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Abstract. In this paper, we continue to discuss normality based on a single holomorphic
function. We obtain the following result. Let F be a family of functions holomorphic on a domain
D ⊂ C. Let k ≥ 2 be an integer and let h ( 6≡ 0) be a holomorphic function on D, such that h(z)
has no common zeros with any f ∈ F . Assume also that the following two conditions hold for every
f ∈ F : (a) f(z) = 0 =⇒ f ′(z) = h(z), and (b) f ′(z) = h(z) =⇒ |f (k)(z)| ≤ c, where c is a constant.
Then F is normal on D. A geometrical approach is used to arrive at the result that significantly
improves a previous result of the authors which had already improved a result of Chang, Fang and
Zalcman. We also deal with two other similar criterions of normality. Our results are shown to be
sharp.

1. Introduction

In [11], Pang and Zalcman proved the following theorem.

Theorem PZ. Let F be a family of meromorphic functions on a domain D ⊂ C,
all of whose zeros have multiplicity at least k, where k ≥ 1 is an integer. Suppose there
exist constants b 6= 0 and h > 0 such that, for every f ∈ F , f(z) = 0 ⇐⇒ f (k)(z) = b
and f(z) = 0 =⇒ 0 < |f (k+1)(z)| ≤ h. Then F is a normal family on D.

Then, in [1], Chang, Fang and Zalcman proved the following result.

Theorem CFZ1. [1, Theorem 4] Let F be a family of functions holomorphic
on a domain D ⊂ C. Let k ≥ 2 be an integer, and let h(z) 6= 0 be a function analytic
in D. Assume also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f ′(z) = h(z), and
(b) f ′(z) = h(z) =⇒ |f (k)(z)| ≤ c, where c is a constant.

Then F is normal on D.

And in [4], we replaced the condition h(z) 6= 0 with h(z) 6≡ 0 and obtained the
following result.

Theorem LN. Let F be a family of functions holomorphic on a domain D ⊂ C.
Let k ≥ 2 be an integer, and let h(z) ( 6≡ 0) be a holomorphic function on D, all of
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whose zeros have multiplicity at most k − 1, that has no common zeros with any
f ∈ F . Assume also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f ′(z) = h(z), and
(b) f ′(z) = h(z) =⇒ |f (k)(z)| ≤ c, where c is a constant.

Then F is normal on D.

We now pose the following question: Can the restriction for the zeros of h(z)
with multiplicity at most k− 1 be dropped? In this paper, we continue to study the
above problem and obtain an affirmative answer.

Theorem 1. Let F be a family of functions holomorphic on a domain D ⊂ C.
Let k ≥ 2 be an integer, and let h(z) ( 6≡ 0) be a holomorphic function on D that has
no common zeros with any f ∈ F . Assume also that the following two conditions
hold for every f ∈ F :

(a) f(z) = 0 =⇒ f ′(z) = h(z), and
(b) f ′(z) = h(z) =⇒ |f (k)(z)| ≤ c, where c is a constant.

Then F is normal on D.

Also in [1], the case for the kth derivative was considered and the following result
was proved.

Theorem CFZ2. [1, Theorem 1] Let F be a family of functions holomorphic
on a domain D ⊂ C, all of whose zeros have multiplicity at least k, where k 6= 2 is a
positive integer, and let h(z) 6= 0 be a function analytic in D. Assume also that the
following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f (k)(z) = h(z), and
(b) f (k)(z) = h(z) =⇒ |f (k+1)(z)| ≤ c, where c is a constant.

Then F is normal on D.

For the case k = 2, the following result was obtained.

Theorem CFZ3. [1, Theorem 3] Let F be a family of functions holomorphic
on a domain D ⊂ C, all of whose zeros are multiple, where s ≥ 4 is an even integer;
and let h(z) 6= 0 be a function analytic in D. Assume also that the following two
conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f ′′(z) = h(z), and
(b) f ′′(z) = h(z) =⇒ |f ′′′(z)|+ |f (s)(z)| ≤ c, where c is a constant.

Then F is normal on D.

In view of the improvement of Theorems CFZ1 and LN via Theorem 1, the
question that naturally arises concerning Theorems CFZ2 and CFZ3 is whether the
condition h(z) 6= 0, z ∈ D can be weakened to “h 6≡ 0”. It turns out that the answer
is negative in both cases. It is negative even if h has no common zero with any f ∈ F
(like in Theorem 1). To construct the first example, concerning Theorem CFZ2, we
first need to mention the following famous result of Lucas.

Theorem Lu. [5], [6, p. 22] Let P (z) be a nonconstant polynomial. Then all
the zeros of P ′(z) lie in the convex hull H of the zeros of P (z). Moreover, there are
no zeros of P ′(z) on the boundary of H, unless this zero is a multiple zero of P (z)
or the zeros of P (z) are colinear.
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Example 1. Let r ≥ 1 and k ≥ 3 be integers, D = ∆ be the unit disc and
h(z) = zr. Define

fn(z) = an

(
z` − 1

n`

)k

,

where ` = k + r and an = n(k−1)`

k!`k .
We have

fn(z) = an

∏̀
j=1

(
z − α

(n)
j

)k

,

where α
(n)
j =

exp

(
i
2πj

`

)

n , for 1 ≤ j ≤ `. By calculation,

f (k)
n

(
α

(n)
j

)
= k!an

∏̀

t=1,t6=j

(
α

(n)
j − α

(n)
t

)k

= k!an




(
z` − 1

n`

)′ ∣∣∣∣∣
z=α

(n)
j




k

= k!an`
k
(
α

(n)
j

)k(`−1)

.

Thus,

(1) arg
[
f (k)

n

(
α

(n)
j

)]
= (`− 1)k · 2πj

`
= −2πkj

`
=

2πri

`
= arg

[
zr

∣∣∣
z=α

(n)
j

]
.

Here the equalities are modulo 2π, and we used in the last equality that r + k = `.
We have

(2)
∣∣∣f (k)

n

(
α

(n)
j

)∣∣∣ =
k!`kn`(k−1)

k!`k

(
1

n

)k(`−1)

=

(
1

n

)r

= |zr|
∣∣∣∣∣
z=α

(n)
j

.

From (1) and (2) we have that fn(z) = 0 =⇒ f
(k)
n (z) = h(z), i.e., assumption (a) of

Theorem CFZ2 holds.
In order to confirm (b) of Theorem CFZ2, set

f̃n(z) = fn(z)− z`

`(`− 1) · · · (r + 1)
.

We have f
(k)
n (z) = h(z) ⇐⇒ f̃

(k)
n (z) = 0.

Now

(3) f̃n(z) = 0 ⇐⇒ nk(`−1)−r

k!`k

(
z` − 1

n`

)k

=
z`

`(`− 1) · · · (r + 1)
.

Suppose by negation that there exist a sequence {zn}∞n=1 (zn → 0) and a se-
quence of natural numbers {kn}∞n=1 (kn −→

n→∞
∞), such that f̃kn(zn) = 0. Then since

(knzn)` − 1
(knzn)` −→

n→∞
1, from (3), we get

(4)
k(k−1)`

n (knzn)k`

kk`
n z`

n

−→
n→∞

k!`k

`(`− 1) · · · (r + 1)
.

But the left hand side of (4) tends to ∞, as n →∞, a contradiction.
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We deduce that there exists some 0 < C1 < ∞, such that every zero zn of f̃n

satisfies |zn| ≤ C1
n . By Theorem Lu, we have also |ẑn| ≤ C1

n for every ẑn, which is a
zero of f̃

(k)
n . But those {ẑn} are exactly the points where f

(k)
n (z) = h(z).

Hence f
(k)
n (z) = h(z) implies that |z| ≤ C1

n , and we have only to prove the
following claim.

Claim 1. There exists 0 < C < ∞, such that |z| ≤ C1
n implies |f (k+1)

n (z)| ≤ C.

Proof. We have fn(z) = n(k−1)`

k!`k

(
z` − 1

n`

)k

= n(k−1)`

k!`k

k∑
j=0

(
k
j

)
z`j

(
1
n

)`(k−j)

(−1)k−j.

Thus, since `j ≥ k + 1 only for j ≥ 1, we get that

f (k+1)
n (z) =

n(k−1)`

k!`k

k∑
j=1

(
k

j

)(
1

n

)`k−`j

(−1)k−j`j(`j − 1) · · · (`j − k − 1)z`j−k−1.

Thus, if |z| ≤ C1
n , then

|f (k+1)
n (z)| ≤ n(k−1)`

k!`k

k∑
j=1

(
k

j

)
C`j−k−1

1 `j(`j − 1) · · · (`j − k − 1)nk+1−`j · n`j−`k

=
nk+1−`

k!`k

k∑
j=1

(
k

j

)
C`j−k−1

1 `j(`j − 1) · · · (`j − k − 1) ≤ C,

where C = 1
k!`k

k∑
j=1

(
k
j

)
C`j−k−1

1 `j(`j−1) · · · (`j−k−1). (Here we used that k+1−` ≤
0.) Claim 1 is proved. ¤

Hence, {fn} with h satisfy (a) and (b) of Theorem CFZ2, but {fn} is not normal
at z = 0.

Observe that when k = 1, then an = 1
`
6→ ∞, and we do not get a non-normal

family, as expected by Theorem 1.

The following example shows that the condition h(z) 6= 0 is essential also to
Theorem CFZ3.

Example 2. (cf. [1, Ex. 4]) Let s ≥ 4 be an even integer and consider the family
F = {fn(z)}∞n=1,

fn(z) =
ns

2s2

(
zs − 1

ns

)2

on ∆.

Let h(z) = zs−2. We have that

fn(z) =
ns

2s2

s∏
j=1

(
z − α

(n)
j

)2

,

where α
(n)
j =

exp(i2πj/s)
n , 1 ≤ j ≤ s.
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By calculation we have

f ′′n(z) =
ns

s

(
(2s− 1)zs − (s− 1)

ns

)
zs−2,(5)

f ′′′n (z) =
ns

s

[
(2s− 1)(2s− 2)zs − (s− 1)(s− 2)

ns

]
zs−3(6)

=
ns

s
(s− 1)zs−3

[
(4s− 2)zs − s− 2

ns

]
,

and

(7) f (s)
n (z) =

ns

s

[
(2s− 1)(2s− 2) · · · (s + 1)zs − (s− 1)!

ns

]
.

Now, if fn(z) = 0, then z = α
(n)
j for some 1 ≤ j ≤ s, and thus zs = 1

ns and by (5),
f ′′n(z) = zs−2 = h(z).

If f ′′n(z) = zs−2 = h(z), then by (5), z = 0 or z = α
(n)
j , 1 ≤ j ≤ s. By (6) and

(7), we get

(8) f (3)
n (0) = 0, f (s)

n (0) = −(s− 1)!

ns

and

(9) f (3)
n

(
α

(n)
j

)
= 3(s− 1)

1

ns−3 , f (s)
n

(
α

(n)
j

)
=

1

s

[
(2s− 1)!

s!
− (s− 1)!

]
.

From (8) and (9), we see that the family F with h satisfy assumption (a) and (b)
of Theorem CFZ3, but F is not normal at z = 0. Indeed, the reason must be that
h(0) = 0.

In Example 1, we have that f (k+1)(z) 6= 0 at the zero points of f (k)(z)− h(z). If
we strengthen condition (b) of Theorem CFZ2 to be f (k)(z) = h(z) =⇒ f (k+1)(z) = 0,
then we can obtain the following normal criterion.

Theorem 2. Let F be a family of functions holomorphic on a domain D ⊂ C,
all of whose zeros have multiplicity at least k, where k 6= 2 is a positive integer.
Let h(z) ( 6≡ 0) be a holomorphic function on D, that has no common zeros with any
f ∈ F . Assume also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f (k)(z) = h(z), and
(b) f (k)(z) = h(z) =⇒ f (k+1)(z) = 0.

Then F is normal on D.

Similarly, if we strengthen the condition (b) of Theorem CFZ3 to f ′′(z) =
h(z) =⇒ f ′′′(z) = f (s)(z) = 0, then we can also obtain the normality criterion.

Theorem 3. Let F be a family of functions holomorphic on a domain D ⊂ C,
all of whose zeros are multiple, where s ≥ 2 is an even integer. Let h(z) ( 6≡ 0) be
a holomorphic function on D, that has no common zeros with any f ∈ F . Assume
also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 =⇒ f ′′(z) = h(z), and
(b) f ′′(z) = h(z) =⇒ f ′′′(z) = f (s)(z) = 0.

Then F is normal on D.
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Before we go to the proofs of the main results, let us set some notation. Through-
out, D is a domain in C. For z0 ∈ C and r > 0, ∆(z0, r) = {z : |z − z0| < r}
and ∆′(z0, r) = {z : 0 < |z − z0| < r}. The unit disc will be denoted by ∆ and
C∗ = C \ {0}. We write fn(z)

χ⇒ f(z) on D to indicate that the sequence {fn} con-
verges to f in the spherical metric, uniformly on compact subsets of D, and fn ⇒ f
on D if the convergence is in the Euclidean metric. For a meromorphic function
f(z) in D and a ∈ Ĉ, Ef (a) := {z ∈ D : f(z) = a}. The spherical derivative of the
meromorphic function f at the point z is denoted by f#(z).

Frequently, given a sequence {fn}∞1 of functions, we need to extract an appro-
priate subsequence; and this necessity may recur within a single proof. To avoid the
awkwardness of multiple indices, we again denote the extracted subsequence by {fn}
(rather than, say, {fnk

}) and designate this operation by writing “taking a subse-
quence and renumbering”, or simply “renumbering”. The same convention applies to
sequences of constants.

The plan of the paper is as follows. In Section 2, we state a number of preliminary
results. Then in Section 3 we prove Theorem 1. Finally, in Section 4 we prove Theo-
rem 2.

2. Preliminary results

The following lemma is the local version of a well-known lemma of Pang and
Zalcman [11, Lemma 2]. For a proof see [4, Lemma 2], also cf. [9, Lemma 2], [14, pp.
216–217], [7, pp. 299–300], [8, p. 4].

Lemma 1. Let F be a family of functions meromorphic in a domain D, all of
whose zeros have multiplicity at least k, and suppose that there exists A ≥ 1, such
that |f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not normal at z0 ∈ D, there
exist, for each 0 ≤ α ≤ k,

(a) points zn → z0,
(b) functions fn ∈ F , and
(c) positive numbers ρn → 0+

such that gn(ζ) := ρ−α
n fn(zn + fnζ)

χ⇒ g(ζ) on C, where g is a nonconstant mero-
morphic function on C, such that for every ζ ∈ C, g#(ζ) ≤ g#(0) = kA + 1.

Lemma 2. [1, Lemma 5] Let f be a nonconstant entire function of order ρ,
0 ≤ ρ ≤ 1, all of whose zeros have multiplicity at least k, where k 6= 2 is a positive
integer. And let a 6= 0 be a constant. If Ef (0) ⊂ Ef (k)(a) ⊂ Ef (k+1)(0), then

f(z) =
a(z − b)k

k!
,

where b is a constant.

Lemma 3. [1, Lemma 6] Let f be a nonconstant entire function of order ρ,
0 ≤ ρ ≤ 1, all of whose zeros are multiple. Let s ≥ 4 be an even integer and a 6= 0
be a constant. If Ef (0) ⊂ Ef ′′(a) ⊂ Ef ′′′(0) ∩ Ef (s)(0), then

f(z) =
a(z − b)2

2
,

where b is a constant.
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Lemma 4. (see [2, pp. 118–119, 122–123]) Let f be a meromorphic function on
C. If f# is uniformly bounded on C, then the order of f is at most 2. If f is an
entire function, then the order of f is at most 1.

The following lemma is a slight generalization of Theorem CFZ2 for sequences.

Lemma 5. (cf. [4, Lemma 5]) Let {fn} be a sequence of functions holomorphic
on a domain D ⊂ C, all of whose zeros have multiplicity at least k, and let {hn}
be a sequence of functions analytic on D such that hn(z) ⇒ h(z) on D, where
h(z) 6= 0 for z ∈ D and k 6= 2 be a positive integer. Suppose that, for each n,
fn(z) = 0 =⇒ f

(k)
n (z) = hn(z) and f

(k)
n (z) = hn(z) =⇒ f

(k+1)
n (z) = 0. Then {fn} is

normal on D.

Proof. Suppose to the contrary that there exists z0 ∈ D such that {fn} is not
normal in z0. The convergence of {hn} to h implies that, in some neighborhood
of z0, we have fn(z) = 0 ⇒ |f (k)

n (z)| ≤ |h(z0)| + 1 (for large enough n). Thus
we can apply Lemma 1 with α = k and A such that kA + 1 > max

{
|h(z0)| +

1,
|h(z0)|
(k − 1)!

, k · k!
|h(z0)|

}
= max

{
|h(z0)| + 1, k · k!

|h(z0)|
}
. So we can take an appropriate

subsequence of {fn} (denoted also by {fn} after renumbering), together with points
zn → z0 and positive numbers ρn → 0+ such that

gn(ζ) =
fn(zn + ρnζ)

ρk
n

χ
=⇒ g(ζ) on C,

where g is a nonconstant entire function and

g](ζ) ≤ g](0) = kA + 1 = k(|h(z0)|+ 1) + 1.

We show that

(10) Eg(0) ⊂ Eg(k)(h(z0)) ⊂ Eg(k+1)(0).

In fact, if there exists ζ0 ∈ C, such that g(ζ0) = 0, then since g(ζ) 6≡ 0, there
exist ζn, ζn → ζ0, such that if n is sufficiently large,

gn(ζn) =
fn(zn + ρnζn)

ρk
n

= 0.

Thus fn(zn + ρnζn) = 0, so that f
(k)
n (zn + ρnζn) = hn(zn + ρnζn), i.e., that g

(k)
n (ζn) =

hn(zn+ρnζn). Since g(k)(ζ0) = lim
n→∞

g
(k)
n (ζn) = h(z0), we have established that Eg(0) ⊂

Eg(k)(h(z0)).
Now, suppose there exists ζ0 ∈ C, such that g(k)(ζ0) = h(z0). If g(k)(ζ) ≡ h(z0),

then g(k+1) ≡ 0 and we are done. Thus we can assume that g(k) is not constant and
since f

(k)
n (zn + ρnζ)− hn(zn + ρnζ) ⇒ g(k)(ζ)− h(z0), we get by Hurwitz’s Theorem

that there exist ζn, ζn → ζ0, such that

f (k)
n (zn + ρnζn)− hn(zn + ρnζn) = g(k)

n (ζn)− hn(zn + ρnζn) = 0.

Thus we have f
(k+1)
n (zn + ρnζn) = 0 and g

(k+1)
n (ζn) = 0. Letting n →∞, we get that

g(k+1)(ζ0) = 0. This completes the proof of (10). Now, by Lemmas 4 and 2, we have
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g(ζ) =
h(z0)(ζ − ζ1)

k

k!
, where ζ1 is a constant. Thus

g](0) =
|h(z0)||ζ1|k−1/(k − 1)!

1 + |h(z0)|2|ζ1|2k/k!2
.

Now, if |ζ1| ≤ 1, then g](0) ≤ |h(z0)|
(k − 1)!

< kA + 1, and if |ζ1| > 1, then g](0) ≤
|h(z0)||ζ1|k−1/(k − 1)!
|h(z0)|2|ζ1|2k/k!2

≤ k · k!
|h(z0)| < kA+1. In either case we get a contradiction. ¤

Similarly, we can get a slight generalization of Theorem CFZ3 for sequences.

Lemma 6. Let {fn} be a sequence of functions holomorphic on a domain D ⊂ C,
all of whose zeros are multiple and {hn} be a sequence of functions analytic on D such
that hn(z) ⇒ h(z) on D, where h(z) 6= 0 for z ∈ D, and s ≥ 2 be an even integer.
Suppose that, for each n, fn(z) = 0 =⇒ f ′′n(z) = hn(z) and f ′′n(z) = hn(z) =⇒
f ′′′(z) = f

(s)
n (z) = 0, then {fn} is normal on D.

The proof is very similar to the proof of Lemma 5. We start to argue the same
(with 2 instead of k), and then instead of proving (10) we prove that

Eg(0) ⊂ Eg′′(h(z0)) ⊂ Eg(3)(0) ∩ Eg(s)(0).

The left inclusion is proved in the same manner. Concerning the right inclusion, we
now deduce from f ′′n(zn + ρnζn)− hn(zn + ρnζn) = 0 that f

(3)
n (zn + ρnζn) = f

(s)
n (zn +

ρnζn) = 0. Then, since ρnf
(3)
n (zn + ρnζ) ⇒ g(3)(ζ) in C and ρs−2

n f
(s)
n (zn + ρnζ) ⇒

g(s)(ζ) in C, we conclude that g(3)(ζ0) = g(s)(ζ0) = 0. To get the final contradiction,
we apply now Lemmas 4 and 3 instead of Lemmas 4 and 2.

The following result will play an essential role in treating transcendental functions
which is used in the proofs of Theorems 2 and 3.

Theorem B. ([15], see also [2, p. 117]) Let f(z) be a function homomorphic in
{z : R < |z| < ∞}, with essential singularity at z = ∞. Then lim

|z|→∞
|z|f#(z) = +∞.

For the proof of Theorem 2, we need also the following Lemma.

Lemma 7. Let h be a holomorphic function on D, with a zero of order `(≥ 1)
at z0 ∈ D. Let {fn}∞n=1 be a sequence of functions with zeros of multiplicity at
least k, such that {fn} and h satisfy conditions (a) and (b) of Theorem 2. Let
{αn}∞n=1 be a sequence of nonzero numbers such that αn → 0 as n → ∞. Then
{fn(z0 + αnζ)/αk+`

n }∞n=1 is normal in C∗.

Proof. Without loss of generality, we may assume that z0 = 0. In a neighborhood
of the origin we have h(z) = z`b(z), where b(z) is analytic, b(0) 6= 0. Define rn(ζ) =
ζ`b(αnζ). We will show that the assumptions of Lemma 5 hold in C∗ for the sequences
{Gn(ζ)}∞n=1, Gn(ζ) := fn(αnζ)/αk+`

n and {rn(ζ)}∞n=1. First, we have that rn(ζ) ⇒
b(0)ζ` on C and ζ` 6= 0 in C∗. Assume that Gn(ζ) = 0. Then fn(αnζ) = 0 and
f

(k)
n (αnζ) = (αnζ)`b(αnζ), and we get that G

(k)
n (ζ) = rn(ζ). Suppose now that

G
(k)
n (ζ) = rn(ζ). This means that f

(k)
n (αnζ) = h(αnζ) and thus f

(k+1)
n (αnζ) = 0. We

have G
(k+1)
n (ζ) = 0, and thus the assumptions of Lemma 5 hold. Hence we deduce

that {Gn(ζ)} is normal in C∗, and the lemma is proved. ¤
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The following lemma plays a similar role in the proof of Theorem 3 to the role of
Lemma 7 in the proof of Theorem 2.

Lemma 8. Let h be a holomorphic function on D, with a zero of order `(≥ 1) at
z0 ∈ D. Let {fn}∞n=1 be a sequence of functions whose zeros are multiple, such that
{fn} and h satisfy conditions (a) and (b) of Theorem 3. Let {αn}∞n=1 be a sequence
of nonzero numbers such that αn → 0 as n → ∞. Then {fn(z0 + αnζ)/α2+`

n }∞n=1 is
normal in C∗.

The proof of this lemma is analogous to the proof of Lemma 7. Of course, we
use Lemma 6 instead of Lemma 5.

3. Proof of Theorem 1

In this section, we do not use any of the preliminary results. The proof is ele-
mentary.

By Theorem CFZ1, F is normal at every point z0 ∈ D at which h(z0) 6= 0 (so
immediately we get that F is quasinormal). So let z0 be a zero of h of order ` (≥ 1).
Without loss of generality, we can assume that z0 = 0, and then h(z) = z`b(z). Here
b is an analytic function in ∆(0, δ) and b(z) 6= 0 there. We assume that 0 < δ < 1,
and by taking a subsequence and renumbering, we can assume that

(11) fn =⇒ f in ∆′(0, δ).

Now, if f is holomorphic in ∆′(0, δ), we deduce by the maximum principle that
fn ⇒ f on ∆(0, δ), and we are done. So let us assume that fn ⇒∞ in ∆′(0, δ). Fix
η, 0 < η < δ. By the minimum principle (i.e., the maximum principle for {1/fn}),
there exists N = N(η), such that for every n ≥ N , fn has kn(kn ≥ 1) simple zeros
in ∆(0, η) − {0}, say α

(n)
1 , α

(n)
2 , · · · , α

(n)
kn

(otherwise we get that fn ⇒ ∞ in ∆(0, η)
and we are done). Since fn ⇒∞ in ∆′(0, δ), we get that

(12) max
1≤j≤kn

{|α(n)
j |} → 0, as n →∞.

We can write fn(z) = tn(z)
kn∏
i=1

(
z − α

(n)
i

)
, where tn(z) 6= 0 for z ∈ ∆(0, η) and

n ≥ N . Since η < 1, we get by (12) that tn(z)
b(z)

⇒∞ in ∆(0, η). By condition (a) of

Theorem 1, we have, for n ≥ N , f ′n(α
(n)
j ) = α

(n)`
j b(α

(n)
j ), 1 ≤ j ≤ kn. By calculation,

f ′n(z) = t′n(z)
kn∏
i=1

(
z − α

(n)
i

)
+ tn(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′
,

and so

(13) tn

(
α

(n)
j

) [
kn∏
i=1

(
z − α

(n)
i

)]′ ∣∣∣∣∣
z=α

(n)
j

= α
(n)`
j b

(
α

(n)
j

)
.

Define, for n ≥ N ,

Mn(z) :=
tn(z)

b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′
− z`.
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By (13) we get that Mn

(
α

(n)
j

)
= 0 for 1 ≤ j ≤ kn, and so for n ≥ N, Mn has at

least kn zeros in ∆′(0, η), including multiplicities. Here we use the fact that h has
no common zero with any fn. Since such a zero must be z = 0 and would be a zero
of order m (must be m ≥ 2 by condition (a)) of fn, and it would be a zero of order
m − 1 of Mn (if ` > m − 1) or even of order ` < m − 1 (if ` < m − 1), then we
would not know that the number of zeros (including multiplicities) of Mn is at least
kn. This fact, under the assumption that there are no common zeros, will lead to the
desired contradiction.

Claim 2. tn(z)
b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′
⇒∞ in ∆′(0, η).

Proof. We write

(14)
tn(z)

b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′
=

kn∑
j=1

tn(z)

b(z)

kn∏

i=1,i 6=j

(
z − α

(n)
i

)
.

For any ε, 0 < ε < η, we have that

(15)
tn(z)

b(z)

kn∏
i=2

(
z − α

(n)
i

)
=⇒∞ in Rε,η := {z : ε ≤ |z| ≤ η}.

Indeed, tn(z)
b(z)

kn∏
i=2

(
z − α

(n)
i

)
=

fn(z)

b(z)
(
z − α

(n)
1

) , and since η < 1 and by (11) and (12),

this term tends uniformly to ∞ in Rε,η.
Now, for every j, 2 ≤ j ≤ kn, we have that

tn(z)

b(z)

kn∏
i=2

(
z − α

(n)
i

)

tn(z)

b(z)

kn∏

i=1,i6=j

(
z − α

(n)
i

) =
z − α

(n)
j

z − α
(n)
1

,

and by (12) this term tends uniformly to 1 as n → ∞. This means, that for every

1 ≤ j ≤ kn and z ∈ Rε,η,
tn(z)
b(z)

kn∏
i=1,i6=j

(
z − α

(n)
i

)
lies in the same quarter plane, that

is,

Πn,z :=

{
z : arg

[
tn(z)

b(z)

kn∏
i=2

(
z − α

(n)
i

)]
− π

4

< arg z < arg

[
tn(z)

b(z)

kn∏
i=2

(
z − α

(n)
i

)]
+

π

4

}
,

(16)

for large enough n.
Now, if a and b are two complex numbers in the same quarter plane, then a + b

also belongs to that quarter plane and |a + b| ≥ |a|, |b|. We then conclude by (16)
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that for each z ∈ Rε,η, we have for large enough n,∣∣∣∣∣∣
tn(z)

b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′∣∣∣∣∣∣
≥

∣∣∣∣∣
tn(z)

b(z)

kn∏
i=2

(
z − α

(n)
i

)∣∣∣∣∣ ,

and by (15) and (14), Claim 2 is proved. ¤

Now, tn(z)
b(z)

[
kn∏
i=1

(
z−α

(n)
i

)]′
has, for large enough n, exactly kn−1 zeros in ∆(0, η)

(by Theorem Lu). Then for large enough n we have, for every z, |z| = η,∣∣∣∣∣∣
Mn(z)− tn(z)

b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′∣∣∣∣∣∣
= |z`| <

∣∣∣∣∣∣
tn(z)

b(z)

[
kn∏
i=1

(
z − α

(n)
i

)]′∣∣∣∣∣∣
,

and by Rouche’s Theorem, we get that Mn has kn−1 zeros in ∆(0, η), a contradiction.
Theorem 1 is proved. ¤

4. Proof of Theorem 2

This proof is similar to the proof of Theorem 1 in [4]. By our Theorem 1, we
need only to prove the case that k ≥ 3. By Theorem CFZ2, F is normal at every
point z0 ∈ D at which h(z0) 6= 0 (so that F is quasinormal in D). Consider z0 ∈ D
such that h(z0) = 0. Without loss of generality, we can assume that z0 = 0, and then
h(z) = z`b(z), where ` (≥ 1) is an integer and b(z) 6= 0 is an analytic function in
∆(0, δ). We take a subsequence {fn}∞1 ⊂ F , and we want to prove that {fn} is not
normal at z = 0. Suppose by negation that {fn} is not normal at z = 0. Since {fn}
is normal in ∆′(0, δ), we can assume (after renumbering) that fn ⇒ F on ∆′(0, δ).
If F (z) 6≡ ∞, then it is a holomorphic function. Hence, by the maximum principle,
F extends to be analytic also at z = 0, and so fn ⇒ F on ∆(0, δ), and we are done.
Therefore, we assume that

(17) fn(z) =⇒∞ on ∆′(0, δ).

Define F1 =
{

F =
fn

h
: n ∈ N

}
. It is enough to prove that F1 is normal in

∆(0, δ). Indeed, if (after renumbering) fn(z)
h

⇒ H(z) on ∆(0, δ), then since h 6= 0 in
∆′(0, δ), it follows from (17) that H(z) ≡ ∞ in ∆′(0, δ), and thus H(z) ≡ ∞ also in
∆(0, δ). In particular, fn

h
(z) 6= 0 on each compact subset of ∆(0, δ) for large enough

n. Since h 6= 0 on ∆′(0, δ) and since fn(0) 6= 0 for every n ≥ 1 by assumptions
of the theorem, we obtain fn(z) 6= 0 on each compact subset of ∆(0, δ) for large
enough n. Then by the minimum principle, it follows from (17) that fn(z) ⇒ ∞ on
∆(0, δ), and this implies the normality of F . So suppose to the contrary that F1 is not
normal at z = 0. By Lemma 1 and the assumptions of Theorem 2, there exist (after
renumbering) points zn → 0, ρn → 0+ and a nonconstant meromorphic function on
C, g(ζ) such that

(18) gn(ζ) =
Fn(zn + ρnζ)

ρk
n

=
fn(zn + ρnζ)

ρk
nh(zn + ρnζ)

χ
=⇒ g(ζ) on C,

all of whose zeros have multiplicity at least k and

(19) for every ζ ∈ C, g](ζ) ≤ g](0) = kA + 1,
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where A > 1 is a constant. Here we have used Lemma 1 with α = k. Observe that
gn(z) = 0 implies g

(k)
n (ζ) = 1 and so A can be chosen to be any number such that

A ≥ 1. After renumbering we can assume that {zn/ρn}∞n=1 converges. We separate
now into two cases.

Case (A).

(20)
zn

ρn

→∞.

Claim 3. (1) g(ζ) = 0 =⇒ g(k)(ζ) = 1; (2) g(k)(ζ) = 1 =⇒ g(k+1)(ζ) = 0.

Proof. Observe that from (18) and the fact that h(z) 6= 0 in ∆′(0, δ), it follows
that g is an entire function. Suppose that g(ζ0) = 0. Since g(ζ) 6≡ 0, there exist
ζn → ζ0, such that gn(ζn) = 0, and thus fn(zn + ρnζn) = 0. Since fn and h has
no common zeros, it follows by the assumption that ζn is a zero of multiplicity k of
gn(ζ). By Leibniz’s rule, and condition (a) of Theorem 2, it follows that g

(k)
n (ζn) = 1

and thus g(k)(ζ0) = 1.
For the proof of the other part of Claim 3, observe first that by (20) we have

fn(zn + ρnζ)

ρk
nz

`
n

⇒ g(ζ) on C,

and thus
f (k)

n (zn + ρnζ)

z`
n

⇒ g(k)(ζ) on C,

and then again by (19) we get that

f (k)
n (zn + ρnζ)

h(zn + ρnζ)
⇒ g(k)(ζ) on C.

Thus, if there exists ζ0 ∈ C, such that g(k)(ζ0) = 1, there exists a sequence ζn → ζ0,
such that f

(k)
n (zn + ρnζn) = h(zn + ρnζ) 6= 0. By assumption (b) of Theorem 2 we

get that f
(k+1)
n (zn + ρnζn) = 0, and letting n tend to ∞ we get that g(k+1)(ζ0) = 0.

Claim 3 is proved. ¤

We conclude by Lemmas 2 and 4 that g(ζ) =
(ζ − b)k

k!
for some b ∈ C (observe

that g is holomorphic by (20)). By calculation we get that

g](0) =
|b|k−1/(k − 1)!

1 + |b|2k/k!2
.

Then if |b| ≤ 1, we get that g](0) ≤ 1
(k − 1)!

, and if |b| ≥ 1, then g](0) ≤ k
2 . In either

case, we get a contradiction to (19).

Case (B).

(21)
zn

ρn

→ α ∈ C.

As in Case (A), it follows that g(ζ0) = 0 =⇒ g(k)(ζ0) = 1. Now set

Gn(ζ) =
fn(ρnζ)

ρk+`
n

.
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From (18) and (21) we have

(22) Gn(ζ) =⇒ G(ζ) = g(ζ − α)ζ`b(0) on C.

Indeed,

fn(ρnζ)

ρk+`
n

=
fn(ρnζ)

ρk
nh(ρnζ)

· h(ρnζ)

ρ`
n

=
fn

(
zn + ρn

(
ζ − zn

ρn

))

ρk
nh

(
zn + ρn

(
ζ − zn

ρn

)) (ρnζ)`b(ρnζ)

ρ`
n

(cf. [12, p. 7]). Since g has a pole of order ` at ζ = −α (here we use the fact that for
every n, h has no common zeros with fn) and since {Gn} are analytic, we have

(23) G(0) 6= 0,∞.

We now consider several subcases, depending on the nature of G.

Case (BI). G is a polynomial. Since {fn} is not normal at z = 0, there exists
(after renumbering) a sequence z∗n → 0 such that

(24) fn(z∗n) = 0.

Otherwise, there is some δ′, 0 < δ′ < δ such that (before renumbering) fn(z) 6= 0 in
∆(0, δ′), and since fn(z) ⇒∞ on ∆′(0, δ) we would have by the minimum principle
that fn(z) ⇒ ∞ on ∆(0, δ), a contradiction to the non-normality of {fn} at z = 0.
We have that all the zeros of g are of multiplicity exactly k. Then by (22) and (23),
it follows that all the zeros of G are also of multiplicity exactly k. We consider now
two possibilities.

Case (BI1). deg(G) = 0. We can assume that z∗n from (24) is the closest zero of
fn to the origin. Then we have

(25)
fn(ρnζ)

ρk+`
n b(ρnζ)

=⇒ G(0)

b(0)
on C.

By (25) we have

(26)
z∗n
ρn

→∞.

Define tn(ζ) = fn(z∗nζ)/
(
z∗k+`

n b(z∗nζ)
)
. We want to show that {tn(ζ)} is normal

in C∗. For this purpose set t̃n(ζ) = fn(z∗nζ)/z∗k+`
n . Since b(0) 6= 0, ∞ and z∗n → 0,

the normality of {tn} is equivalent to the normality of {t̃n}, and the latter follows by
Lemma 7. Now, if {tn} is not normal at ζ = 0, then we can write (after renumbering)
tn(ζ) ⇒∞ on C∗; but tn(1) = 0, so this is not possible. Hence {tn(ζ)} is normal at
ζ = 0. By (25) and (26), tn(0) → 0 as n →∞; and thus since tn(ζ) 6= 0 in ∆(0, 1/2),
we get by Hurwitz’s Theorem that tn(ζ) ⇒ 0 on C. But tn(1) = 0; so by assumption
(b) of Theorem 2, we get that t

(k)
n (1) = 1, a contradiction.

Case (BI2). G(k) ≡ b(0)ζ`. Then we have G(k−1)(ζ) =
b(0)ζ`+1

` + 1
+ C and

G(k−2)(ζ) =
b(0)ζ`+2

(` + 1)(` + 2)
+ Cζ + D, where C and D are two constants. Since all

zeros of G have multiplicity exactly k, then for any zero ζ̂ of G, we have G(k−2)(ζ̂) =
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G(k−1)(ζ̂) = 0. So

(27)
ζ̂`+1

` + 1
+ C = 0, and

ζ̂`+2

(` + 1)(` + 2)
+ Cζ̂ + D = 0.

By calculation, we have (` + 1)C
` + 2

ζ̂ = −D. If CD = 0, then by (27), ζ̂ = 0, a

contradiction. If CD 6= 0, then ζ̂ = −(` + 2)D
(` + 1)C

, which implies that G has only one

zero ζ0, and then

G(ζ) =
b(0)ζ`

0(ζ − ζ0)
k

k!
.

This contradicts G(k) ≡ b(0)ζ`.

Case (BI3). G is a nonconstant polynomial and G(k) 6≡ b(0)ζ`. Since all zeros of
G have multiplicity exactly k, we may assume that

G = A

t∏
j=1

(ζ − ζj)
k.

where A 6= 0 is a constant and ζj 6= 0, j = 1, 2, · · · , t.

Claim 4. G(ζ) = 0 =⇒ G(k)(ζ) = b(0)ζ` =⇒ G(k+1)(ζ) = 0.

Proof. Suppose first that G(ζ0) = 0. Then there exists a sequence, ζn → ζ0,

such that fn(ρnζn) = 0, and thus f
(k)
n (ρnζn) = (ρnζn)`b(ρnζn), that is, f (k)

n (ρnζn)
ρ`

n

=

ζ`
nb(ρnζn). In the last equation, the left hand side tends to ζ`

0b(0) as n → ∞. This
proves the first part of Claim 4.

Suppose now that G(k)(ζ0) = b(0)ζ`
0. Since G(k)(ζ) 6≡ b(0)ζ`, there exists a se-

quence ζn → ζ0, such that f (k)
n (ρnζn)

ρ`
n

= ζ`
nb(ρnζn), that is, f (k)

n (ρnζn) = (ρnζn)`b(ρnζn),

and thus f
(k+1)
n (ρnζn) = 0. Since f (k+1)

n (ρnζ)
ρ`−1

n

⇒ G(k+1)(ζ), we deduce that G(k+1)(ζ0)

= 0, and this completes the proof of the Claim 4. ¤
It follows from Claim 4 that G(k+1)(ζj) = 0, for 1 ≤ j ≤ t.
If t ≥ 2, we know that for every 1 ≤ j ≤ t,

G(k+1)(ζ) = A

[
t∏

j=1

(ζ − ζj)
k

](k+1)

= A





k+1∑
µ=0

(
k + 1

µ

) [
(ζ − ζj)

k
](k+1−µ)

[
t∏

i=1,i6=j

(ζ − ζi)
k

](µ)




= A

{
(k + 1)k!

[
t∏

i=1,i6=j

(ζ − ζi)
k

]′
+ (ζ − ζj)Pj(ζ)

}
,
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where Pj is a polynomial. Thus, by Claim 4 we have

(28)

[
t∏

i=1,i6=j

(ζ − ζi)
k

]′ ∣∣∣∣∣
ζj

= 0, 1 ≤ j ≤ t.

This means that for every 1 ≤ j ≤ t,
t∑

i=1
i6=j

(ζ − ζj)
k−1

t∏
`=1
6̀=i,j

(ζ − ζ`)
k
∣∣∣
ζj

= 0.

Dividing in
∏
` 6=j

(ζj − ζ`)
k−1 gives

t∑
i=1
i6=j

t∏
`=1
6̀=i,j

(ζj − ζ`) = 0.

Thus T ′′(ζj) = 0 for 1 ≤ j ≤ t, where T (ζ) =
t∏

i=1

(ζ − ζi).

Now, if t ≥ 3, then T ′′ is of degree t − 2, and vanishes at t different points, a
contradiction. If t = 2, we get from (28) that

[
(ζ − ζ2)

k
]′ ∣∣∣

ζ1
= 0 and this is also

a contradiction. So t = 1 and G has only one zero ζ0 (ζ0 6= 0), which means that

G(ζ) =
b(0)ζ`

0(ζ − ζ0)
k

k!
.

By Hurwitz’s Theorem, there exists a sequence ζn,0 → ζ0, such that Gn(ζn,0) = 0.
If there exists δ′, 0 < δ′ < δ, such that for every n (after renumbering), fn(z) has
only one zero zn,0 = ρnζn,0 in ∆(0, δ′).

Set

Hn(z) =
fn(z)

(z − zn,0)k
.

Since Hn(z) is a nonvanishing holomorphic function in ∆(0, δ′) and Hn(z) ⇒ ∞ on
∆′(0, δ), we can deduce as before by the minimum principle that Hn(z) ⇒ ∞ on
∆(0, δ′). But

Hn(2zn,0) =
fn(2zn,0)

zk
n,0

=
ρ`

nGn(2ζn,0)

ζk
n,0

→ 0,

a contradiction. Thus, we can assume, after renumbering, that for every δ′ > 0,
fn has at least two zeros in ∆(0, δ′) for large enough n. Thus, there exists another
sequence of points zn,1 = ρnζn,1, tending to zero, where zn,1 is also a zero of fn(z)
and ζn,1 → ∞, as n → ∞. We can also assume that zn,1 is the closest zero to the
origin of fn, except zn,0. Now set cn = zn,0/zn,1 and define Kn(ζ) = fn(zn,1ζ)/zk+`

n,1 .
By Lemma 7, {Kn(ζ)} is normal in C∗. Now, if {Kn} is normal at ζ = 0, then after
renumbering we can assume that

Kn(ζ) =⇒ K(ζ) on C.

If K(ζ) 6≡ const., then consider

Ln(ζ) :=
Kn(ζ)

(ζ − cn)k
.
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Since cn −→
n→∞

0, then the sequence {Ln}∞1 is normal in C∗. It is also normal at ζ = 0.
Indeed, Kn(cn) = 0 (a zero of order k) and so Ln is a nonvanishing holomorphic
function in ∆(0, 1). Thus (after renumbering)

Ln(ζ) =⇒ K(ζ)

ζk
on C.

But

Ln(0) =
Kn(0)

(−cn)k
=

Gn(0)

ζ`
n,1(−ζn,0)k

−→
n→∞

0, (since ζn,1 −→
n→∞

∞),

and Ln(ζ) 6= 0 in ∆(0, 1/2); thus K(ζ)/ζk ≡ 0 in C, a contradiction. If, on the other
hand, K(ζ) ≡ const., then K(ζ) ≡ 0 and K(k)(1) = 0. But K(k)(1) = lim

n→∞
K

(k)
n (1) =

lim
n→∞

f (k)
n (zn,1)

z`
n,1

= lim
n→∞

h(zn,1)

z`
n,1

= lim
n→∞

b(zn,1) = b(0), a contradiction. Hence we can

deduce that {Kn} is not normal at ζ = 0, and since Kn(ζ) is holomorphic in ∆, then

Kn(ζ) =⇒∞ on C∗.

But Kn(1) = 0, a contradiction.

Case (BII). G(ζ) is a transcendental entire function. Consider the family

F(G) =

{
tn(z) :=

G(2nz)

2n(k+`)
: n ∈ N

}
.

By Claim 4, we deduce
(i) tn(z) = 0 =⇒ t

(k)
n (z) = z`, and

(ii) t
(k)
n (z) = z` =⇒ t

(k+1)
n (z) = 0.

We then get by Theorem CFZ2 that F(G) is normal in C∗. Thus there exists M > 0
such that for every z ∈ R1,2 := {z : 1 ≤ |z| ≤ 2},

t#n (z) =
2n(k+`+1)|G′(2nz)|

22n(k+`) + |G(2nz)|2 ≤ M.

Set r(ζ) := G(ζ)/ζk+`. Then r is a transcendental meromorphic function, whose only
pole is ζ = 0. For every ζ, |ζ| ≥ 2 there exists n ≥ 1 and z ∈ R1,2, such that

(29) ζ = 2nz.

Calculation gives

r](ζ) =
|G′(ζ)ζk+` − (k + `)ζk+`−1G(ζ)|

|ζ|2(k+`) + |G(ζ)|2 .

Thus, if |ζ| ≥ 2 satisfies (29), then

|ζr](ζ)| = |2nz| |G
′(2nz)(2nz)k+` − (k + `)(2nz)k+`−1G(2nz)|

|2nz|2(k+`) + |G(2nz)|2

≤ 2k+`+1 · 2n(k+`+1)|G′(2nz)|
22n(k+`) + |G(2nz)|2 +

(k + `)2(n+1)(k+`)|G(2nz)|
22n(k+`) + |G(2nz)|2 .

(30)

By separating into two cases, depending on |G(2nz)| > 2(n+1)(k+`) or |G(2nz)| ≤
2(n+1)(k+`), we see that the last expression in (30) is less or equal to

2k+`+1t]n(z) + (k + `)22(k+`).
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Thus, to every |ζ| ≥ 2,

|ζr](ζ)| ≤ M · 2k+`+1 + (k + `)22(k+`).

But, according to Theorem B, lim
ζ→∞

|ζ|r](ζ) = ∞, and we thus have a contradiction

(cf. [3, pp. 19–21]). Theorem 2 is proved. ¤

5. Proof of Theorem 3

By Theorem CFZ3, F is normal at every point z0 ∈ D at which h(z0) 6= 0 (so
that F is quasinormal in D). Consider z0 ∈ D such that h(z0) = 0. Without loss
of generality, we can assume that z0 = 0, and then h(z) = z`b(z), where `(≥ 1) is
an integer and b(z) 6= 0 is an analytic function in ∆(0, δ). We take a subsequence
{fn}∞1 ⊂ F , and we only need to prove that {fn} is not normal at z = 0.

Define F2 =
{

F =
fn

h
: n ∈ N

}
. It is enough to prove that F2 is normal in

∆(0, δ). Suppose to the contrary that F2 is not normal at z = 0. By Lemma 1
and the assumptions of Theorem 3, there exist (after renumbering) points zn → 0,
ρn → 0+ and a nonconstant meromorphic function on C, g(ζ) such that

(31) gn(ζ) =
Fn(zn + ρnζ)

ρ2
n

=
fn(zn + ρnζ)

ρ2
nh(zn + ρnζ)

χ
=⇒ g(ζ) on C,

all of whose zeros are multiple and

(32) for every ζ ∈ C, g](ζ) ≤ g](0) = 2A + 1,

where A > 1 is a constant. After renumbering we can assume that {zn/ρn}∞n=1

converges. We separate now into two cases.

Case (A). zn
ρn

→ ∞. Similar to the proof of Theorem 2, we can prove that
g(ζ) = 0 =⇒ g′′(ζ) = 1 and that g′′(ζ) = 1 =⇒ g′′′(ζ) = g(s)(ζ) = 0. Then by
Lemmas 4 and 3, we have

g(ζ) =
(ζ − b)2

2
,

for some b ∈ C. Thus g](0) =
|b|

1 + |b|4/4 and then g](0) ≤ 1, which contradicts (32).

Case (B).

(33)
zn

ρn

→ α ∈ C.

As in the proof of Theorem 2, we have g(ζ0) = 0 =⇒ g′′(ζ0) = 1. Now set Gn(ζ) =
fn(ρnζ)

ρ2+`
n

. From (31) and (33) we have

Gn(ζ) =⇒ G(ζ) = b(0)g(ζ − α)ζ` on C.

Since g has a pole of order ` at ζ = −α, G(0) 6= 0,∞.
We now consider several subcases, depending on the nature of G.

Case (BI). G is a polynomial. By a similar method of proof used in the proof of
Theorem 2 (and using Lemma 8 instead of Lemma 7 in the appropriate places), we
can get

G(ζ) =
b(0)ζ`

0(ζ − ζ0)
2

2
,
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and also we can arrive at a contradiction.

Case (BII). G(ζ) is a transcendental entire function. Consider the family

F(G) =

{
tn(z) :=

G(2nz)

2n(2+`)
: n ∈ N

}
.

We have
(i) tn(z) = 0 =⇒ t′′n(z) = z`, and
(ii) t′′n(z) = z` =⇒ t′′′n (z) = t

(s)
n (z) = 0.

We then get by Theorem CFZ3 that F(G) is normal in C∗. Set r(ζ) := G(ζ)/ζ2+`,
and we have that, for every ζ, |ζ| ≥ 2, there exists n ≥ 1 and z ∈ R1,2, such that

|ζr](ζ)| ≤ M · 22+`+1 + (2 + `)22(2+`).

But, according to Theorem B, lim
ζ→∞

|ζ|r](ζ) = ∞, and we thus have a contradiction

(cf. [3, pp. 19–21]). Theorem 3 is proved. ¤
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