p(\omega)} = 0$$

whenever $\omega \in A_p$ and 1 .

Proof. Let $f \in L^p(\omega)$. For every $x \in \mathbf{R}^n$ we have

$$C_b f(x) - C_b^{\eta} f(x) = \int_{|x-y| < \eta} (b(x) - b(y)) K(x, y) f(y) \, \mathrm{d}y$$
$$- \int_{\frac{\eta}{2} \le |x-y| < \eta} (b(x) - b(y)) K^{\eta}(x, y) f(y) \, \mathrm{d}y$$
$$= I_1(x) + I_2(x).$$

Using the smoothness of b and the size estimates of K^{η} , we have that

$$\begin{aligned} |I_1(x)| &\leq \int_{|x-y| < \eta} |b(y) - b(x)| |K(x,y)| |f(y)| \, \mathrm{d}y \\ &\leq C_0 \, \|\nabla b\|_{\infty} \sum_{j=0}^{\infty} \int_{\frac{\eta}{2^{j+1}} < |x-y| < \frac{\eta}{2^j}} \frac{|f(y)|}{|x-y|^{n-1}} \, \mathrm{d}y \\ &\leq 2^n C_0 \, \|\nabla b\|_{\infty} \sum_{j=0}^{\infty} \frac{\eta \, |B(0,1)|}{2^{j+1}} \int_{|x-y| < \frac{\eta}{2^j}} |f(y)| \, \mathrm{d}y \\ &\leq \eta \, 2^n \, C_0 \, \|\nabla b\|_{\infty} \, |B(0,1)| \, Mf(x) \end{aligned}$$

for almost every x. For the other term, similarly

$$|I_{2}(x)| \leq \eta \|\nabla b\|_{\infty} \int_{\frac{\eta}{2} < |x-y| < \eta} |K^{\eta}(x,y)| |f(y)| \, \mathrm{d}y$$

$$\leq \eta C_{0} \|\nabla b\|_{\infty} \int_{\frac{\eta}{2} < |x-y| < \eta} \frac{|f(y)|}{|x-y|^{n}} \, \mathrm{d}y$$

$$\leq \eta 2^{n} C_{0} \|\nabla b\|_{\infty} |B(0,1)| \int_{|x-y| < \eta} |f(y)| \, \mathrm{d}y$$

$$\leq \eta 2^{n} C_{0} \|\nabla b\|_{\infty} |B(0,1)| Mf(x).$$

Therefore, the pointwise estimate follows. Now, the boundedness of M in $L^p(\omega)$ for any A_p weight ω implies that

$$\|C_b f - C_b^{\eta} f\|_{L^p(\omega)} \le C \eta \|\nabla b\|_{\infty} \|M f\|_{L^p(\omega)} \le C \eta \|\nabla b\|_{\infty} \|f\|_{L^p(\omega)} \to 0,$$

as $\eta \to 0$. This finishes the proof of Lemma 7.

We are now ready to conclude the proof of Theorem 2. From now on, $\eta > 0$ and $b \in C_c^1(\mathbf{R}^n)$ are fixed, and we have to prove that the commutator $C_b^{\eta} = [b, T^{\eta}]$ is compact. Thus, the constants that will appear may depend on b and η .

We denote $\mathfrak{F} = \{C_b^{\eta} f; f \in L^p(\omega), \|f\|_{L^p(\omega)} \leq 1\}$. Then \mathfrak{F} is uniformly bounded, because C_b^{η} is a bounded operator on $L^p(\omega)$. To prove the uniform equicontinuity of \mathfrak{F} , we must see that

$$\lim_{h \to 0} \sup_{f \in \mathfrak{F}} \|C_b^\eta f(\cdot) - C_b^\eta f(\cdot + h)\|_{L^p(\omega)} = 0.$$

To do this, let us write

$$\begin{aligned} C_b^{\eta} f(x) - C_b^{\eta} f(x+h) &= (b(x) - b(x+h)) \int_{\mathbf{R}^n} K^{\eta}(x,y) f(y) \, \mathrm{d}y \\ &+ \int_{\mathbf{R}^n} (b(x+h) - b(y)) (K^{\eta}(x,y) - K^{\eta}(x+h,y)) f(y) \, \mathrm{d}y \\ &= \int_{\mathbf{R}^n} I_1(x,y,h) \mathrm{d}y + \int_{\mathbf{R}^n} I_2(x,y,h) \, \mathrm{d}y. \end{aligned}$$

For $I_1(x, y, h)$, using the regularity of the function b and the definition of the operator T_* ,

$$\begin{aligned} \left| \int_{\mathbf{R}^{n}} I_{1}(x, y, h) \, \mathrm{d}y \right| \\ &\leq \|\nabla b\|_{\infty} |h| \left| \int_{|x-y| > \frac{\eta}{2}} \left(K^{\eta}(x, y) - K(x, y) \right) f(y) \, \mathrm{d}y + \int_{|x-y| > \frac{\eta}{2}} K(x, y) f(y) \, \mathrm{d}y \right| \\ &\leq \|\nabla b\|_{\infty} |h| \left(\int_{|x-y| > \frac{\eta}{2}} |K^{\eta}(x, y) - K(x, y)| \, |f(y)| \, \mathrm{d}y + T_{*}f(x) \right) \\ &\leq \|\nabla b\|_{\infty} |h| \ (C \, Mf(x) + T_{*}f(x)) \end{aligned}$$

for some constant C > 0 that may depend on η , but not on h. Therefore

(13)
$$\left(\int \left|\int_{\mathbf{R}^n} I_1(x,y,h) \,\mathrm{d}y\right|^p \omega(x) \,\mathrm{d}x\right)^{\frac{1}{p}} \le C \,|h| \,\|f\|_{L^p(\omega)},$$

for C independent of f and h. Here we used the boundedness of M and T_* on $L^p(\omega)$ (see [7, Chap. IV, Th. 3.6]). We will divide the integral of $I_2(x, y, h)$ into three regions:

$$A = \left\{ y \in \mathbf{R}^{n} \colon |x - y| > \frac{\eta}{2}, \ |x + h - y| > \frac{\eta}{2} \right\},\$$

$$B = \left\{ y \in \mathbf{R}^{n} \colon |x - y| > \frac{\eta}{2}, \ |x + h - y| < \frac{\eta}{2} \right\},\$$

$$C = \left\{ y \in \mathbf{R}^{n} \colon |x - y| < \frac{\eta}{2}, \ |x + h - y| > \frac{\eta}{2} \right\}.$$

Note that $I_2(x, y, h) = 0$ for $y \in \mathbf{R}^n \setminus A \cup B \cup C$. Now, for the integral over A, we use the smoothness of b and K^{η} ,

$$\left| \int_{A} I_{2}(x, y, h) \, \mathrm{d}y \right| \leq C \|\nabla b\|_{\infty} |h| \int_{|x-y| > \frac{\eta}{4}} \frac{|f(y)|}{|x-y|^{n+1}} \, \mathrm{d}y$$
$$\leq C \|\nabla b\|_{\infty} \frac{|h|}{\eta} \sum_{j=0}^{\infty} 2^{-j} \oint_{|x-y| < \frac{2^{j}\eta}{4}} |f(y)| \, \mathrm{d}y \leq C \|\nabla b\|_{\infty} \frac{|h|}{\eta} \quad Mf(x),$$

thus

$$\left(\int_{\mathbf{R}^n} \left| \int_A I_2(x, y, h) \, \mathrm{d}y \right|^p \omega(x) \, \mathrm{d}x \right)^{\frac{1}{p}} \le C|h| \, \|f\|_{L^p(\omega)}.$$

for some constant C that may depend on η and b, but not on h. In particular, the term on the right hand side goes to 0 as $|h| \to 0$.

The integrals of $I_2(x, y, h)$ over B and C are symmetric, so we only give the details once. For the integral over the set B, let us assume that |h| is very small. We can first choose $R_0 > \eta/2 + |h|$ such that b vanishes outside the ball $B_0 = B(0, R_0)$. It then follows that $b(\cdot + h)$ has support in $2B_0$. Then, since $B \subset B(x, |h| + \eta/2)$, we have for $|x| < 3R_0$ that $B \subset 4B_0$ and therefore

$$\begin{aligned} \left| \int_{B} I_{2}(x,y,h) \, \mathrm{d}y \right| &\leq C_{0} \|\nabla b\|_{\infty} \int_{B \cap 4B_{0}} \frac{|x+h-y| \, |f(y)|}{|x-y|^{n}} \, \mathrm{d}y \\ &\leq C_{0} \|\nabla b\|_{\infty} \int_{B \cap 4B_{0}} \frac{|f(y)|}{|x-y|^{n-1}} \, \mathrm{d}y \\ &\leq C_{0} \|\nabla b\|_{\infty} \, (2/\eta)^{n-1} \int_{B \cap 4B_{0}} |f(y)| \omega(y)^{\frac{1}{p}} \omega(y)^{-\frac{1}{p}} \, \mathrm{d}y \\ &\leq C_{0} \|\nabla b\|_{\infty} \, (2/\eta)^{n-1} \|f\|_{L^{p}(\omega)} \left(\int_{B \cap 4B_{0}} \omega(y)^{-\frac{p'}{p}} \, \mathrm{d}y \right)^{\frac{1}{p'}} \end{aligned}$$

whence

$$\int_{3B_0} \left| \int_B I_2(x,y,h) \, \mathrm{d}y \right|^p \omega(x) \, \mathrm{d}x \le C \, \|f\|_{L^p(\omega)}^p \left(\int_{3B_0} \omega(x) \, \mathrm{d}x \right) \left(\int_{B \cap 4B_0} \omega(y)^{-\frac{p'}{p}} \, \mathrm{d}y \right)^{\frac{p}{p'}}$$

for some constant C that might depend on η , but not on h. If, instead, we have $|x| \geq 3R_0$, then b(x+h) = 0 (because $|h| < R_0$ so that $|x+h| > 2R_0$). Note also that for $y \in B$ one has $|x| \leq C|x-y|$ where C depends only on η . Therefore

$$\left| \int_{B} I_{2}(x,y,h) \, \mathrm{d}y \right| \leq C \|b\|_{\infty} \int_{B \cap 4B_{0}} \frac{|f(y)|}{|x-y|^{n}} \, \mathrm{d}y \leq \frac{C \|b\|_{\infty}}{|x|^{n}} \int_{B \cap 4B_{0}} |f(y)| \, \mathrm{d}y$$
$$\leq \frac{C \|b\|_{\infty}}{|x|^{n}} \, \|f\|_{L^{p}(\omega)} \left(\int_{B \cap 4B_{0}} \omega(y)^{-\frac{p'}{p}} \, \mathrm{d}y \right)^{\frac{1}{p'}}.$$

This implies that

$$\int_{\mathbf{R}^n \setminus 3B_0} \left| \int_B I_2(x, y, h) \mathrm{d}y \right|^p \omega(x) \,\mathrm{d}x$$

$$\leq C \|b\|_{\infty}^p \|f\|_{L^p(\omega)}^p \left(\int_{\mathbf{R}^n \setminus 3B_0} \frac{\omega(x)}{|x|^{np}} \,\mathrm{d}x \right) \left(\int_{B \cap 4B_0} \omega(y)^{-\frac{p'}{p}} \,\mathrm{d}y \right)^{\frac{p}{p'}}.$$

Summarizing,

(14)
$$\int_{\mathbf{R}^n} \left| \int_B I_2(x, y, h) \mathrm{d}y \right|^p \omega(x) \, \mathrm{d}x$$
$$\leq C \, \|f\|_{L^p(\omega)}^p \left(\int_{B \cap 4B_0} \omega(y)^{-\frac{p'}{p}} \, \mathrm{d}y \right)^{\frac{p}{p'}} \left(\int_{3B_0} \omega(x) \, \mathrm{d}x + \int_{\mathbf{R}^n \setminus 3B_0} \frac{\omega(x)}{|x|^{np}} \, \mathrm{d}x \right).$$

After proving that

$$\int_{|x|>3R_0} \frac{\omega(x)}{|x|^{np}} \,\mathrm{d}x < \infty,$$

the left hand side of (14) will converge to 0 as $|h| \to 0$ since $|B| \to 0$ as $|h| \to 0$. To prove the above claim, let us choose q < p such that $\omega \in A_q$ [7, Theorem 2.6, Ch. IV]. For such q, we have

$$\int_{|x|>R} \frac{\omega(x)}{|x|^{np}} \, \mathrm{d}x = \sum_{j=1}^{\infty} \int_{2^{j-1} < \frac{|x|}{R} < 2^j} \frac{\omega(x)}{|x|^{np}} \, \mathrm{d}x \le \sum_{j=1}^{\infty} (2^{j-1}R)^{-np} \omega(B(0, 2^jR)).$$

By [7, Lemma 2.2], we have

(15)
$$\int_{|x|>R} \frac{\omega(x)}{|x|^{np}} \, \mathrm{d}x \le \sum_{j=1}^{\infty} (2^{j-1}R)^{-np} (2^jR)^{nq} \omega(B(0,1)) = \frac{C}{R^{n(p-q)}} < \infty$$

as desired. The equicontinuity of \mathfrak{F} follows.

Finally, we show the decay at infinity of the elements of \mathfrak{F} . Let x be such that $|x| > R > R_0$. Then, $x \notin \operatorname{supp} b$, and

$$\begin{aligned} |C_b^{\eta} f(x)| &= \left| \int_{\mathbf{R}^n} (b(x) - b(y)) K^{\eta}(x, y) f(y) \, \mathrm{d}y \right| \le C_0 \|b\|_{\infty} \int_{\mathrm{supp}\, b} \frac{|f(y)|}{|x - y|^n} \, \mathrm{d}y \\ &\le \frac{C \|b\|_{\infty}}{|x|^n} \int_{\mathrm{supp}\, b} |f(y)| \, \mathrm{d}y \le \frac{C \|b\|_{\infty}}{|x|^n} \, \|f\|_{L^p(\omega)} \, \left(\int_{\mathrm{supp}\, b} \omega(y)^{-\frac{p'}{p}} \, \mathrm{d}y \right)^{\frac{1}{p'}} \end{aligned}$$

whence

$$\left(\int_{|x|>R} |C_b^{\eta} f(x)|^p \omega(x) \, \mathrm{d}x\right)^{\frac{1}{p}} \le C \|b\|_{\infty} \|f\|_{L^p(\omega)} \left(\int_{|x|>R} \frac{\omega(x)}{|x|^{np}} \, \mathrm{d}x\right)^{\frac{1}{p}}$$

The right hand side above converges to 0 as $R \to \infty$, due to (15). By Theorem 5, \mathfrak{F} is totally bounded. Theorem 2 follows.

3. A priori estimates for Beltrami equations

We first prove Theorem 1. To do this, let us remember that the Beurling–Ahlfors singular integral operator is defined by the following principal value

$$\mathcal{B}f(z) = -\frac{1}{\pi} P.V. \int \frac{f(w)}{(z-w)^2} \,\mathrm{d}w.$$

This operator can be seen as the formal ∂ derivative of the Cauchy transform,

$$Cf(z) = \frac{1}{\pi} \int \frac{f(w)}{z - w} \,\mathrm{d}w$$

At the frequency side, \mathcal{B} corresponds to the Fourier multiplier $m(\xi) = \frac{\overline{\xi}}{\xi}$, so that \mathcal{B} is an isometry in $L^2(\mathbf{C})$. Moreover, this Fourier representation also explains the important relation

$$\mathcal{B}(\partial f) = \partial f$$

for smooth enough functions f. By \mathcal{B}^* we mean the singular integral operator obtained by simply conjugating the kernel of \mathcal{B} , that is,

$$\mathcal{B}^{*}(f)(z) = -\frac{1}{\pi} P.V. \int \frac{f(w)}{(\bar{z} - \bar{w})^2} \,\mathrm{d}w.$$

Note that \mathcal{B}^* has Fourier multiplier $m^*(\xi) = \frac{\xi}{\xi}$. Thus,

$$\mathcal{BB}^* = \mathcal{B}^*\mathcal{B} = \mathrm{Id}.$$

In other words, \mathcal{B}^* is the L^2 -inverse of \mathcal{B} . It also appears as the C-linear adjoint of \mathcal{B} ,

$$\int_{\mathbf{C}} \mathcal{B}f(z) \,\overline{g(z)} \, \mathrm{d}z = \int_{\mathbf{C}} f(z) \,\overline{\mathcal{B}^*g(z)} \, \mathrm{d}z.$$

The complex conjugate operator $\overline{\mathcal{B}}$ is the composition of \mathcal{B} with the complex conjugation operator $\mathbf{C}f = \overline{f}$, that is,

$$\overline{\mathcal{B}}(f) = \mathbf{C}\mathcal{B}(f) = \overline{\mathcal{B}(f)}.$$

It then follows that

$$\overline{\mathcal{B}} = \mathbf{C}\mathcal{B} = \mathcal{B}^*\mathbf{C}.$$

Note that \mathcal{B} and \mathcal{B}^* are C-linear operators, while $\overline{\mathcal{B}}$ is only R-linear. See [2, Chapter 4] for more about the Beurling–Ahlfors transform.

Proof of Theorem 1. We follow Iwaniec's idea [9, pp. 42–43]. For every $N = 1, 2, \ldots$, let

$$P_N = \mathbf{Id} + \mu \mathcal{B} + \dots + (\mu \mathcal{B})^N.$$

Then

(16)
$$(\mathbf{Id} - \mu \mathcal{B})P_{N-1} = P_{N-1}(\mathbf{Id} - \mu \mathcal{B}) = \mathbf{Id} - \mu^N \mathcal{B}^N + K_N,$$

where $K_N = \mu^N \mathcal{B}^N - (\mu \mathcal{B})^N$. Each K_N consists of a finite sum of operators that contain the commutator $[\mu, \mathcal{B}]$ as a factor. Thus, by Theorem 2, each K_N is compact in $L^p(\omega)$. On the other hand, the *N*-th iterate \mathcal{B}^N of the Beurling transform is another convolution-type Calderón–Zygmund operator, whose kernel is

$$b_N(z) = \frac{(-1)^N N}{\pi} \frac{\bar{z}^{N-1}}{z^{N+1}}$$

(see for instance [16, p. 73]). Arguing as in [6, Lemma 7.9 & Theorem 7.11], one sees that the operator norm $\|\mathcal{B}^N\|_{L^p(\omega)}$ depends linearly on both the unweighted norm $\|B^N\|_{L^p(\mathbf{R}^n)}$ and the Calderón–Zygmund constant $\|B^N\|_{CZ}$. Since both quantities are bounded by a constant multiple of N^2 , one immediately sees that

(17)
$$\|\mathcal{B}^N\|_{L^p(\omega)} \le CN^2,$$

with constant C that depends on $[\omega]_{A_p}$, but not on N. As a consequence,

$$\|\mu^N \mathcal{B}^N f\|_{L^p(\omega)} \le CN^2 \|\mu\|_\infty^N \|f\|_{L^p(\omega)},$$

and therefore, for large enough N, the operator $\mathbf{Id} - \mu^N \mathcal{B}^N$ is invertible. This, together with (16), says that $\mathbf{Id} - \mu \mathcal{B}$ is an Fredholm operator. Now apply the index theory to $\mathbf{Id} - \mu \mathcal{B}$. The continuous deformation $\mathbf{Id} - t\mu \mathcal{B}$, $0 \le t \le 1$, is a homotopy from the identity operator to $\mathbf{Id} - \mu \mathcal{B}$. By the homotopical invariance of Index,

$$\operatorname{Index}(\mathbf{Id} - \mu \mathcal{B}) = \operatorname{Index}(\mathbf{Id}) = 0.$$

Since injective operators with 0 index are onto, for the invertibility of $\mathbf{Id} - \mu \mathcal{B}$ it just remains to show that it is injective. So let $f \in L^p(\omega)$ be such that $f = \mu \mathcal{B} f$. Then f has compact support. Now, since belonging to A_p is an open-ended condition (see e.g. [7, Theorem IV.2.6]), there exists $\delta > 0$ such that $p - \delta > 1$ and $\omega \in A_{p-\delta}$. Then $\omega^{-\frac{1}{p-\delta}} \in L^1_{loc}(\mathbf{C})$. Taking $\epsilon = \frac{\delta}{p-\delta}$, we obtain

(18)
$$\int_{\mathbf{C}} |f(x)|^{1+\epsilon} \, \mathrm{d}x \le \left(\int_{\mathrm{supp}\,f} |f(x)|^p \omega(x) \, \mathrm{d}x \right)^{\frac{1+\epsilon}{p}} \left(\int_{\mathrm{supp}\,f} \omega(x)^{-\frac{1+\epsilon}{p-(1+\epsilon)}} \, \mathrm{d}x \right)^{\frac{p-(1+\epsilon)}{p}} \\ \le \|f\|_{L^p(\omega)}^{1+\epsilon} \left(\int_{\mathrm{supp}\,f} \omega(x)^{-\frac{1+\epsilon}{p-(1+\epsilon)}} \, \mathrm{d}x \right)^{\frac{p-(1+\epsilon)}{p}} < \infty,$$

therefore $f \in L^{1+\epsilon}(\mathbf{C})$. But $\mathbf{Id} - \mu \mathcal{B}$ is injective on $L^p(\mathbf{C})$, $1 , when <math>\mu \in VMO(\mathbf{C})$, by Iwaniec's Theorem. Hence, $f \equiv 0$.

Finally, since $\mathbf{Id} - \mu \mathcal{B} \colon L^p(\omega) \to L^p(\omega)$ is linear, bounded, and invertible, it then follows that it has a bounded inverse, so the inequality

$$\|g\|_{L^p(\omega)} \le C \,\|(\mathbf{Id} - \mu\mathcal{B})g\|_{L^p(\omega)}$$

holds for every $g \in L^p(\omega)$. Here the constant C > 0 depends only on the $L^p(\omega)$ norm of $\mathbf{Id} - \mu \mathcal{B}$, and therefore on p, k and $[\omega]_{A_p}$, but not on g. As a consequence, given $g \in L^p(\omega)$, and setting

$$f := \mathcal{C}(\mathbf{Id} - \mu \mathcal{B})^{-1}g_{g}$$

we immediately see that f satisfies $\overline{\partial}f - \mu\partial f = g$. Moreover, since $\omega \in A_p$,

$$\begin{aligned} \|Df\|_{L^{p}(\omega)} &\leq \|\partial f\|_{L^{p}(\omega)} + \|\overline{\partial}f\|_{L^{p}(\omega)} \\ &= \|\mathcal{B}(\mathbf{Id} - \mu\mathcal{B})^{-1}g\|_{L^{p}(\omega)} + \|(\mathbf{Id} - \mu\mathcal{B})^{-1}g\|_{L^{p}(\omega)} \leq C\|g\|_{L^{p}(\omega)}, \end{aligned}$$

where still C depends only on p, k and $[\omega]_{A_p}$.

For the uniqueness, let us choose two solutions f_1 , f_2 to the inhomogeneous equation. The difference $F = f_1 - f_2$ defines a solution to the homogeneous equation $\overline{\partial}F - \mu \partial F = 0$. Moreover, one has that $DF \in L^p(\omega)$ and, arguing as before, one sees that $DF \in L^{1+\epsilon}(\mathbf{C})$. In particular, this says that $(I - \mu \mathcal{B})(\overline{\partial}F) = 0$. But for $\mu \in VMO(\mathbf{C})$, it follows from Iwaniec's Theorem that $\mathbf{Id} - \mu \mathcal{B}$ is injective in $L^p(\mathbf{C})$ for any $1 , whence <math>\overline{\partial}F = 0$. Thus DF = 0 and so F is a constant.

The C-linear Beltrami equation is a particular case of the following one,

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) - \nu(z)\,\partial f(z) = g(z),$$

which we will refer to as the generalized Beltrami equation. It is well known that, in the plane, any linear, elliptic system, with two unknowns and two first-order equations on the derivatives, reduces to the above equation (modulo complex conjugation), whence the interest in understanding it is very big. An especially interesting example is obtained by setting $\mu = 0$, when one obtains the so-called *conjugate Beltrami* equation,

$$\overline{\partial}f(z) - \nu(z)\,\overline{\partial}\overline{f(z)} = g(z).$$

A direct adaptation of the above proof immediately drives the problem towards the commutator $[\nu, \overline{\mathcal{B}}]$. Unfortunately, as an operator from $L^p(\omega)$ onto itself, such commutator is not compact in general, even when $\omega = 1$. To show this, let us choose

$$\nu = i \,\nu_0 \,\chi_{\mathbf{D}} + \nu_1 \chi_{\mathbf{C} \setminus \mathbf{D}},$$

where the constant $\nu_0 \in \mathbf{R}$ and the function ν_1 are chosen so that ν is continuous on \mathbf{C} , compactly supported in $2\mathbf{D}$, with $\|\nu\|_{\infty} < 1$. Let us also consider

$$E = \{ f \in L^p; \| f \|_{L^p} \le 1, \operatorname{supp}(f) \subset \mathbf{D} \},\$$

which is a bounded subset of L^p . For every $f \in E$, one has

$$\nu \overline{\mathcal{B}(f)} - \overline{\mathcal{B}(\nu f)} = \chi_{\mathbf{D}} i \nu_0 \overline{\mathcal{B}(f)} + \chi_{\mathbf{C} \setminus \mathbf{D}} \nu_1 \overline{\mathcal{B}(f)} - \overline{\mathcal{B}(i\nu_0 f)}$$
$$= \chi_{\mathbf{D}} i \nu_0 \overline{\mathcal{B}(f)} + \chi_{\mathbf{C} \setminus \mathbf{D}} \nu_1 \overline{\mathcal{B}(f)} + i \nu_0 \overline{\mathcal{B}(f)}$$
$$= \chi_{\mathbf{D}} 2i \nu_0 \overline{\mathcal{B}(f)} + \chi_{\mathbf{C} \setminus \mathbf{D}} (i\nu_0 + \nu_1) \overline{\mathcal{B}(f)}.$$

In view of this relation, and since \mathcal{B} is not compact, we have just cooked a concrete example of function $\nu \in VMO$ for which the commutator $[\nu, \overline{\mathcal{B}}]$ is not compact. Nevertheless, it turns out that still a priori estimates hold, even for the generalized equation.

Theorem 8. Let $1 , <math>\omega \in A_p$, and let $\mu, \nu \in VMO(\mathbb{C})$ be compactly supported, such that $\||\mu| + |\nu|\|_{\infty} < 1$. Let $g \in L^p(\omega)$. Then the equation

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) - \nu(z)\,\overline{\partial f(z)} = g(z)$$

has a solution f with $Df \in L^p(\omega)$ and

$$\|Df\|_{L^p(\omega)} \le C \, \|g\|_{L^p(\omega)}$$

This solution is unique, modulo an additive constant.

A previous proof for the above result has been shown in [11] for the constant weight $\omega = 1$. For the weighted counterpart, the arguments are based on a Neumann series argument similar to that in [11], with some minor modification. We write it here for completeness. The following Lemma will be needed.

Lemma 9. Let $\mu, \nu \in L^{\infty}(\mathbb{C})$ be measurable, bounded with compact support, such that $\||\mu| + |\nu|\|_{\infty} < 1$. If $1 and <math>p' = \frac{p}{p-1}$, then the following statements are equivalent:

- (1) The operator $\mathbf{Id} \mu \mathcal{B} \nu \overline{\mathcal{B}} \colon L^p(\mathbf{C}) \to L^p(\mathbf{C})$ is bijective.
- (2) The operator $\operatorname{Id} \overline{\mu} \mathcal{B}^* \nu \overline{\mathcal{B}^*} \colon L^{p'}(\mathbf{C}) \to L^{p'}(\mathbf{C})$ is bijective.

Proof. When $\nu = 0$, the above result is well known, and follows as an easy consequence of the fact that, with respect to the dual pairing

(19)
$$\langle f,g\rangle = \int_{\mathbf{C}} f(z)\,\overline{g(z)}\,\mathrm{d}z,$$

the operator $\mathbf{Id} - \mu \mathcal{B} \colon L^p(\mathbf{C}) \to L^p(\mathbf{C})$ has precisely $\mathbf{Id} - \mathcal{B}^* \overline{\mu} \colon L^{p'}(\mathbf{C}) \to L^{p'}(\mathbf{C})$ as its **C**-linear adjoint. Unfortunately, when ν does not identically vanish, **R**-linear operators do not have an adjoint with respect to this dual pairing. An alternative proof can be found in [11]. We will think the space of **C**-valued L^p functions $L^p(\mathbf{C})$ as an **R**-linear space,

$$L^p(\mathbf{C}) = L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C}),$$

by means of the obvious identification u + iv = (u, v). According to this product structure, every bounded **R**-linear operator $T: L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C}) \to L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ has an obvious matrix representation

$$T(u+iv) = T\begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12}\\T_{21} & T_{22} \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix},$$

where every $T_{ij} \colon L^p_{\mathbf{R}}(\mathbf{C}) \to L^p_{\mathbf{R}}(\mathbf{C})$ is bounded. Similarly, bounded linear functionals $U \colon L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C}) \to \mathbf{R}$ are represented by

$$U\left(\begin{array}{c} u\\v\end{array}\right)=\left(\begin{array}{c} U_1 & U_2\end{array}\right)\left(\begin{array}{c} u\\v\end{array}\right),$$

where every $U_j: L^p_{\mathbf{R}}(\mathbf{C}) \to \mathbf{R}$ is bounded. By the Riesz Representation Theorem, we get that $L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ has precisely $L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C})$ as its topological dual space. In fact, we have an **R**-bilinear dual pairing,

$$\left\langle \left(\begin{array}{c} u\\v\end{array}\right), \left(\begin{array}{c} u'\\v'\end{array}\right) \right\rangle = \int u(z) \, u'(z) \, \mathrm{d}z + \int v(z) \, v'(z) \, \mathrm{d}z,$$

whenever $(u, v) \in L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ and $(u', v') \in L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C})$, and which is nothing but the real part of (19). Under this new dual pairing, every **R**-linear opeartor $T: L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C}) \to L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ can be associated another operator

$$T': L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C}) \to L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C}),$$

called the \mathbf{R} -adjoint operator of T, defined by the common rule

$$\left\langle \left(\begin{array}{c} u\\v\end{array}\right), T'\left(\begin{array}{c} u'\\v'\end{array}\right) \right\rangle = \left\langle T\left(\begin{array}{c} u\\v\end{array}\right), \left(\begin{array}{c} u'\\v'\end{array}\right) \right\rangle.$$

If T is a C-linear operator, then T' is the same as the C-adjoint T^* (i.e. the adjoint with respect to (19)) so in particular for the Beurling–Ahlfors transform \mathcal{B} we have an **R**-adjoint \mathcal{B}' , and moreover $\mathcal{B}^* = \mathcal{B}'$. Similarly, the pointwise multiplication by μ and ν are also C-linear operators. Thus their **R**-adjoints μ' , ν' agree with their respectives C-adjoints μ^* , ν^* . But these are precisely the pointwise multiplication with the respective complex conjugates. Symbollically, $\mu' = \overline{\mu}$ and $\nu' = \overline{\nu}$. In contrast, general **R**-linear operators need not have a C-adjoint. For example, for the complex conjugation,

$$\mathbf{C} = \left(\begin{array}{cc} \mathbf{Id} & \mathbf{0} \\ \mathbf{0} & -\mathbf{Id} \end{array} \right)$$

one simply has C' = C. Putting all these things together, one easily sees that

$$(\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}})' = (\mathbf{Id} - \mu \mathcal{B} - \nu \mathbf{C}\mathcal{B})' = \mathbf{Id} - (\mu \mathcal{B})' - (\nu \mathbf{C}\mathcal{B})'$$
$$= \mathbf{Id} - \mathcal{B}'\mu' - \mathcal{B}'\mathbf{C}'\nu' = \mathbf{Id} - \mathcal{B}^*\overline{\mu} - \mathcal{B}^*\mathbf{C}\overline{\nu}$$
$$= \mathcal{B}^* (\mathbf{Id} - \overline{\mu}\mathcal{B}^* - \mathbf{C}\overline{\nu}\mathcal{B}^*) \mathcal{B} = \mathcal{B}^* (\mathbf{Id} - \overline{\mu}\mathcal{B}^* - \nu \mathbf{C}\mathcal{B}^*) \mathcal{B},$$

where we used the fact that $\mathcal{B}^*\mathcal{B} = \mathcal{B}\mathcal{B}^* = \mathbf{Id}$. As a consequence, and using that both \mathcal{B} and \mathcal{B}^* are bijective in $L^p(\mathbf{C})$, we obtain that the bijectivity of the operator $\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ in $L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ is equivalent to that of $\mathbf{Id} - \overline{\mu}\mathcal{B}^* - \nu \mathbf{C}\mathcal{B}^*$ in the dual space $L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C})$. Similarly, one proves that

$$(\mathbf{Id} - \mu \mathcal{B}^* - \nu \mathbf{C} \mathcal{B}^*)' = \mathcal{B}(\mathbf{Id} - \overline{\mu} \, \mathcal{B} - \nu \, \overline{\mathcal{B}}) \mathcal{B}^*.$$

Hence, the bijectivity of $\mathbf{Id} - \mu \mathcal{B}^* - \nu \mathbf{C} \mathcal{B}^*$ in $L^p_{\mathbf{R}}(\mathbf{C}) \oplus L^p_{\mathbf{R}}(\mathbf{C})$ is equivalent to the bijectivity of $\mathbf{Id} - \overline{\mu} \, \mathcal{B} - \nu \, \overline{\mathcal{B}}$ in $L^{p'}_{\mathbf{R}}(\mathbf{C}) \oplus L^{p'}_{\mathbf{R}}(\mathbf{C})$.

Lemma 10. If $1 , <math>\omega \in A_p$, $\mu, \nu \in VMO$ have compact support, and $|||\mu| + |\nu|||_{\infty} \le k < 1$, then the operators

$$\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}} \quad and \quad \mathbf{Id} - \mu \mathcal{B}^* - \nu \overline{\mathcal{B}^*}$$

are Fredholm operators in $L^p(\omega)$.

Proof. We will show the claim for the operator $\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$. For $\mathbf{Id} - \mu \mathcal{B}^* - \nu \overline{\mathcal{B}^*}$ the proof follows similarly. It will be more convenient for us to write $\overline{\mathcal{B}} = \mathbf{C}\mathcal{B}$. As in the proof of Theorem 1, we set

$$P_N = \sum_{j=0}^N (\mu \mathcal{B} + \nu \mathbf{C} \mathcal{B})^j.$$

Then

$$(\mathbf{Id} - \mu \mathcal{B} - \nu \mathbf{C} \mathcal{B}) \circ P_{N-1} = \mathbf{Id} - (\mu \mathcal{B} + \nu \mathbf{C} \mathcal{B})^N,$$
$$P_{N-1} \circ (\mathbf{Id} - \mu \mathcal{B} + \nu \mathbf{C} \mathcal{B}) = \mathbf{Id} - (\mu \mathcal{B} + \nu \mathbf{C} \mathcal{B})^N.$$

We will show that

(20)
$$(\mu \mathcal{B} + \nu \mathbf{C} \mathcal{B})^N = R_N + K_N$$

where K_N is a compact operator, and R_N is a bounded, linear operator such that

$$||R_N f||_{L^p(\omega)} \le C k^N N^3 ||f||_{L^p(\omega)}.$$

Then, the Fredholm property follows immediately. To prove (20), let us write, for any two operators T_1 , T_2 ,

$$(T_1 + T_2)^N = \sum_{\sigma \in \{1,2\}^N} T_\sigma,$$

where $\sigma \in \{1,2\}^N$ means that $\sigma = (\sigma(1), \ldots, \sigma(N))$ and $\sigma(j) \in \{1,2\}$ for all $j = 1, \ldots, N$, and

$$T_{\sigma} = T_{\sigma(1)} T_{\sigma(2)} \dots T_{\sigma(N)}.$$

By choosing $T_1 = \mu \mathcal{B}$ and $T_2 = \nu C \mathcal{B}$, one sees that every $T_{\sigma(j)}$ can be written as

$$T_{\sigma(j)} = M_{\sigma(j)} C_{\sigma(j)} \mathcal{B}$$

being $M_1 = \mu$, $M_2 = \nu$, $C_1 =$ Id and $C_2 =$ C. Thus

$$T_{\sigma} = M_{\sigma(1)} C_{\sigma(1)} \mathcal{B} M_{\sigma(2)} C_{\sigma(2)} \mathcal{B} \dots M_{\sigma(N)} C_{\sigma(N)} \mathcal{B}.$$

Our main task consists of rewriting T_{σ} as

(21)
$$T_{\sigma} = M_{\sigma(1)}C_{\sigma(1)}M_{\sigma(2)}C_{\sigma(2)}\dots M_{\sigma(N)}C_{\sigma(N)}B_{\sigma} + K_{\sigma}.$$

for some compact operator K_{σ} and some bounded operator $B_{\sigma} \in \{\mathcal{B}, \mathcal{B}^*\}^N$. If this is possible, then one gets that

$$(T_1 + T_2)^N = \sum_{\sigma \in \{1,2\}^N} M_{\sigma(1)} C_{\sigma(1)} M_{\sigma(2)} C_{\sigma(2)} \dots M_{\sigma(N)} C_{\sigma(N)} B_{\sigma} + \sum_{\sigma \in \{1,2\}^N} K_{\sigma}$$
$$= R_N + K_N.$$

It is clear that K_N is compact (it is a finite sum of compact operators). Moreover, from $B_{\sigma} \in \{\mathcal{B}, \mathcal{B}^*\}^N$, one has

$$|B_{\sigma}f(z)| \le \sum_{j=1}^{N} |\mathcal{B}^{n}f(z)| + \sum_{j=1}^{N} |(\mathcal{B}^{*})^{n}f(z)|.$$

Thus

$$|R_N f(z)| \leq \sum_{\sigma \in \{1,2\}^N} |M_{\sigma(1)} C_{\sigma(1)} \dots M_{\sigma(N)} C_{\sigma(N)} B_{\sigma} f(z)|$$

$$\leq \sum_{\sigma \in \{1,2\}^N} |M_{\sigma(1)}(z)| \dots |M_{\sigma(N)}(z)| \left(\sum_{n=1}^N |\mathcal{B}^n f(z)| + \sum_{j=1}^N |(\mathcal{B}^*)^n f(z)| \right)$$

$$= \left(\sum_{n=1}^N |\mathcal{B}^n f(z)| + \sum_{j=1}^N |(\mathcal{B}^*)^n f(z)| \right) \cdot (|M_1(z)| + |M_2(z)|)^N$$

Now, since $\|\mathcal{B}^{j}f\|_{L^{p}(\omega)} \leq C_{\omega} j^{2} \|f\|_{L^{p}(\omega)}$ (and similarly for $(\mathcal{B}^{*})^{n}$, see (17)), one gets that

$$||R_N f||_{L^p(\omega)} \le |||M_1| + |M_2|||_{\infty}^N C_{\omega} \left(\sum_{j=1}^N j^2\right) ||f||_{L^p(\omega)} = C k^N N^3 ||f||_{L^p(\omega)}$$

and so (20) follows from the representation (21). To prove that representation (21) can be found, we need the help of Theorem 2, according to which the differences $K_j = \mathcal{B}M_{\sigma(j)} - M_{\sigma(j)}\mathcal{B}$ are compact. Thus,

$$T_{\sigma} = M_{\sigma(1)}C_{\sigma(1)}\mathcal{B} M_{\sigma(2)}C_{\sigma(2)}\mathcal{B} \dots M_{\sigma(N)}C_{\sigma(N)}\mathcal{B}$$

= $M_{\sigma(1)}C_{\sigma(1)}M_{\sigma(2)}\mathcal{B} C_{\sigma(2)}M_{\sigma(3)}\dots\mathcal{B}C_{\sigma(N)}\mathcal{B} + K_{\sigma}$

where all the factors containing K_j are included in K_{σ} . In particular, K_{σ} is compact. Now, by reminding that

$$\mathbf{C}\,\mathcal{B}=\mathcal{B}^*\,\mathbf{C}$$

we have that $\mathcal{B}C_{\sigma(j+1)} = C_{\sigma(j+1)}B_j$ for some $B_j \in \{\mathcal{B}, \mathcal{B}^*\}$. Thus

$$T_{\sigma} = M_{\sigma(1)}C_{\sigma(1)}M_{\sigma(2)}C_{\sigma(2)}B_1 M_{\sigma(3)} \dots C_{\sigma(N)}B_{N-1}\mathcal{B} + K_{\sigma}$$

Now, one can start again. On one hand, the differences $B_j M_{\sigma(j+2)} - M_{\sigma(j+2)}B_j$ are again compact, because $B_j \in \{\mathcal{B}, \mathcal{B}^*\}$ and $M_{\sigma(j+2)} \in VMO$. Moreover, the composition $B_j C_{\sigma(j+2)}$ can be written as $C_{\sigma(j+2)}\tilde{B}_j$, where \tilde{B}_j need not be the same as B_j but still $\tilde{B}_j \in \{\mathcal{B}, \mathcal{B}^*\}$. So, with a little abbuse of notation, and after repeating this algorythm a total of N-1 times, one obtains (21). The claim follows. \Box

Proof of Theorem 8. The equation we want to solve can be rewritten, at least formally, in the following terms

$$(\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}})(\partial f) = g,$$

so that we need to understand the **R**-linear operator $T = \mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$. By Lemma 10, we know that T is a Fredholm operator in $L^p(\omega)$, 1 . Now, we prove that it is also injective. Indeed, if

$$T(h) = 0$$

for some $h \in L^p(\omega)$ and $\omega \in A_p$, it then follows that

$$h = \mu \mathcal{B}(h) + \nu \overline{\mathcal{B}}(h)$$

so that h has compact support, and thus $h \in L^{1+\epsilon}(\mathbf{C})$ for some $\epsilon > 0$ (arguing as in (18)). We are then reduced to show that

$$T: L^{1+\epsilon}(\mathbf{C}) \to L^{1+\epsilon}(\mathbf{C})$$
 is injective.

Let us first see how the proof finishes. Injectivity of T in $L^{1+\epsilon}(\mathbf{C})$ gives us that h=0. Therefore, T is injective also in $L^p(\omega)$. Being as well Fredholm, it is also surjective, so by the open map Theorem it has a bounded inverse $T^{-1}: L^p(\omega) \to L^p(\omega)$. As a consequence, given any $q \in L^p(\omega)$, the function

$$f = \mathcal{C}T^{-1}(g)$$

is well defined, and has derivatives in $L^p(\omega)$ satisfying the estimate

$$\begin{aligned} \|Df\|_{L^{p}(\omega)} &\leq \|\partial f\|_{L^{p}(\omega)} + \|\overline{\partial} f\|_{L^{p}(\omega)} = \|\mathcal{B}T^{-1}(g)\|_{L^{p}(\omega)} + \|T^{-1}(g)\|_{L^{p}(\omega)} \\ &\leq (C+1) \|T^{-1}(g)\|_{L^{p}(\omega)} \leq C \|g\|_{L^{p}(\omega)}, \end{aligned}$$

because $\omega \in A_p$. Moreover, we see that f solves the inhomogeneous equation

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) - \nu(z)\,\overline{\partial f(z)} = g(z).$$

Finally, if there were two such solutions f_1 , f_2 , then their difference $F = f_1 - f_2$ solves the homogeneous equation, and also $DF \in L^p(\omega)$. Thus

$$T(\overline{\partial}F) = 0.$$

By the injectivity of T we get that $\overline{\partial}F = 0$, and from $DF \in L^p(\omega)$ we get that $\partial F = 0$, whence F must be a constant.

We now prove the injectivity of T in $L^p(\mathbf{C})$, $1 . First, if <math>p \geq 2$ and $h \in L^p(\mathbf{C})$ is such that T(h) = 0, then h has compact support, whence $h \in L^2(\mathbf{C})$. But $\mathcal{B}, \overline{\mathcal{B}}$ are isometries in $L^2(\mathbf{C})$, whence

$$||h||_2 \le k \, ||\mathcal{B}h||_2 = k ||f||_2$$

and thus h = 0, as desired. For p < 2, we recall from Lemma 9 that the bijectivity of T in $L^p(\mathbf{C})$ is equivalent to that of $T' = \mathbf{Id} - \overline{\mu}\mathcal{B}^* - \nu\overline{\mathcal{B}^*}$ in the dual space $L^p(\mathbf{C})$. For this, note that the injectivity of T' in $L^{p'}(\mathbf{C})$ follows as above (since $p' \geq 2$). Note also that, by Lemma 10 we know that T' is a Fredholm operator in $L^{p'}(\mathbf{C})$, since $\overline{\mu}$ and ν are compactly supported VMO functions. The claim follows. \square

4. Applications

We start this section by recalling that if $\mu, \nu \in L^{\infty}(\mathbf{C})$ are compactly supported with $\||\mu| + |\nu|\|_{\infty} \le k < 1$ then the equation

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) - \nu(z)\,\overline{\partial\phi(z)} = 0$$

admits a unique homeomorphic $W^{1,2}_{\text{loc}}(\mathbf{C})$ solution $\phi \colon \mathbf{C} \to \mathbf{C}$ such that $|\phi(z) - z| \to 0$ as $|z| \to \infty$. We call it the *principal* solution, and it defines a global K-quasiconformal map, $K = \frac{1+k}{1-k}$. See the monograph [1]. Applications of Theorem 1 are based in the following change of variables lemma,

which is already proved in [3, Lemma 14]. We rewrite it here for completeness.

Lemma 11. Given a compactly supported function $\mu \in L^{\infty}(\mathbb{C})$ such that $\|\mu\|_{\infty} \leq L^{\infty}(\mathbb{C})$ k < 1, let ϕ denote the principal solution to the equation

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) = 0$$

For a fixed weight ω , let us define

$$\eta(\zeta) = \omega(\phi^{-1}(\zeta)) J(\zeta, \phi^{-1})^{1-\frac{p}{2}}$$

The following statements are equivalent:

(a) For every $h \in L^p(\omega)$, the inhomogeneous equation

(22)
$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) = h(z)$$

has a solution f with $Df \in L^p(\omega)$ and

(23)
$$\|Df\|_{L^{p}(\omega)} \le C_{1} \|h\|_{L^{p}(\omega)}.$$

(b) For every $\tilde{h} \in L^p(\eta)$, the equation

(24)
$$\overline{\partial}g(\zeta) = \tilde{h}(\zeta)$$

has a solution g with $Dg \in L^p(\eta)$ and

(25)
$$||Dg||_{L^p(\eta)} \le C_2 ||\tilde{h}||_{L^p(\eta)}.$$

Proof. Let us first assume that (b) holds. To get (a), we have to find a solution f of (22) such that $Df \in L^p(\omega)$ with the estimate (23). To this end, we make in (22) the change of coordinates $g = f \circ \phi^{-1}$. We obtain for g the following equation

(26)
$$\overline{\partial}g(\zeta) = h(\zeta),$$

where $\zeta = \phi(z)$ and

$$\tilde{h}(\zeta) = h(z) \frac{\partial \phi(z)}{J(z,\phi)}.$$

In order to apply the assumption (b), we must check that $\tilde{h} \in L^p(\eta)$. However,

$$\begin{split} \|\tilde{h}\|_{L^{p}(\eta)}^{p} &= \int |\tilde{h}(\zeta)|^{p} \,\eta(\zeta) \,\mathrm{d}\zeta = \int |\tilde{h}(\phi(z))|^{p} \,\omega(z) \,J(z,\phi)^{\frac{p}{2}} \,\mathrm{d}z \\ &= \int |h(z)|^{p} \,\frac{\omega(z)}{(1-|\mu(z)|^{2})^{\frac{p}{2}}} \,\mathrm{d}z \le \frac{1}{(1-k^{2})^{\frac{p}{2}}} \,\|h\|_{L^{p}(\omega)}^{p}. \end{split}$$

Since $\tilde{h} \in L^p(\eta)$, (b) applies, and a solution g to (26) can be found with the estimate

$$\|Dg\|_{L^{p}(\eta)} \leq C_{2} \|\tilde{h}\|_{L^{p}(\eta)} \leq \frac{C_{2}}{(1-k^{2})^{\frac{1}{2}}} \|h\|_{L^{p}(\omega)}$$

With such a g, the function $f = g \circ \phi$ is well defined, and

$$\begin{split} \int |Df(z)|^p \,\omega(z) \,\mathrm{d}z &= \int |Dg(\phi(z)) \, D\phi(z)|^p \,\omega(z) \,\mathrm{d}z \\ &= \int |Dg(\zeta) \, D\phi(\phi^{-1}(\zeta))|^p \,\omega(\phi^{-1}(\zeta)) \, J(\zeta,\phi^{-1}) \mathrm{d}\zeta \\ &\leq \left(\frac{1+k}{1-k}\right)^{\frac{p}{2}} \int |Dg(\zeta)|^p \, J(\phi^{-1}(\zeta),\phi)^{\frac{p}{2}} \,\omega(\phi^{-1}(\zeta)) \, J(\zeta,\phi^{-1}) \mathrm{d}\zeta \\ &= \left(\frac{1+k}{1-k}\right)^{\frac{p}{2}} \int |Dg(\zeta)|^p \, \eta(\zeta) \,\mathrm{d}\zeta. \end{split}$$

due to the $\frac{1+k}{1-k}$ -quasiconformality of ϕ . Moreover, f satisfies the desired equation, and so (a) follows, with constant $C_1 = \frac{C_2}{1-k}$.

To show that (a) implies (b), for a given $\tilde{h} \in L^p(\eta)$ we have to find a solution of (24) satisfying the estimate (25). Since this is a $\overline{\partial}$ -equation, this could be done by simply convolving \tilde{h} with the Cauchy kernel $\frac{1}{\pi z}$, but then the desired estimate for the solution g cannot be obtained in this way, because at this point the weight η is

not known to belong to A_p . So we will proceed in a different maner. Namely, let $\tilde{h} \in L^p(\eta)$ be fixed, and set $h(z) = \tilde{h}(\phi(z)) \overline{\partial \phi(z)} (1 - |\mu(z)|^2)$. Then

$$\int |h(z)|^{p} \,\omega(z) \,\mathrm{d}z = \int |\tilde{h}(\zeta)|^{p} \,(1 - |\mu(\phi^{-1}(\zeta))|^{2})^{p/2} \,\eta(\zeta) \,\mathrm{d}\zeta \le \int |\tilde{h}(\zeta)|^{p} \,\eta(\zeta) \,\mathrm{d}\zeta$$

and so $h \in L^p(\omega)$. By (a), the equation

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) = h(z)$$

has a unique solution f with $Df \in L^p(\omega)$, and furthermore $\|Df\|_{L^p(\omega)} \leq C_1 \|\tilde{h}\|_{L^p(\eta)}$. Now we simply set $g = f \circ \phi^{-1}$. By the chain rule, one gets that $\overline{\partial}g = \tilde{h}$, and

$$\int |Dg(\zeta)|^{p} \eta(\zeta) \,\mathrm{d}\zeta = \int |Dg(\phi^{-1}(z))|^{p} J(z,\phi^{-1}) \eta(\phi^{-1}(z)) \,\mathrm{d}z$$

$$= \int |D(g \circ \phi^{-1})(z) (D\phi^{-1}(z))^{-1}|^{p} J(z,\phi^{-1}) \eta(\phi^{-1}(z)) \,\mathrm{d}z$$

$$\leq \int |Df(z)|^{p} |D\phi(\phi^{-1}(z))|^{p} J(z,\phi^{-1}) \eta(\phi^{-1}(z)) \,\mathrm{d}z$$

$$\leq \left(\frac{1+k}{1-k}\right)^{\frac{p}{2}} \int |Df(z)|^{p} J(\phi^{-1}(z),\phi)^{\frac{p}{2}} J(z,\phi^{-1}) \eta(\phi^{-1}(z)) \,\mathrm{d}z$$

$$= \left(\frac{1+k}{1-k}\right)^{\frac{p}{2}} \int |Df(z)|^{p} \omega(z) \,\mathrm{d}z.$$

Thus, $||Dg||_{L^p(\eta)} \le C_2 ||\tilde{h}||_{L^p(\eta)}$ with $C_2 = \left(\frac{1+k}{1-k}\right)^{\frac{1}{2}} C_1$, and (b) follows.

According to the previous Lemma, a priori estimates for $\overline{\partial} - \mu \partial$ in $L^p(\omega)$ are equivalent to a priori estimates for $\overline{\partial}$ in $L^p(\eta)$. However, by Theorem 1, if ω is taken in A_p , the first statement holds, at least, when μ is compactly supported and belongs to VMO. We then obtain the following consequence.

Corollary 12. Let $\mu \in VMO$ be compactly supported, such that $\|\mu\|_{\infty} < 1$, and let ϕ be the principal solution of

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) = 0.$$

If $1 and <math>\omega \in A_p$, then the weight

$$\eta(z) = \omega(\phi^{-1}(z)) J(z, \phi^{-1})^{1-p/2}$$

belongs to A_p . Moreover, its A_p constant $[\eta]_{A_p}$ can be bounded in terms of μ , p and $[\omega]_{A_p}$.

Proof. Under the above assumptions, by Theorem 1, we know that if $h \in L^p(\omega)$ then the equation $\overline{\partial}f - \mu \partial f = h$ can be found a solution f with $Df \in L^p(\omega)$ and such that $\|Df\|_{L^p(\omega)} \leq C_0 \|h\|_{L^p(\omega)}$, for some constant $C_0 > 0$ depending on k, p and $[\omega]_{A_p}$. Equivalently, by Lemma 11, for every $\tilde{h} \in L^p(\eta)$ we can find a solution g of the inhomogeneous Cauchy–Riemann equation

$$\overline{\partial}g = h,$$

with $Dg \in L^p(\eta)$ and in such a way that the estimate

$$\|Dg\|_{L^{p}(\eta)} \leq C \|h\|_{L^{p}(\eta)}$$

holds for some constant C depending on C_0 , k and p. Now, let us choose $\varphi \in \mathcal{C}_0^{\infty}(\mathbb{C})$ and set $\tilde{h} = \overline{\partial}\varphi$. Then of course $g = \varphi$ and $\partial \varphi = \mathcal{B}(\overline{\partial}\varphi)$, and the above inequality says that

$$\||\partial\varphi| + |\overline{\partial}\varphi|\|_{L^p(\eta)} \le C \|\overline{\partial}\varphi\|_{L^p(\eta)},$$

whence the estimate

(27)
$$\|\mathcal{B}(\psi)\|_{L^{p}(\eta)} \leq (C^{p}-1)^{\frac{1}{p}} \|\psi\|_{L^{p}(\eta)}$$

holds for any $\psi \in \mathcal{D}^* = \{\psi \in \mathcal{C}^{\infty}_c(\mathbf{C}): \int \psi = 0\}$. It turns out that \mathcal{D}^* is a dense subclass of $L^p(\eta)$, provided that $\eta \in L^1_{\text{loc}}$ is a positive function with infinite mass. But this is actually the case. Indeed, one has

$$\int_{D(0,R)} \eta(\zeta) \, \mathrm{d}\zeta = \int_{\phi^{-1}(D(0,R))} \omega(z) \, J(z,\phi)^{\frac{p}{2}} \, \mathrm{d}z.$$

Above, the integral on the right hand side certainly grows to infinite as $R \to \infty$. Otherwise, one would have that $J(\cdot, \phi)^{\frac{1}{2}} \in L^p(\omega)$. But ϕ is a principal quasiconformal map, hence $J(z, \phi) = 1 + O(1/|z|^2)$ as $|z| \to \infty$. Thus for large enough N > M > 0,

$$\int_{M < |z| < N} J(z, \phi)^{\frac{p}{2}} \omega(z) \, \mathrm{d}z \ge C \, \int_{M < |z| < N} \omega(z) \, \mathrm{d}z$$

and the last integral above blows up as $N \to \infty$, because ω is an A_p weight.

Therefore, the estimate (27) holds for all ψ in $L^p(\eta)$. By [17, Ch. V, Proposition 7], this implies that $\eta \in A_p$, and moreover, $[\eta]_{A_p}$ depends only on the constant $(C^p - 1)^{\frac{1}{p}}$, that is, on k, p and $[\omega]_{A_p}$.

The above Corollary is especially interesting in two particular cases. First, for the constant weight $\omega = 1$ the above result says that

$$J(\cdot, \phi^{-1})^{1-p/2} \in A_p, \quad 1$$

Without the VMO assumption, this is only true for the smaller range $1 + \|\mu\|_{\infty} (see e.g. [2, Theorem 13.4.2]). Secondly, by setting <math>p = 2$ in Corollary 12 we get the following.

Corollary 13. Let $\mu \in VMO$ be compactly supported, and assume that $\|\mu\|_{\infty} < 1$. Let ϕ be the principal solution of

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) = 0.$$

Then, for every $\omega \in A_2$ one has $\omega \circ \phi^{-1} \in A_2$.

The above result drives us to the problem of finding what homeomorphisms ϕ preserve the A_p classes under composition with ϕ^{-1} . Note that preserving A_p forces also the preservation of the space BMO of functions with bounded mean oscillation, and thus such homeomorphisms ϕ must be quasiconformal [14]. However, at level of Muckenhoupt weights, the question is deeper. As an example, simply consider the weight

$$\omega(z) = \frac{1}{|z|^{\alpha}},$$

and its composition with the inverse of a radial stretching $\phi(z) = z|z|^{K-1}$. It is clear that the values of p for which A_p contains ω and $\omega \circ \phi^{-1}$ are *not* the same, whence preservation of A_p requires something else. This question was solved by Johnson and Neugebauer [10] as follows.

Theorem 14. Let $\phi \colon \mathbf{C} \to \mathbf{C}$ be *K*-quasiconformal. Then, the following statements are equivalent:

- (1) If $\omega \in A_2$ then $\omega \circ \phi^{-1} \in A_2$ quantitatively.
- (2) For a fixed $p \in (1, \infty)$, if $\omega \in A_p$ then $\omega \circ \phi^{-1} \in A_p$ quantitatively.
- (3) $J(\cdot, \phi^{-1}) \in A_p$ for every $p \in (1, \infty)$.

It follows from Corollary 13 and Theorem 14 that, if $\mu \in VMO$ is compactly supported, $\|\mu\|_{\infty} \leq k < 1$ and ϕ is the principal solution to the C-linear equation $\overline{\partial}\phi = \mu \partial\phi$, then

$$J(\cdot, \phi^{-1}) \in A_p$$
, for every $p > 1$.

By quasisymmetry, the A_p condition (5) for $J(\cdot, \phi^{-1})$ also holds if D is quasidisk. But then, after a change of coordinates, one gets for any disk D' and $D = \phi(D')$ that

$$\left(\oint_D J(\cdot,\phi^{-1})\right) \left(\oint_D J(\cdot,\phi^{-1})^{1-p'}\right)^{p-1} = \left(\left(\oint_{D'} J(\cdot,\phi)\right)^{-1} \left(\oint_{D'} J(\cdot,\phi)^{p'}\right)^{\frac{1}{p'}}\right)^p,$$

where $p' = \frac{p}{p-1}$. As a consequence, we get that $J(\cdot, \phi)$ satisfies the reverse Hölder estimate (4) for any $1 < p' < \infty$. This shows Corollary 4.

It is not clear to the authors what is the role of C-linearity in the above results. In other words, there seems to be no reason for Theorem 13 to fail if one replaces the C-linear equation by the generalized one, while mantainning the ellipticity, compact support and smoothness on the coefficients. Thus one may ask what is the class of weights $\omega > 0$ for which the estimate

$$\|Df\|_{L^{2}(\omega)} \leq C \|\overline{\partial}f - \mu \,\partial f - \nu \,\overline{\partial}f\|_{L^{2}(\omega)}$$

holds for any $f \in \mathcal{C}_0^{\infty}(\mathbf{C})$. The following result, which is a counterpart of Lemma 11, explains this class contains A_p .

Lemma 15. To each pair $\mu, \nu \in L^{\infty}(\mathbb{C})$ of compactly supported functions with $\||\mu| + |\nu|\|_{\infty} \leq k < 1$, let us associate, on one hand, the principal solution ϕ to the equation

$$\overline{\partial}\phi(z) - \mu(z)\,\partial\phi(z) - \nu(z)\,\overline{\partial\phi(z)} = 0,$$

and on the other, the function λ defined by $\lambda \circ \phi = \frac{-2i\nu}{1-|\mu|^2+|\nu|^2}$. For a fixed weight ω , let us define

$$\eta(\zeta) = \omega(\phi^{-1}(\zeta)) J(\zeta, \phi^{-1})^{1-\frac{p}{2}}.$$

The following statements are equivalent:

(a) For every $h \in L^p(\omega)$, the equation

$$\overline{\partial}f(z) - \mu(z)\,\partial f(z) - \nu(z)\,\overline{\partial f(z)} = h(z)$$

has a solution f with $Df \in L^p(\omega)$ and $\|Df\|_{L^p(\omega)} \leq C \|h\|_{L^p(\omega)}$.

(b) For every $h \in L^p(\eta)$, the equation

$$\overline{\partial}g(\zeta) - \lambda(\zeta) \operatorname{Im}(\partial g(\zeta)) = h(\zeta)$$

has a solution g with $Dg \in L^p(\eta)$ and $\|Dg\|_{L^p(\eta)} \leq C \|\tilde{h}\|_{L^p(\eta)}$.

Although the proof requires quite tedious calculations, it follows the scheme of Lemma 11, and thus we omit it. From this Lemma, the following one is a natural question to ask.

Question 16. Let $\omega \in L^1_{loc}(\mathbf{C})$ be such that $\omega(z) > 0$ almost everywhere, and let $\lambda \in L^{\infty}(\mathbf{C})$ be a compactly supported *VMO* function, such that $\|\lambda\|_{\infty} < 1$. If the estimate

$$\|Df\|_{L^{p}(\omega)} \leq C \|\overline{\partial}f - \lambda \operatorname{Im}(\partial f)\|_{L^{p}(\omega)}$$

holds for every $f \in \mathcal{C}_0^{\infty}$, is it true that $\omega \in A_2$?

What we actually want is to find planar, elliptic, first order differential operators, different from the $\overline{\partial}$, that can be used to characterize the Muckenhoupt classes A_p . In this direction, an affirmative answer the Question 16 would allow us to characterize A_2 weights as follows: given $\mu, \nu \in VMO$ uniformly elliptic and compactly supported, a positive a.e. function $\omega \in L^1_{\text{loc}}$ is an A_2 weight if and only if there is a constant $C \geq 1$ such that

(28)
$$\|Df\|_{L^{2}(\omega)} \leq C \|\overline{\partial}f - \mu \partial f - \nu \overline{\partial}f\|_{L^{2}(\omega)}, \text{ for every } f \in \mathcal{C}_{0}^{\infty}(\mathbf{C}).$$

Note that if one assumes $\||\mu| + |\nu|\|_{\infty} < \epsilon$ for some $\epsilon > 0$, then (28) implies that

$$\|\partial f\|_{L^{2}(\omega)}^{2} + \|\partial f\|_{L^{2}(\omega)} \le C \|\partial f\|_{L^{2}(\omega)} + C \epsilon \|\partial f\|_{L^{2}(\omega)}.$$

In particular, if for some reason $\epsilon < \frac{1}{C}$ then one gets

$$\|\partial f\|_{L^2(\omega)} \le \frac{C-1}{1-C\epsilon} \|\overline{\partial} f\|_{L^2(\omega)}.$$

From the above estimate, weighted bounds for \mathcal{B} easily follow, and so in this case such a characterization holds.

Acknowledgements. Sections 1 and 2 of the present paper were obtained by the second author in [4], jointly with J. Mateu and J. Orobitg. The authors wish to thank the referee for careful reading and comments. They were partially supported by projects 2009-SGR-420 (Generalitat de Catalunya), 2010-MTM-15657 (Spanish Ministry of Science), NF-129254 (Programa Ramón y Cajal) and UTMIX-PTC-036 and CONACYT (México).

References

- ASTALA, K., T. IWANIEC, and G. MARTIN: Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane. - J. Reine Angew. Math. 591, 2006, 49–74.
- [2] ASTALA, K., T. IWANIEC, and G. MARTIN: Elliptic partial differential equations and quasiconformal mappings in the plane. - Princeton Math. Ser. 48, Princeton Univ. Press, Princeton, NJ, 2009.
- [3] ASTALA, K., T. IWANIEC, and E. SAKSMAN: Beltrami operators in the plane. Duke Math. J. 107:1, 2001, 27–56.
- [4] CRUZ BARRIGUETE, V. A.: Soluciones de la ecuación de Beltrami con coeficiente regular. -Ph.D. Thesis, Departament de Matemàtiques, Universitat Autònoma de Barcelona, 2011.
- [5] CRUZ, V., J. MATEU, and J. OROBITG: Beltrami equation with coefficient in Sobolev and Besov spaces. - Preprint, 2011.
- [6] DUOANDIKOETXEA, J.: Fourier analysis. Grad. Stud. Math. 29, Amer. Math. Soc., Providence, RI, 2001.
- [7] GARCÍA-CUERVA, J., and J. L. RUBIO DE FRANCIA: Weighted norm inequalities and related topics. - North-Holland Math. Stud. 116, North-Holland Publ. Co., Amsterdam, 1985.
- [8] HANCHE-OLSEN, H., and H. HOLDEN: The Kolmogorov-Riesz compactness theorem. Expo. Math. 28:4, 2010, 385–394.

- [9] IWANIEC, T.: L^p-theory of quasiregular mappings. In: Quasiconformal space mappings, Lecture Notes in Math. 1508, Springer, Berlin, 1992, 39–64.
- [10] JOHNSON, R., and C. J. NEUGEBAUER: Homeomorphisms preserving A_p . Rev. Mat. Iberoamericana 3:2, 1987, 249–273.
- [11] KOSKI, A.: Singular integrals and Beltrami type operators in the plane and beyond. Master Thesis, Department of Mathematics and Statistics, University of Helsinki, 2011.
- [12] KRANTZ, S. G., and S.-Y. LI: Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II. - J. Math. Anal. Appl. 258:2, 2001, 642–657.
- [13] PÉREZ, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy– Littlewood maximal function. - J. Fourier Anal. Appl. 3:6, 1997, 743–756.
- [14] REIMANN, H. M.: Functions of bounded mean oscillation and quasiconformal mappings. -Comment. Math. Helv. 49, 1974, 260–276.
- [15] SEGOVIA, C., and J. L. TORREA: Weighted inequalities for commutators of fractional and singular integrals. - Publ. Mat. 35:1, 1991, 209–235.
- [16] STEIN, E. M.: Singular integrals and differentiability properties of functions. Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
- [17] STEIN, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. - Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, NJ, 1993.
- [18] UCHIYAMA, A.: On the compactness of operators of Hankel type. Tôhoku Math. J. (2) 30:1, 1978, 163–171.

Received 23 December 2011 • Revised received 9 October 2012 • Accepted 29 October 2012