A CRITERION OF NORMALITY BASED ON A SINGLE HOLOMORPHIC FUNCTION II

Xiaojun Liu* and Shahar Nevo ${ }^{\dagger}$
University of Shanghai for Science and Technology, Department of Mathematics
Shanghai 200093, P. R. China; Xiaojunliu2007@hotmail.com
Bar-Ilan University, Department of Mathematics
52900 Ramat-Gan, Israel; nevosh@macs.biu.ac.il

Abstract

In this paper, we continue to discuss normality based on a single holomorphic function. We obtain the following result. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$. Let $k \geq 2$ be an integer and let $h(\not \equiv 0)$ be a holomorphic function on D, such that $h(z)$ has no common zeros with any $f \in \mathcal{F}$. Assume also that the following two conditions hold for every $f \in \mathcal{F}:(\mathrm{a}) f(z)=0 \Longrightarrow f^{\prime}(z)=h(z)$, and $(\mathrm{b}) f^{\prime}(z)=h(z) \Longrightarrow\left|f^{(k)}(z)\right| \leq c$, where c is a constant. Then \mathcal{F} is normal on D. A geometrical approach is used to arrive at the result that significantly improves a previous result of the authors which had already improved a result of Chang, Fang and Zalcman. We also deal with two other similar criterions of normality. Our results are shown to be sharp.

1. Introduction

In [11], Pang and Zalcman proved the following theorem.
Theorem PZ. Let \mathcal{F} be a family of meromorphic functions on a domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity at least k, where $k \geq 1$ is an integer. Suppose there exist constants $b \neq 0$ and $h>0$ such that, for every $f \in \mathcal{F}, f(z)=0 \Longleftrightarrow f^{(k)}(z)=b$ and $f(z)=0 \Longrightarrow 0<\left|f^{(k+1)}(z)\right| \leq h$. Then \mathcal{F} is a normal family on D.

Then, in [1], Chang, Fang and Zalcman proved the following result.
Theorem CFZ1. [1, Theorem 4] Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$. Let $k \geq 2$ be an integer, and let $h(z) \neq 0$ be a function analytic in D. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{\prime}(z)=h(z)$, and
(b) $f^{\prime}(z)=h(z) \Longrightarrow\left|f^{(k)}(z)\right| \leq c$, where c is a constant.

Then \mathcal{F} is normal on D.
And in [4], we replaced the condition $h(z) \neq 0$ with $h(z) \not \equiv 0$ and obtained the following result.

Theorem LN. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$. Let $k \geq 2$ be an integer, and let $h(z)(\not \equiv 0)$ be a holomorphic function on D, all of

[^0]whose zeros have multiplicity at most $k-1$, that has no common zeros with any $f \in \mathcal{F}$. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{\prime}(z)=h(z)$, and
(b) $f^{\prime}(z)=h(z) \Longrightarrow\left|f^{(k)}(z)\right| \leq c$, where c is a constant.

Then \mathcal{F} is normal on D.
We now pose the following question: Can the restriction for the zeros of $h(z)$ with multiplicity at most $k-1$ be dropped? In this paper, we continue to study the above problem and obtain an affirmative answer.

Theorem 1. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$. Let $k \geq 2$ be an integer, and let $h(z)(\not \equiv 0)$ be a holomorphic function on D that has no common zeros with any $f \in \mathcal{F}$. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{\prime}(z)=h(z)$, and
(b) $f^{\prime}(z)=h(z) \Longrightarrow\left|f^{(k)}(z)\right| \leq c$, where c is a constant.

Then \mathcal{F} is normal on D.
Also in [1], the case for the k th derivative was considered and the following result was proved.

Theorem CFZ2. [1, Theorem 1] Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity at least k, where $k \neq 2$ is a positive integer, and let $h(z) \neq 0$ be a function analytic in D. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{(k)}(z)=h(z)$, and
(b) $f^{(k)}(z)=h(z) \Longrightarrow\left|f^{(k+1)}(z)\right| \leq c$, where c is a constant.

Then \mathcal{F} is normal on D.
For the case $k=2$, the following result was obtained.
Theorem CFZ3. [1, Theorem 3] Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros are multiple, where $s \geq 4$ is an even integer; and let $h(z) \neq 0$ be a function analytic in D. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{\prime \prime}(z)=h(z)$, and
(b) $f^{\prime \prime}(z)=h(z) \Longrightarrow\left|f^{\prime \prime \prime}(z)\right|+\left|f^{(s)}(z)\right| \leq c$, where c is a constant.

Then \mathcal{F} is normal on D.
In view of the improvement of Theorems CFZ1 and LN via Theorem 1, the question that naturally arises concerning Theorems CFZ2 and CFZ3 is whether the condition $h(z) \neq 0, z \in D$ can be weakened to " $h \not \equiv 0$ ". It turns out that the answer is negative in both cases. It is negative even if h has no common zero with any $f \in \mathcal{F}$ (like in Theorem 1). To construct the first example, concerning Theorem CFZ2, we first need to mention the following famous result of Lucas.

Theorem Lu. [5], [6, p. 22] Let $P(z)$ be a nonconstant polynomial. Then all the zeros of $P^{\prime}(z)$ lie in the convex hull H of the zeros of $P(z)$. Moreover, there are no zeros of $P^{\prime}(z)$ on the boundary of H, unless this zero is a multiple zero of $P(z)$ or the zeros of $P(z)$ are colinear.

Example 1. Let $r \geq 1$ and $k \geq 3$ be integers, $D=\Delta$ be the unit disc and $h(z)=z^{r}$. Define

$$
f_{n}(z)=a_{n}\left(z^{\ell}-\frac{1}{n^{\ell}}\right)^{k}
$$

where $\ell=k+r$ and $a_{n}=\frac{n^{(k-1) \ell}}{k!\ell^{k}}$.
We have

$$
f_{n}(z)=a_{n} \prod_{j=1}^{\ell}\left(z-\alpha_{j}^{(n)}\right)^{k}
$$

where $\alpha_{j}^{(n)}=\frac{\exp \left(i \frac{2 \pi j}{\ell}\right)}{n}$, for $1 \leq j \leq \ell$. By calculation,

$$
\begin{aligned}
f_{n}^{(k)}\left(\alpha_{j}^{(n)}\right) & =k!a_{n} \prod_{t=1, t \neq j}^{\ell}\left(\alpha_{j}^{(n)}-\alpha_{t}^{(n)}\right)^{k}=k!a_{n}\left[\left.\left(z^{\ell}-\frac{1}{n^{\ell}}\right)^{\prime}\right|_{z=\alpha_{j}^{(n)}}\right]^{k} \\
& =k!a_{n} \ell^{k}\left(\alpha_{j}^{(n)}\right)^{k(\ell-1)}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\arg \left[f_{n}^{(k)}\left(\alpha_{j}^{(n)}\right)\right]=(\ell-1) k \cdot \frac{2 \pi j}{\ell}=-\frac{2 \pi k j}{\ell}=\frac{2 \pi r i}{\ell}=\arg \left[\left.z^{r}\right|_{z=\alpha_{j}^{(n)}}\right] . \tag{1}
\end{equation*}
$$

Here the equalities are modulo 2π, and we used in the last equality that $r+k=\ell$.
We have

$$
\begin{equation*}
\left|f_{n}^{(k)}\left(\alpha_{j}^{(n)}\right)\right|=\frac{k!\ell^{k} n^{\ell(k-1)}}{k!\ell^{k}}\left(\frac{1}{n}\right)^{k(\ell-1)}=\left(\frac{1}{n}\right)^{r}=\left.\left|z^{r}\right|\right|_{z=\alpha_{j}^{(n)}} \tag{2}
\end{equation*}
$$

From (1) and (2) we have that $f_{n}(z)=0 \Longrightarrow f_{n}^{(k)}(z)=h(z)$, i.e., assumption (a) of Theorem CFZ2 holds.

In order to confirm (b) of Theorem CFZ2, set

$$
\tilde{f}_{n}(z)=f_{n}(z)-\frac{z^{\ell}}{\ell(\ell-1) \cdots(r+1)} .
$$

We have $f_{n}^{(k)}(z)=h(z) \Longleftrightarrow \widetilde{f}_{n}^{(k)}(z)=0$.
Now

$$
\begin{equation*}
\widetilde{f}_{n}(z)=0 \Longleftrightarrow \frac{n^{k(\ell-1)-r}}{k!\ell^{k}}\left(z^{\ell}-\frac{1}{n^{\ell}}\right)^{k}=\frac{z^{\ell}}{\ell(\ell-1) \cdots(r+1)} . \tag{3}
\end{equation*}
$$

Suppose by negation that there exist a sequence $\left\{z_{n}\right\}_{n=1}^{\infty}\left(z_{n} \rightarrow 0\right)$ and a sequence of natural numbers $\left\{k_{n}\right\}_{n=1}^{\infty}\left(k_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty\right)$, such that $\widetilde{f}_{k_{n}}\left(z_{n}\right)=0$. Then since $\frac{\left(k_{n} z_{n}\right)^{\ell}-1}{\left(k_{n} z_{n}\right)^{\ell}} \underset{n \rightarrow \infty}{\longrightarrow} 1$, from (3), we get

$$
\begin{equation*}
\frac{k_{n}^{(k-1) \ell}\left(k_{n} z_{n}\right)^{k \ell}}{k_{n}^{k \ell} z_{n}^{\ell}} \underset{n \rightarrow \infty}{\longrightarrow} \frac{k!\ell^{k}}{\ell(\ell-1) \cdots(r+1)} . \tag{4}
\end{equation*}
$$

But the left hand side of (4) tends to ∞, as $n \rightarrow \infty$, a contradiction.

We deduce that there exists some $0<C_{1}<\infty$, such that every zero z_{n} of \widetilde{f}_{n} satisfies $\left|z_{n}\right| \leq \frac{C_{1}}{n}$. By Theorem Lu, we have also $\left|\widehat{z}_{n}\right| \leq \frac{C_{1}}{n}$ for every \widehat{z}_{n}, which is a zero of $\widetilde{f}_{n}^{(k)}$. But those $\left\{\widehat{z}_{n}\right\}$ are exactly the points where $f_{n}^{(k)}(z)=h(z)$.

Hence $f_{n}^{(k)}(z)=h(z)$ implies that $|z| \leq \frac{C_{1}}{n}$, and we have only to prove the following claim.

Claim 1. There exists $0<C<\infty$, such that $|z| \leq \frac{C_{1}}{n}$ implies $\left|f_{n}^{(k+1)}(z)\right| \leq C$.
Proof. We have $f_{n}(z)=\frac{n^{(k-1) \ell}}{k!\ell^{k}}\left(z^{\ell}-\frac{1}{n^{\ell}}\right)^{k}=\frac{n^{(k-1) \ell}}{k!\ell^{k}} \sum_{j=0}^{k}\binom{k}{j} z^{\ell j}\left(\frac{1}{n}\right)^{\ell(k-j)}(-1)^{k-j}$. Thus, since $\ell j \geq k+1$ only for $j \geq 1$, we get that

$$
f_{n}^{(k+1)}(z)=\frac{n^{(k-1) \ell}}{k!\ell^{k}} \sum_{j=1}^{k}\binom{k}{j}\left(\frac{1}{n}\right)^{\ell k-\ell j}(-1)^{k-j} \ell j(\ell j-1) \cdots(\ell j-k-1) z^{\ell j-k-1}
$$

Thus, if $|z| \leq \frac{C_{1}}{n}$, then

$$
\begin{aligned}
\left|f_{n}^{(k+1)}(z)\right| & \leq \frac{n^{(k-1) \ell}}{k!\ell^{k}} \sum_{j=1}^{k}\binom{k}{j} C_{1}^{\ell j-k-1} \ell j(\ell j-1) \cdots(\ell j-k-1) n^{k+1-\ell j} \cdot n^{\ell j-\ell k} \\
& =\frac{n^{k+1-\ell}}{k!\ell^{k}} \sum_{j=1}^{k}\binom{k}{j} C_{1}^{\ell j-k-1} \ell j(\ell j-1) \cdots(\ell j-k-1) \leq C,
\end{aligned}
$$

where $C=\frac{1}{k!\ell^{k}} \sum_{j=1}^{k}\binom{k}{j} C_{1}^{\ell j-k-1} \ell j(\ell j-1) \cdots(\ell j-k-1)$. (Here we used that $k+1-\ell \leq$ 0.) Claim 1 is proved.

Hence, $\left\{f_{n}\right\}$ with h satisfy (a) and (b) of Theorem CFZ2, but $\left\{f_{n}\right\}$ is not normal at $z=0$.

Observe that when $k=1$, then $a_{n}=\frac{1}{\ell} \nrightarrow \infty$, and we do not get a non-normal family, as expected by Theorem 1.

The following example shows that the condition $h(z) \neq 0$ is essential also to Theorem CFZ3.

Example 2. (cf. [1, Ex. 4]) Let $s \geq 4$ be an even integer and consider the family $\mathcal{F}=\left\{f_{n}(z)\right\}_{n=1}^{\infty}$,

$$
f_{n}(z)=\frac{n^{s}}{2 s^{2}}\left(z^{s}-\frac{1}{n^{s}}\right)^{2} \quad \text { on } \Delta .
$$

Let $h(z)=z^{s-2}$. We have that

$$
f_{n}(z)=\frac{n^{s}}{2 s^{2}} \prod_{j=1}^{s}\left(z-\alpha_{j}^{(n)}\right)^{2}
$$

where $\alpha_{j}^{(n)}=\frac{\exp (i 2 \pi j / s)}{n}, 1 \leq j \leq s$.

By calculation we have

$$
\begin{align*}
f_{n}^{\prime \prime}(z) & =\frac{n^{s}}{s}\left((2 s-1) z^{s}-\frac{(s-1)}{n^{s}}\right) z^{s-2} \tag{5}\\
f_{n}^{\prime \prime \prime}(z) & =\frac{n^{s}}{s}\left[(2 s-1)(2 s-2) z^{s}-\frac{(s-1)(s-2)}{n^{s}}\right] z^{s-3} \tag{6}\\
& =\frac{n^{s}}{s}(s-1) z^{s-3}\left[(4 s-2) z^{s}-\frac{s-2}{n^{s}}\right],
\end{align*}
$$

and

$$
\begin{equation*}
f_{n}^{(s)}(z)=\frac{n^{s}}{s}\left[(2 s-1)(2 s-2) \cdots(s+1) z^{s}-\frac{(s-1)!}{n^{s}}\right] . \tag{7}
\end{equation*}
$$

Now, if $f_{n}(z)=0$, then $z=\alpha_{j}^{(n)}$ for some $1 \leq j \leq s$, and thus $z^{s}=\frac{1}{n^{s}}$ and by (5), $f_{n}^{\prime \prime}(z)=z^{s-2}=h(z)$.

If $f_{n}^{\prime \prime}(z)=z^{s-2}=h(z)$, then by (5), $z=0$ or $z=\alpha_{j}^{(n)}, 1 \leq j \leq s$. By (6) and (7), we get

$$
\begin{equation*}
f_{n}^{(3)}(0)=0, \quad f_{n}^{(s)}(0)=-\frac{(s-1)!}{n^{s}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}^{(3)}\left(\alpha_{j}^{(n)}\right)=3(s-1) \frac{1}{n^{s-3}}, \quad f_{n}^{(s)}\left(\alpha_{j}^{(n)}\right)=\frac{1}{s}\left[\frac{(2 s-1)!}{s!}-(s-1)!\right] . \tag{9}
\end{equation*}
$$

From (8) and (9), we see that the family \mathcal{F} with h satisfy assumption (a) and (b) of Theorem CFZ3, but \mathcal{F} is not normal at $z=0$. Indeed, the reason must be that $h(0)=0$.

In Example 1, we have that $f^{(k+1)}(z) \neq 0$ at the zero points of $f^{(k)}(z)-h(z)$. If we strengthen condition (b) of Theorem CFZ2 to be $f^{(k)}(z)=h(z) \Longrightarrow f^{(k+1)}(z)=0$, then we can obtain the following normal criterion.

Theorem 2. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity at least k, where $k \neq 2$ is a positive integer. Let $h(z)(\not \equiv 0)$ be a holomorphic function on D, that has no common zeros with any $f \in \mathcal{F}$. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{(k)}(z)=h(z)$, and
(b) $f^{(k)}(z)=h(z) \Longrightarrow f^{(k+1)}(z)=0$.

Then \mathcal{F} is normal on D.
Similarly, if we strengthen the condition (b) of Theorem CFZ3 to $f^{\prime \prime}(z)=$ $h(z) \Longrightarrow f^{\prime \prime \prime}(z)=f^{(s)}(z)=0$, then we can also obtain the normality criterion.

Theorem 3. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros are multiple, where $s \geq 2$ is an even integer. Let $h(z)(\not \equiv 0)$ be a holomorphic function on D, that has no common zeros with any $f \in \mathcal{F}$. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:
(a) $f(z)=0 \Longrightarrow f^{\prime \prime}(z)=h(z)$, and
(b) $f^{\prime \prime}(z)=h(z) \Longrightarrow f^{\prime \prime \prime}(z)=f^{(s)}(z)=0$.

Then \mathcal{F} is normal on D.

Before we go to the proofs of the main results, let us set some notation. Throughout, D is a domain in C. For $z_{0} \in \mathbf{C}$ and $r>0, \Delta\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right|<r\right\}$ and $\Delta^{\prime}\left(z_{0}, r\right)=\left\{z: 0<\left|z-z_{0}\right|<r\right\}$. The unit disc will be denoted by Δ and $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$. We write $f_{n}(z) \stackrel{\chi}{\Rightarrow} f(z)$ on D to indicate that the sequence $\left\{f_{n}\right\}$ converges to f in the spherical metric, uniformly on compact subsets of D, and $f_{n} \Rightarrow f$ on D if the convergence is in the Euclidean metric. For a meromorphic function $f(z)$ in D and $a \in \widehat{\mathbf{C}}, \bar{E}_{f}(a):=\{z \in D: f(z)=a\}$. The spherical derivative of the meromorphic function f at the point z is denoted by $f^{\#}(z)$.

Frequently, given a sequence $\left\{f_{n}\right\}_{1}^{\infty}$ of functions, we need to extract an appropriate subsequence; and this necessity may recur within a single proof. To avoid the awkwardness of multiple indices, we again denote the extracted subsequence by $\left\{f_{n}\right\}$ (rather than, say, $\left\{f_{n_{k}}\right\}$) and designate this operation by writing "taking a subsequence and renumbering", or simply "renumbering". The same convention applies to sequences of constants.

The plan of the paper is as follows. In Section 2, we state a number of preliminary results. Then in Section 3 we prove Theorem 1. Finally, in Section 4 we prove Theorem 2.

2. Preliminary results

The following lemma is the local version of a well-known lemma of Pang and Zalcman [11, Lemma 2]. For a proof see [4, Lemma 2], also cf. [9, Lemma 2], [14, pp. 216-217], [7, pp. 299-300], [8, p. 4].

Lemma 1. Let \mathcal{F} be a family of functions meromorphic in a domain D, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$, such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. Then if \mathcal{F} is not normal at $z_{0} \in D$, there exist, for each $0 \leq \alpha \leq k$,
(a) points $z_{n} \rightarrow z_{0}$,
(b) functions $f_{n} \in \mathcal{F}$, and
(c) positive numbers $\rho_{n} \rightarrow 0^{+}$
such that $g_{n}(\zeta):=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+f_{n} \zeta\right) \stackrel{\chi}{\Rightarrow} g(\zeta)$ on \mathbf{C}, where g is a nonconstant meromorphic function on \mathbf{C}, such that for every $\zeta \in \mathbf{C}, g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$.

Lemma 2. [1, Lemma 5] Let f be a nonconstant entire function of order ρ, $0 \leq \rho \leq 1$, all of whose zeros have multiplicity at least k, where $k \neq 2$ is a positive integer. And let $a \neq 0$ be a constant. If $\bar{E}_{f}(0) \subset \bar{E}_{f^{(k)}}(a) \subset \bar{E}_{f^{(k+1)}}(0)$, then

$$
f(z)=\frac{a(z-b)^{k}}{k!}
$$

where b is a constant.
Lemma 3. [1, Lemma 6] Let f be a nonconstant entire function of order ρ, $0 \leq \rho \leq 1$, all of whose zeros are multiple. Let $s \geq 4$ be an even integer and $a \neq 0$ be a constant. If $\bar{E}_{f}(0) \subset \bar{E}_{f^{\prime \prime}}(a) \subset \bar{E}_{f^{\prime \prime \prime}}(0) \cap \bar{E}_{f^{(s)}}(0)$, then

$$
f(z)=\frac{a(z-b)^{2}}{2}
$$

where b is a constant.

Lemma 4. (see [2, pp. 118-119, 122-123]) Let f be a meromorphic function on C. If $f^{\#}$ is uniformly bounded on \mathbf{C}, then the order of f is at most 2 . If f is an entire function, then the order of f is at most 1 .

The following lemma is a slight generalization of Theorem CFZ2 for sequences.
Lemma 5. (cf. [4, Lemma 5]) Let $\left\{f_{n}\right\}$ be a sequence of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros have multiplicity at least k, and let $\left\{h_{n}\right\}$ be a sequence of functions analytic on D such that $h_{n}(z) \Rightarrow h(z)$ on D, where $h(z) \neq 0$ for $z \in D$ and $k \neq 2$ be a positive integer. Suppose that, for each n, $f_{n}(z)=0 \Longrightarrow f_{n}^{(k)}(z)=h_{n}(z)$ and $f_{n}^{(k)}(z)=h_{n}(z) \Longrightarrow f_{n}^{(k+1)}(z)=0$. Then $\left\{f_{n}\right\}$ is normal on D.

Proof. Suppose to the contrary that there exists $z_{0} \in D$ such that $\left\{f_{n}\right\}$ is not normal in z_{0}. The convergence of $\left\{h_{n}\right\}$ to h implies that, in some neighborhood of z_{0}, we have $f_{n}(z)=0 \Rightarrow\left|f_{n}^{(k)}(z)\right| \leq\left|h\left(z_{0}\right)\right|+1$ (for large enough n). Thus we can apply Lemma 1 with $\alpha=k$ and A such that $k A+1>\max \left\{\left|h\left(z_{0}\right)\right|+\right.$ $\left.1, \frac{\left|h\left(z_{0}\right)\right|}{(k-1)!}, \frac{k \cdot k!}{\left|h\left(z_{0}\right)\right|}\right\}=\max \left\{\left|h\left(z_{0}\right)\right|+1, \frac{k \cdot k!}{\left|h\left(z_{0}\right)\right|}\right\}$. So we can take an appropriate subsequence of $\left\{f_{n}\right\}$ (denoted also by $\left\{f_{n}\right\}$ after renumbering), together with points $z_{n} \rightarrow z_{0}$ and positive numbers $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \xlongequal{\chi} g(\zeta) \quad \text { on } \mathbf{C},
$$

where g is a nonconstant entire function and

$$
g^{\sharp}(\zeta) \leq g^{\sharp}(0)=k A+1=k\left(\left|h\left(z_{0}\right)\right|+1\right)+1 .
$$

We show that

$$
\begin{equation*}
\bar{E}_{g}(0) \subset \bar{E}_{g^{(k)}}\left(h\left(z_{0}\right)\right) \subset \bar{E}_{g^{(k+1)}}(0) \tag{10}
\end{equation*}
$$

In fact, if there exists $\zeta_{0} \in \mathbf{C}$, such that $g\left(\zeta_{0}\right)=0$, then since $g(\zeta) \not \equiv 0$, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that if n is sufficiently large,

$$
g_{n}\left(\zeta_{n}\right)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k}}=0 .
$$

Thus $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$, so that $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)$, i.e., that $g_{n}^{(k)}\left(\zeta_{n}\right)=$ $h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)$. Since $g^{(k)}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{(k)}\left(\zeta_{n}\right)=h\left(z_{0}\right)$, we have established that $\bar{E}_{g}(0) \subset$ $\bar{E}_{g^{(k)}}\left(h\left(z_{0}\right)\right)$.

Now, suppose there exists $\zeta_{0} \in \mathbf{C}$, such that $g^{(k)}\left(\zeta_{0}\right)=h\left(z_{0}\right)$. If $g^{(k)}(\zeta) \equiv h\left(z_{0}\right)$, then $g^{(k+1)} \equiv 0$ and we are done. Thus we can assume that $g^{(k)}$ is not constant and since $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)-h_{n}\left(z_{n}+\rho_{n} \zeta\right) \Rightarrow g^{(k)}(\zeta)-h\left(z_{0}\right)$, we get by Hurwitz's Theorem that there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that

$$
f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)-h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=g_{n}^{(k)}\left(\zeta_{n}\right)-h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0
$$

Thus we have $f_{n}^{(k+1)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$ and $g_{n}^{(k+1)}\left(\zeta_{n}\right)=0$. Letting $n \rightarrow \infty$, we get that $g^{(k+1)}\left(\zeta_{0}\right)=0$. This completes the proof of (10). Now, by Lemmas 4 and 2 , we have
$g(\zeta)=\frac{h\left(z_{0}\right)\left(\zeta-\zeta_{1}\right)^{k}}{k!}$, where ζ_{1} is a constant. Thus

$$
g^{\sharp}(0)=\frac{\left|h\left(z_{0}\right)\right|\left|\zeta_{1}\right|^{k-1} /(k-1)!}{1+\left|h\left(z_{0}\right)\right|^{2}\left|\zeta_{1}\right|^{2 k} / k!^{2}} .
$$

Now, if $\left|\zeta_{1}\right| \leq 1$, then $g^{\sharp}(0) \leq \frac{\left|h\left(z_{0}\right)\right|}{(k-1)!}<k A+1$, and if $\left|\zeta_{1}\right|>1$, then $g^{\sharp}(0) \leq$ $\frac{\left|h\left(z_{0}\right)\right|\left|\zeta_{1}\right|^{k-1} /(k-1)!}{\left|h\left(z_{0}\right)\right|^{2}\left|\zeta_{1}\right|^{2 k} / k!^{2}} \leq \frac{k \cdot k!}{\left|h\left(z_{0}\right)\right|}<k A+1$. In either case we get a contradiction.

Similarly, we can get a slight generalization of Theorem CFZ3 for sequences.
Lemma 6. Let $\left\{f_{n}\right\}$ be a sequence of functions holomorphic on a domain $D \subset \mathbf{C}$, all of whose zeros are multiple and $\left\{h_{n}\right\}$ be a sequence of functions analytic on D such that $h_{n}(z) \Rightarrow h(z)$ on D, where $h(z) \neq 0$ for $z \in D$, and $s \geq 2$ be an even integer. Suppose that, for each $n, f_{n}(z)=0 \Longrightarrow f_{n}^{\prime \prime}(z)=h_{n}(z)$ and $f_{n}^{\prime \prime}(z)=h_{n}(z) \Longrightarrow$ $f^{\prime \prime \prime}(z)=f_{n}^{(s)}(z)=0$, then $\left\{f_{n}\right\}$ is normal on D.

The proof is very similar to the proof of Lemma 5. We start to argue the same (with 2 instead of k), and then instead of proving (10) we prove that

$$
\bar{E}_{g}(0) \subset \bar{E}_{g^{\prime \prime}}\left(h\left(z_{0}\right)\right) \subset \bar{E}_{g^{(3)}}(0) \cap \bar{E}_{g^{(s)}}(0) .
$$

The left inclusion is proved in the same manner. Concerning the right inclusion, we now deduce from $f_{n}^{\prime \prime}\left(z_{n}+\rho_{n} \zeta_{n}\right)-h_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$ that $f_{n}^{(3)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=f_{n}^{(s)}\left(z_{n}+\right.$ $\left.\rho_{n} \zeta_{n}\right)=0$. Then, since $\rho_{n} f_{n}^{(3)}\left(z_{n}+\rho_{n} \zeta\right) \Rightarrow g^{(3)}(\zeta)$ in \mathbf{C} and $\rho_{n}^{s-2} f_{n}^{(s)}\left(z_{n}+\rho_{n} \zeta\right) \Rightarrow$ $g^{(s)}(\zeta)$ in C, we conclude that $g^{(3)}\left(\zeta_{0}\right)=g^{(s)}\left(\zeta_{0}\right)=0$. To get the final contradiction, we apply now Lemmas 4 and 3 instead of Lemmas 4 and 2.

The following result will play an essential role in treating transcendental functions which is used in the proofs of Theorems 2 and 3.

Theorem B. ([15], see also [2, p. 117]) Let $f(z)$ be a function homomorphic in $\{z: R<|z|<\infty\}$, with essential singularity at $z=\infty$. Then $\varlimsup_{|z| \rightarrow \infty}|z| f^{\#}(z)=+\infty$.

For the proof of Theorem 2, we need also the following Lemma.
Lemma 7. Let h be a holomorphic function on D, with a zero of order $\ell(\geq 1)$ at $z_{0} \in D$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions with zeros of multiplicity at least k, such that $\left\{f_{n}\right\}$ and h satisfy conditions (a) and (b) of Theorem 2. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonzero numbers such that $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\{f_{n}\left(z_{0}+\alpha_{n} \zeta\right) / \alpha_{n}^{k+\ell}\right\}_{n=1}^{\infty}$ is normal in \mathbf{C}^{*}.

Proof. Without loss of generality, we may assume that $z_{0}=0$. In a neighborhood of the origin we have $h(z)=z^{\ell} b(z)$, where $b(z)$ is analytic, $b(0) \neq 0$. Define $r_{n}(\zeta)=$ $\zeta^{\ell} b\left(\alpha_{n} \zeta\right)$. We will show that the assumptions of Lemma 5 hold in \mathbf{C}^{*} for the sequences $\left\{G_{n}(\zeta)\right\}_{n=1}^{\infty}, G_{n}(\zeta):=f_{n}\left(\alpha_{n} \zeta\right) / \alpha_{n}^{k+\ell}$ and $\left\{r_{n}(\zeta)\right\}_{n=1}^{\infty}$. First, we have that $r_{n}(\zeta) \Rightarrow$ $b(0) \zeta^{\ell}$ on \mathbf{C} and $\zeta^{\ell} \neq 0$ in \mathbf{C}^{*}. Assume that $G_{n}(\zeta)=0$. Then $f_{n}\left(\alpha_{n} \zeta\right)=0$ and $f_{n}^{(k)}\left(\alpha_{n} \zeta\right)=\left(\alpha_{n} \zeta\right)^{\ell} b\left(\alpha_{n} \zeta\right)$, and we get that $G_{n}^{(k)}(\zeta)=r_{n}(\zeta)$. Suppose now that $G_{n}^{(k)}(\zeta)=r_{n}(\zeta)$. This means that $f_{n}^{(k)}\left(\alpha_{n} \zeta\right)=h\left(\alpha_{n} \zeta\right)$ and thus $f_{n}^{(k+1)}\left(\alpha_{n} \zeta\right)=0$. We have $G_{n}^{(k+1)}(\zeta)=0$, and thus the assumptions of Lemma 5 hold. Hence we deduce that $\left\{G_{n}(\zeta)\right\}$ is normal in \mathbf{C}^{*}, and the lemma is proved.

The following lemma plays a similar role in the proof of Theorem 3 to the role of Lemma 7 in the proof of Theorem 2.

Lemma 8. Let h be a holomorphic function on D, with a zero of order $\ell(\geq 1)$ at $z_{0} \in D$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions whose zeros are multiple, such that $\left\{f_{n}\right\}$ and h satisfy conditions (a) and (b) of Theorem 3. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonzero numbers such that $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\{f_{n}\left(z_{0}+\alpha_{n} \zeta\right) / \alpha_{n}^{2+\ell}\right\}_{n=1}^{\infty}$ is normal in \mathbf{C}^{*}.

The proof of this lemma is analogous to the proof of Lemma 7. Of course, we use Lemma 6 instead of Lemma 5.

3. Proof of Theorem 1

In this section, we do not use any of the preliminary results. The proof is elementary.

By Theorem CFZ1, \mathcal{F} is normal at every point $z_{0} \in D$ at which $h\left(z_{0}\right) \neq 0$ (so immediately we get that \mathcal{F} is quasinormal). So let z_{0} be a zero of h of order $\ell(\geq 1)$. Without loss of generality, we can assume that $z_{0}=0$, and then $h(z)=z^{\ell} b(z)$. Here b is an analytic function in $\Delta(0, \delta)$ and $b(z) \neq 0$ there. We assume that $0<\delta<1$, and by taking a subsequence and renumbering, we can assume that

$$
\begin{equation*}
f_{n} \Longrightarrow f \text { in } \Delta^{\prime}(0, \delta) \tag{11}
\end{equation*}
$$

Now, if f is holomorphic in $\Delta^{\prime}(0, \delta)$, we deduce by the maximum principle that $f_{n} \Rightarrow f$ on $\Delta(0, \delta)$, and we are done. So let us assume that $f_{n} \Rightarrow \infty$ in $\Delta^{\prime}(0, \delta)$. Fix $\eta, 0<\eta<\delta$. By the minimum principle (i.e., the maximum principle for $\left\{1 / f_{n}\right\}$), there exists $N=N(\eta)$, such that for every $n \geq N$, f_{n} has $k_{n}\left(k_{n} \geq 1\right)$ simple zeros in $\bar{\Delta}(0, \eta)-\{0\}$, say $\alpha_{1}^{(n)}, \alpha_{2}^{(n)}, \cdots, \alpha_{k_{n}}^{(n)}$ (otherwise we get that $f_{n} \Rightarrow \infty$ in $\Delta(0, \eta)$ and we are done). Since $f_{n} \Rightarrow \infty$ in $\Delta^{\prime}(0, \delta)$, we get that

$$
\begin{equation*}
\max _{1 \leq j \leq k_{n}}\left\{\left|\alpha_{j}^{(n)}\right|\right\} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

We can write $f_{n}(z)=t_{n}(z) \prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)$, where $t_{n}(z) \neq 0$ for $z \in \bar{\Delta}(0, \eta)$ and $n \geq N$. Since $\eta<1$, we get by (12) that $\frac{t_{n}(z)}{b(z)} \Rightarrow \infty$ in $\bar{\Delta}(0, \eta)$. By condition (a) of Theorem 1, we have, for $n \geq N, f_{n}^{\prime}\left(\alpha_{j}^{(n)}\right)=\alpha_{j}^{(n) \ell} b\left(\alpha_{j}^{(n)}\right), 1 \leq j \leq k_{n}$. By calculation,

$$
f_{n}^{\prime}(z)=t_{n}^{\prime}(z) \prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)+t_{n}(z)\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}
$$

and so

$$
\begin{equation*}
\left.t_{n}\left(\alpha_{j}^{(n)}\right)\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}\right|_{z=\alpha_{j}^{(n)}}=\alpha_{j}^{(n) \ell} b\left(\alpha_{j}^{(n)}\right) \tag{13}
\end{equation*}
$$

Define, for $n \geq N$,

$$
M_{n}(z):=\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}-z^{\ell}
$$

By (13) we get that $M_{n}\left(\alpha_{j}^{(n)}\right)=0$ for $1 \leq j \leq k_{n}$, and so for $n \geq N, M_{n}$ has at least k_{n} zeros in $\Delta^{\prime}(0, \eta)$, including multiplicities. Here we use the fact that h has no common zero with any f_{n}. Since such a zero must be $z=0$ and would be a zero of order m (must be $m \geq 2$ by condition (a)) of f_{n}, and it would be a zero of order $m-1$ of M_{n} (if $\ell>m-1$) or even of order $\ell<m-1$ (if $\ell<m-1$), then we would not know that the number of zeros (including multiplicities) of M_{n} is at least k_{n}. This fact, under the assumption that there are no common zeros, will lead to the desired contradiction.

Claim 2. $\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime} \Rightarrow \infty \quad$ in $\Delta^{\prime}(0, \eta)$.
Proof. We write

$$
\begin{equation*}
\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}=\sum_{j=1}^{k_{n}} \frac{t_{n}(z)}{b(z)} \prod_{i=1, i \neq j}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right) \tag{14}
\end{equation*}
$$

For any $\varepsilon, 0<\varepsilon<\eta$, we have that

$$
\begin{equation*}
\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right) \Longrightarrow \infty \quad \text { in } \bar{R}_{\varepsilon, \eta}:=\{z: \varepsilon \leq|z| \leq \eta\} \tag{15}
\end{equation*}
$$

Indeed, $\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)=\frac{f_{n}(z)}{b(z)\left(z-\alpha_{1}^{(n)}\right)}$, and since $\eta<1$ and by (11) and (12), this term tends uniformly to ∞ in $\bar{R}_{\varepsilon, \eta}$.

Now, for every $j, 2 \leq j \leq k_{n}$, we have that

$$
\frac{\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)}{\frac{t_{n}(z)}{b(z)} \prod_{i=1, i \neq j}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)}=\frac{z-\alpha_{j}^{(n)}}{z-\alpha_{1}^{(n)}}
$$

and by (12) this term tends uniformly to 1 as $n \rightarrow \infty$. This means, that for every $1 \leq j \leq k_{n}$ and $z \in \bar{R}_{\varepsilon, \eta}, \frac{t_{n}(z)}{b(z)} \prod_{i=1, i \neq j}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)$ lies in the same quarter plane, that is,

$$
\begin{align*}
\Pi_{n, z} & :=\left\{z: \arg \left[\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]-\frac{\pi}{4}\right. \tag{16}\\
& \left.<\arg z<\arg \left[\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]+\frac{\pi}{4}\right\}
\end{align*}
$$

for large enough n.
Now, if a and b are two complex numbers in the same quarter plane, then $a+b$ also belongs to that quarter plane and $|a+b| \geq|a|,|b|$. We then conclude by (16)
that for each $z \in \bar{R}_{\varepsilon, \eta}$, we have for large enough n,

$$
\left|\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}\right| \geq\left|\frac{t_{n}(z)}{b(z)} \prod_{i=2}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right|
$$

and by (15) and (14), Claim 2 is proved.
Now, $\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}$ has, for large enough n, exactly $k_{n}-1$ zeros in $\Delta(0, \eta)$ (by Theorem Lu). Then for large enough n we have, for every $z,|z|=\eta$,

$$
\left|M_{n}(z)-\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}\right|=\left|z^{\ell}\right|<\left|\frac{t_{n}(z)}{b(z)}\left[\prod_{i=1}^{k_{n}}\left(z-\alpha_{i}^{(n)}\right)\right]^{\prime}\right|
$$

and by Rouche's Theorem, we get that M_{n} has $k_{n}-1$ zeros in $\Delta(0, \eta)$, a contradiction. Theorem 1 is proved.

4. Proof of Theorem 2

This proof is similar to the proof of Theorem 1 in [4]. By our Theorem 1, we need only to prove the case that $k \geq 3$. By Theorem $\operatorname{CFZ} 2, \mathcal{F}$ is normal at every point $z_{0} \in D$ at which $h\left(z_{0}\right) \neq 0$ (so that \mathcal{F} is quasinormal in D). Consider $z_{0} \in D$ such that $h\left(z_{0}\right)=0$. Without loss of generality, we can assume that $z_{0}=0$, and then $h(z)=z^{\ell} b(z)$, where $\ell(\geq 1)$ is an integer and $b(z) \neq 0$ is an analytic function in $\Delta(0, \delta)$. We take a subsequence $\left\{f_{n}\right\}_{1}^{\infty} \subset \mathcal{F}$, and we want to prove that $\left\{f_{n}\right\}$ is not normal at $z=0$. Suppose by negation that $\left\{f_{n}\right\}$ is not normal at $z=0$. Since $\left\{f_{n}\right\}$ is normal in $\Delta^{\prime}(0, \delta)$, we can assume (after renumbering) that $f_{n} \Rightarrow F$ on $\Delta^{\prime}(0, \delta)$. If $F(z) \not \equiv \infty$, then it is a holomorphic function. Hence, by the maximum principle, F extends to be analytic also at $z=0$, and so $f_{n} \Rightarrow F$ on $\Delta(0, \delta)$, and we are done. Therefore, we assume that

$$
\begin{equation*}
f_{n}(z) \Longrightarrow \infty \quad \text { on } \Delta^{\prime}(0, \delta) \tag{17}
\end{equation*}
$$

Define $\mathcal{F}_{1}=\left\{F=\frac{f_{n}}{h}: n \in \mathbf{N}\right\}$. It is enough to prove that \mathcal{F}_{1} is normal in $\Delta(0, \delta)$. Indeed, if (after renumbering) $\frac{f_{n}(z)}{h} \Rightarrow H(z)$ on $\Delta(0, \delta)$, then since $h \neq 0$ in $\Delta^{\prime}(0, \delta)$, it follows from (17) that $H(z) \equiv \infty$ in $\Delta^{\prime}(0, \delta)$, and thus $H(z) \equiv \infty$ also in $\Delta(0, \delta)$. In particular, $\frac{f_{n}}{h}(z) \neq 0$ on each compact subset of $\Delta(0, \delta)$ for large enough n. Since $h \neq 0$ on $\Delta^{\prime}(0, \delta)$ and since $f_{n}(0) \neq 0$ for every $n \geq 1$ by assumptions of the theorem, we obtain $f_{n}(z) \neq 0$ on each compact subset of $\Delta(0, \delta)$ for large enough n. Then by the minimum principle, it follows from (17) that $f_{n}(z) \Rightarrow \infty$ on $\Delta(0, \delta)$, and this implies the normality of \mathcal{F}. So suppose to the contrary that \mathcal{F}_{1} is not normal at $z=0$. By Lemma 1 and the assumptions of Theorem 2, there exist (after renumbering) points $z_{n} \rightarrow 0, \rho_{n} \rightarrow 0^{+}$and a nonconstant meromorphic function on C, $g(\zeta)$ such that

$$
\begin{equation*}
g_{n}(\zeta)=\frac{F_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}}=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k} h\left(z_{n}+\rho_{n} \zeta\right)} \xlongequal{\chi} g(\zeta) \quad \text { on } \mathbf{C}, \tag{18}
\end{equation*}
$$

all of whose zeros have multiplicity at least k and

$$
\begin{equation*}
\text { for every } \zeta \in \mathbf{C}, \quad g^{\sharp}(\zeta) \leq g^{\sharp}(0)=k A+1, \tag{19}
\end{equation*}
$$

where $A>1$ is a constant. Here we have used Lemma 1 with $\alpha=k$. Observe that $g_{n}(z)=0$ implies $g_{n}^{(k)}(\zeta)=1$ and so A can be chosen to be any number such that $A \geq 1$. After renumbering we can assume that $\left\{z_{n} / \rho_{n}\right\}_{n=1}^{\infty}$ converges. We separate now into two cases.

Case (A).

$$
\begin{equation*}
\frac{z_{n}}{\rho_{n}} \rightarrow \infty \tag{20}
\end{equation*}
$$

Claim 3. (1) $g(\zeta)=0 \Longrightarrow g^{(k)}(\zeta)=1$; (2) $g^{(k)}(\zeta)=1 \Longrightarrow g^{(k+1)}(\zeta)=0$.
Proof. Observe that from (18) and the fact that $h(z) \neq 0$ in $\Delta^{\prime}(0, \delta)$, it follows that g is an entire function. Suppose that $g\left(\zeta_{0}\right)=0$. Since $g(\zeta) \not \equiv 0$, there exist $\zeta_{n} \rightarrow \zeta_{0}$, such that $g_{n}\left(\zeta_{n}\right)=0$, and thus $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$. Since f_{n} and h has no common zeros, it follows by the assumption that ζ_{n} is a zero of multiplicity k of $g_{n}(\zeta)$. By Leibniz's rule, and condition (a) of Theorem 2, it follows that $g_{n}^{(k)}\left(\zeta_{n}\right)=1$ and thus $g^{(k)}\left(\zeta_{0}\right)=1$.

For the proof of the other part of Claim 3, observe first that by (20) we have

$$
\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k} z_{n}^{\ell}} \Rightarrow g(\zeta) \quad \text { on } \mathbf{C}
$$

and thus

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{z_{n}^{\ell}} \Rightarrow g^{(k)}(\zeta) \quad \text { on } \mathbf{C},
$$

and then again by (19) we get that

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)} \Rightarrow g^{(k)}(\zeta) \quad \text { on } \mathbf{C}
$$

Thus, if there exists $\zeta_{0} \in \mathbf{C}$, such that $g^{(k)}\left(\zeta_{0}\right)=1$, there exists a sequence $\zeta_{n} \rightarrow \zeta_{0}$, such that $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta\right) \neq 0$. By assumption (b) of Theorem 2 we get that $f_{n}^{(k+1)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$, and letting n tend to ∞ we get that $g^{(k+1)}\left(\zeta_{0}\right)=0$. Claim 3 is proved.

We conclude by Lemmas 2 and 4 that $g(\zeta)=\frac{(\zeta-b)^{k}}{k!}$ for some $b \in \mathbf{C}$ (observe that g is holomorphic by (20)). By calculation we get that

$$
g^{\sharp}(0)=\frac{|b|^{k-1} /(k-1)!}{1+|b|^{2 k} / k!^{2}} .
$$

Then if $|b| \leq 1$, we get that $g^{\sharp}(0) \leq \frac{1}{(k-1)!}$, and if $|b| \geq 1$, then $g^{\sharp}(0) \leq \frac{k}{2}$. In either case, we get a contradiction to (19).

Case (B).

$$
\begin{equation*}
\frac{z_{n}}{\rho_{n}} \rightarrow \alpha \in \mathbf{C} . \tag{21}
\end{equation*}
$$

As in Case (A), it follows that $g\left(\zeta_{0}\right)=0 \Longrightarrow g^{(k)}\left(\zeta_{0}\right)=1$. Now set

$$
G_{n}(\zeta)=\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k+\ell}}
$$

From (18) and (21) we have

$$
\begin{equation*}
G_{n}(\zeta) \Longrightarrow G(\zeta)=g(\zeta-\alpha) \zeta^{\ell} b(0) \quad \text { on } \mathbf{C} . \tag{22}
\end{equation*}
$$

Indeed,

$$
\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k+\ell}}=\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k} h\left(\rho_{n} \zeta\right)} \cdot \frac{h\left(\rho_{n} \zeta\right)}{\rho_{n}^{\ell}}=\frac{f_{n}\left(z_{n}+\rho_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right)\right)}{\rho_{n}^{k} h\left(z_{n}+\rho_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right)\right)} \frac{\left(\rho_{n} \zeta\right)^{\ell} b\left(\rho_{n} \zeta\right)}{\rho_{n}^{\ell}}
$$

(cf. [12, p. 7]). Since g has a pole of order ℓ at $\zeta=-\alpha$ (here we use the fact that for every n, h has no common zeros with f_{n}) and since $\left\{G_{n}\right\}$ are analytic, we have

$$
\begin{equation*}
G(0) \neq 0, \infty \tag{23}
\end{equation*}
$$

We now consider several subcases, depending on the nature of G.
Case (BI). G is a polynomial. Since $\left\{f_{n}\right\}$ is not normal at $z=0$, there exists (after renumbering) a sequence $z_{n}^{*} \rightarrow 0$ such that

$$
\begin{equation*}
f_{n}\left(z_{n}^{*}\right)=0 . \tag{24}
\end{equation*}
$$

Otherwise, there is some $\delta^{\prime}, 0<\delta^{\prime}<\delta$ such that (before renumbering) $f_{n}(z) \neq 0$ in $\Delta\left(0, \delta^{\prime}\right)$, and since $f_{n}(z) \Rightarrow \infty$ on $\Delta^{\prime}(0, \delta)$ we would have by the minimum principle that $f_{n}(z) \Rightarrow \infty$ on $\Delta(0, \delta)$, a contradiction to the non-normality of $\left\{f_{n}\right\}$ at $z=0$. We have that all the zeros of g are of multiplicity exactly k. Then by (22) and (23), it follows that all the zeros of G are also of multiplicity exactly k. We consider now two possibilities.

Case (BI1). $\operatorname{deg}(G)=0$. We can assume that z_{n}^{*} from (24) is the closest zero of f_{n} to the origin. Then we have

$$
\begin{equation*}
\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k+\ell} b\left(\rho_{n} \zeta\right)} \Longrightarrow \frac{G(0)}{b(0)} \quad \text { on } \mathbf{C} . \tag{25}
\end{equation*}
$$

By (25) we have

$$
\begin{equation*}
\frac{z_{n}^{*}}{\rho_{n}} \rightarrow \infty \tag{26}
\end{equation*}
$$

Define $t_{n}(\zeta)=f_{n}\left(z_{n}^{*} \zeta\right) /\left(z_{n}^{* k+\ell} b\left(z_{n}^{*} \zeta\right)\right)$. We want to show that $\left\{t_{n}(\zeta)\right\}$ is normal in \mathbf{C}^{*}. For this purpose set $\tilde{t}_{n}(\zeta)=f_{n}\left(z_{n}^{*} \zeta\right) / z_{n}^{* k+\ell}$. Since $b(0) \neq 0, \infty$ and $z_{n}^{*} \rightarrow 0$, the normality of $\left\{t_{n}\right\}$ is equivalent to the normality of $\left\{\tilde{t}_{n}\right\}$, and the latter follows by Lemma 7. Now, if $\left\{t_{n}\right\}$ is not normal at $\zeta=0$, then we can write (after renumbering) $t_{n}(\zeta) \Rightarrow \infty$ on \mathbf{C}^{*}; but $t_{n}(1)=0$, so this is not possible. Hence $\left\{t_{n}(\zeta)\right\}$ is normal at $\zeta=0$. By (25) and (26), $t_{n}(0) \rightarrow 0$ as $n \rightarrow \infty$; and thus since $t_{n}(\zeta) \neq 0$ in $\Delta(0,1 / 2)$, we get by Hurwitz's Theorem that $t_{n}(\zeta) \Rightarrow 0$ on \mathbf{C}. But $t_{n}(1)=0$; so by assumption (b) of Theorem 2, we get that $t_{n}^{(k)}(1)=1$, a contradiction.

Case (BI2). $\quad G^{(k)} \equiv b(0) \zeta^{\ell}$. Then we have $G^{(k-1)}(\zeta)=\frac{b(0) \zeta^{\ell+1}}{\ell+1}+C$ and $G^{(k-2)}(\zeta)=\frac{b(0) \zeta^{\ell+2}}{(\ell+1)(\ell+2)}+C \zeta+D$, where C and D are two constants. Since all zeros of G have multiplicity exactly k, then for any zero $\widehat{\zeta}$ of G, we have $G^{(k-2)}(\widehat{\zeta})=$
$G^{(k-1)}(\widehat{\zeta})=0$. So

$$
\begin{equation*}
\frac{\widehat{\zeta}^{\ell+1}}{\ell+1}+C=0, \quad \text { and } \quad \frac{\widehat{\zeta}^{\ell+2}}{(\ell+1)(\ell+2)}+C \widehat{\zeta}+D=0 \tag{27}
\end{equation*}
$$

By calculation, we have $\frac{(\ell+1) C}{\ell+2} \widehat{\zeta}=-D$. If $C D=0$, then by (27), $\widehat{\zeta}=0$, a contradiction. If $C D \neq 0$, then $\widehat{\zeta}=-\frac{(\ell+2) D}{(\ell+1) C}$, which implies that G has only one zero ζ_{0}, and then

$$
G(\zeta)=\frac{b(0) \zeta_{0}^{\ell}\left(\zeta-\zeta_{0}\right)^{k}}{k!}
$$

This contradicts $G^{(k)} \equiv b(0) \zeta^{\ell}$.
Case (BI3). G is a nonconstant polynomial and $G^{(k)} \not \equiv b(0) \zeta^{\ell}$. Since all zeros of G have multiplicity exactly k, we may assume that

$$
G=A \prod_{j=1}^{t}\left(\zeta-\zeta_{j}\right)^{k}
$$

where $A \neq 0$ is a constant and $\zeta_{j} \neq 0, j=1,2, \cdots, t$.
Claim 4. $G(\zeta)=0 \Longrightarrow G^{(k)}(\zeta)=b(0) \zeta^{\ell} \Longrightarrow G^{(k+1)}(\zeta)=0$.
Proof. Suppose first that $G\left(\zeta_{0}\right)=0$. Then there exists a sequence, $\zeta_{n} \rightarrow \zeta_{0}$, such that $f_{n}\left(\rho_{n} \zeta_{n}\right)=0$, and thus $f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)=\left(\rho_{n} \zeta_{n}\right)^{\ell} b\left(\rho_{n} \zeta_{n}\right)$, that is, $\frac{f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{\ell}}=$ $\zeta_{n}^{\ell} b\left(\rho_{n} \zeta_{n}\right)$. In the last equation, the left hand side tends to $\zeta_{0}^{\ell} b(0)$ as $n \rightarrow \infty$. This proves the first part of Claim 4.

Suppose now that $G^{(k)}\left(\zeta_{0}\right)=b(0) \zeta_{0}^{\ell}$. Since $G^{(k)}(\zeta) \not \equiv b(0) \zeta^{\ell}$, there exists a sequence $\zeta_{n} \rightarrow \zeta_{0}$, such that $\frac{f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{\ell}}=\zeta_{n}^{\ell} b\left(\rho_{n} \zeta_{n}\right)$, that is, $f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)=\left(\rho_{n} \zeta_{n}\right)^{\ell} b\left(\rho_{n} \zeta_{n}\right)$, and thus $f_{n}^{(k+1)}\left(\rho_{n} \zeta_{n}\right)=0$. Since $\frac{f_{n}^{(k+1)}\left(\rho_{n} \zeta\right)}{\rho_{n}^{\ell-1}} \Rightarrow G^{(k+1)}(\zeta)$, we deduce that $G^{(k+1)}\left(\zeta_{0}\right)$ $=0$, and this completes the proof of the Claim 4.

It follows from Claim 4 that $G^{(k+1)}\left(\zeta_{j}\right)=0$, for $1 \leq j \leq t$.
If $t \geq 2$, we know that for every $1 \leq j \leq t$,

$$
\begin{aligned}
G^{(k+1)}(\zeta) & =A\left[\prod_{j=1}^{t}\left(\zeta-\zeta_{j}\right)^{k}\right]^{(k+1)} \\
& =A\left\{\sum_{\mu=0}^{k+1}\binom{k+1}{\mu}\left[\left(\zeta-\zeta_{j}\right)^{k}\right]^{(k+1-\mu)}\left[\prod_{i=1, i \neq j}^{t}\left(\zeta-\zeta_{i}\right)^{k}\right]^{(\mu)}\right\} \\
& =A\left\{(k+1) k!\left[\prod_{i=1, i \neq j}^{t}\left(\zeta-\zeta_{i}\right)^{k}\right]^{\prime}+\left(\zeta-\zeta_{j}\right) P_{j}(\zeta)\right\}
\end{aligned}
$$

where P_{j} is a polynomial. Thus, by Claim 4 we have

$$
\begin{equation*}
\left.\left[\prod_{i=1, i \neq j}^{t}\left(\zeta-\zeta_{i}\right)^{k}\right]^{\prime}\right|_{\zeta_{j}}=0, \quad 1 \leq j \leq t \tag{28}
\end{equation*}
$$

This means that for every $1 \leq j \leq t$,

$$
\left.\sum_{\substack{i=1 \\ i \neq j}}^{t}\left(\zeta-\zeta_{j}\right)^{k-1} \prod_{\substack{\ell=1 \\ \ell \neq i, j}}^{t}\left(\zeta-\zeta_{\ell}\right)^{k}\right|_{\zeta_{j}}=0
$$

Dividing in $\prod_{\ell \neq j}\left(\zeta_{j}-\zeta_{\ell}\right)^{k-1}$ gives

$$
\sum_{\substack{i=1 \\ i \neq j}}^{t} \prod_{\substack{\ell=1 \\ \ell \neq i, j}}^{t}\left(\zeta_{j}-\zeta_{\ell}\right)=0 .
$$

Thus $T^{\prime \prime}\left(\zeta_{j}\right)=0$ for $1 \leq j \leq t$, where $T(\zeta)=\prod_{i=1}^{t}\left(\zeta-\zeta_{i}\right)$.
Now, if $t \geq 3$, then $T^{\prime \prime}$ is of degree $t-2$, and vanishes at t different points, a contradiction. If $t=2$, we get from (28) that $\left.\left[\left(\zeta-\zeta_{2}\right)^{k}\right]^{\prime}\right|_{\zeta_{1}}=0$ and this is also a contradiction. So $t=1$ and G has only one zero $\zeta_{0}\left(\zeta_{0} \neq 0\right)$, which means that $G(\zeta)=\frac{b(0) \zeta_{0}^{\ell}\left(\zeta-\zeta_{0}\right)^{k}}{k!}$.

By Hurwitz's Theorem, there exists a sequence $\zeta_{n, 0} \rightarrow \zeta_{0}$, such that $G_{n}\left(\zeta_{n, 0}\right)=0$. If there exists $\delta^{\prime}, 0<\delta^{\prime}<\delta$, such that for every n (after renumbering), $f_{n}(z)$ has only one zero $z_{n, 0}=\rho_{n} \zeta_{n, 0}$ in $\Delta\left(0, \delta^{\prime}\right)$.

Set

$$
H_{n}(z)=\frac{f_{n}(z)}{\left(z-z_{n, 0}\right)^{k}}
$$

Since $H_{n}(z)$ is a nonvanishing holomorphic function in $\Delta\left(0, \delta^{\prime}\right)$ and $H_{n}(z) \Rightarrow \infty$ on $\Delta^{\prime}(0, \delta)$, we can deduce as before by the minimum principle that $H_{n}(z) \Rightarrow \infty$ on $\Delta\left(0, \delta^{\prime}\right)$. But

$$
H_{n}\left(2 z_{n, 0}\right)=\frac{f_{n}\left(2 z_{n, 0}\right)}{z_{n, 0}^{k}}=\frac{\rho_{n}^{\ell} G_{n}\left(2 \zeta_{n, 0}\right)}{\zeta_{n, 0}^{k}} \rightarrow 0
$$

a contradiction. Thus, we can assume, after renumbering, that for every $\delta^{\prime}>0$, f_{n} has at least two zeros in $\Delta\left(0, \delta^{\prime}\right)$ for large enough n. Thus, there exists another sequence of points $z_{n, 1}=\rho_{n} \zeta_{n, 1}$, tending to zero, where $z_{n, 1}$ is also a zero of $f_{n}(z)$ and $\zeta_{n, 1} \rightarrow \infty$, as $n \rightarrow \infty$. We can also assume that $z_{n, 1}$ is the closest zero to the origin of f_{n}, except $z_{n, 0}$. Now set $c_{n}=z_{n, 0} / z_{n, 1}$ and define $K_{n}(\zeta)=f_{n}\left(z_{n, 1} \zeta\right) / z_{n, 1}^{k+\ell}$. By Lemma $7,\left\{K_{n}(\zeta)\right\}$ is normal in \mathbf{C}^{*}. Now, if $\left\{K_{n}\right\}$ is normal at $\zeta=0$, then after renumbering we can assume that

$$
K_{n}(\zeta) \Longrightarrow K(\zeta) \quad \text { on } \mathbf{C}
$$

If $K(\zeta) \not \equiv$ const., then consider

$$
L_{n}(\zeta):=\frac{K_{n}(\zeta)}{\left(\zeta-c_{n}\right)^{k}} .
$$

Since $c_{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$, then the sequence $\left\{L_{n}\right\}_{1}^{\infty}$ is normal in \mathbf{C}^{*}. It is also normal at $\zeta=0$. Indeed, $K_{n}\left(c_{n}\right)=0$ (a zero of order k) and so L_{n} is a nonvanishing holomorphic function in $\Delta(0,1)$. Thus (after renumbering)

$$
L_{n}(\zeta) \Longrightarrow \frac{K(\zeta)}{\zeta^{k}} \quad \text { on } \mathbf{C}
$$

But

$$
L_{n}(0)=\frac{K_{n}(0)}{\left(-c_{n}\right)^{k}}=\frac{G_{n}(0)}{\zeta_{n, 1}^{\ell}\left(-\zeta_{n, 0}\right)^{k}} \underset{n \rightarrow \infty}{\longrightarrow} 0, \quad\left(\text { since } \zeta_{n, 1} \underset{n \rightarrow \infty}{\longrightarrow} \infty\right),
$$

and $L_{n}(\zeta) \neq 0$ in $\Delta(0,1 / 2)$; thus $K(\zeta) / \zeta^{k} \equiv 0$ in \mathbf{C}, a contradiction. If, on the other hand, $K(\zeta) \equiv$ const., then $K(\zeta) \equiv 0$ and $K^{(k)}(1)=0$. But $K^{(k)}(1)=\lim _{n \rightarrow \infty} K_{n}^{(k)}(1)=$ $\lim _{n \rightarrow \infty} \frac{f_{n}^{(k)}\left(z_{n, 1}\right)}{z_{n, 1}^{\ell}}=\lim _{n \rightarrow \infty} \frac{h\left(z_{n, 1}\right)}{z_{n, 1}^{\ell}}=\lim _{n \rightarrow \infty} b\left(z_{n, 1}\right)=b(0)$, a contradiction. Hence we can deduce that $\left\{K_{n}\right\}$ is not normal at $\zeta=0$, and since $K_{n}(\zeta)$ is holomorphic in Δ, then

$$
K_{n}(\zeta) \Longrightarrow \infty \quad \text { on } \mathbf{C}^{*}
$$

But $K_{n}(1)=0$, a contradiction.
Case (BII). $G(\zeta)$ is a transcendental entire function. Consider the family

$$
\mathcal{F}(G)=\left\{t_{n}(z):=\frac{G\left(2^{n} z\right)}{2^{n(k+\ell)}}: n \in \mathbf{N}\right\} .
$$

By Claim 4, we deduce
(i) $t_{n}(z)=0 \Longrightarrow t_{n}^{(k)}(z)=z^{\ell}$, and
(ii) $t_{n}^{(k)}(z)=z^{\ell} \Longrightarrow t_{n}^{(k+1)}(z)=0$.

We then get by Theorem CFZ2 that $\mathcal{F}(G)$ is normal in \mathbf{C}^{*}. Thus there exists $M>0$ such that for every $z \in R_{1,2}:=\{z: 1 \leq|z| \leq 2\}$,

$$
t_{n}^{\#}(z)=\frac{2^{n(k+\ell+1)}\left|G^{\prime}\left(2^{n} z\right)\right|}{2^{2 n(k+\ell)}+\left|G\left(2^{n} z\right)\right|^{2}} \leq M
$$

Set $r(\zeta):=G(\zeta) / \zeta^{k+\ell}$. Then r is a transcendental meromorphic function, whose only pole is $\zeta=0$. For every $\zeta,|\zeta| \geq 2$ there exists $n \geq 1$ and $z \in R_{1,2}$, such that

$$
\begin{equation*}
\zeta=2^{n} z \tag{29}
\end{equation*}
$$

Calculation gives

$$
r^{\sharp}(\zeta)=\frac{\left|G^{\prime}(\zeta) \zeta^{k+\ell}-(k+\ell) \zeta^{k+\ell-1} G(\zeta)\right|}{|\zeta|^{2(k+\ell)}+|G(\zeta)|^{2}} .
$$

Thus, if $|\zeta| \geq 2$ satisfies (29), then

$$
\begin{align*}
\left|\zeta r^{\sharp}(\zeta)\right| & =\left|2^{n} z\right| \frac{\left|G^{\prime}\left(2^{n} z\right)\left(2^{n} z\right)^{k+\ell}-(k+\ell)\left(2^{n} z\right)^{k+\ell-1} G\left(2^{n} z\right)\right|}{\left|2^{n} z\right|^{2(k+\ell)}+\left|G\left(2^{n} z\right)\right|^{2}} \tag{30}\\
& \leq \frac{2^{k+\ell+1} \cdot 2^{n(k+\ell+1)}\left|G^{\prime}\left(2^{n} z\right)\right|}{2^{2 n(k+\ell)}+\left|G\left(2^{n} z\right)\right|^{2}}+\frac{(k+\ell) 2^{(n+1)(k+\ell)}\left|G\left(2^{n} z\right)\right|}{2^{2 n(k+\ell)}+\left|G\left(2^{n} z\right)\right|^{2}} .
\end{align*}
$$

By separating into two cases, depending on $\left|G\left(2^{n} z\right)\right|>2^{(n+1)(k+\ell)}$ or $\left|G\left(2^{n} z\right)\right| \leq$ $2^{(n+1)(k+\ell)}$, we see that the last expression in (30) is less or equal to

$$
2^{k+\ell+1} t_{n}^{\sharp}(z)+(k+\ell) 2^{2(k+\ell)} .
$$

Thus, to every $|\zeta| \geq 2$,

$$
\left|\zeta r^{\sharp}(\zeta)\right| \leq M \cdot 2^{k+\ell+1}+(k+\ell) 2^{2(k+\ell)}
$$

But, according to Theorem B, $\varlimsup_{\zeta \rightarrow \infty}|\zeta| r^{\sharp}(\zeta)=\infty$, and we thus have a contradiction (cf. [3, pp. 19-21]). Theorem 2 is proved.

5. Proof of Theorem 3

By Theorem CFZ3, \mathcal{F} is normal at every point $z_{0} \in D$ at which $h\left(z_{0}\right) \neq 0$ (so that \mathcal{F} is quasinormal in D). Consider $z_{0} \in D$ such that $h\left(z_{0}\right)=0$. Without loss of generality, we can assume that $z_{0}=0$, and then $h(z)=z^{\ell} b(z)$, where $\ell(\geq 1)$ is an integer and $b(z) \neq 0$ is an analytic function in $\Delta(0, \delta)$. We take a subsequence $\left\{f_{n}\right\}_{1}^{\infty} \subset \mathcal{F}$, and we only need to prove that $\left\{f_{n}\right\}$ is not normal at $z=0$.

Define $\mathcal{F}_{2}=\left\{F=\frac{f_{n}}{h}: n \in \mathbf{N}\right\}$. It is enough to prove that \mathcal{F}_{2} is normal in $\Delta(0, \delta)$. Suppose to the contrary that \mathcal{F}_{2} is not normal at $z=0$. By Lemma 1 and the assumptions of Theorem 3, there exist (after renumbering) points $z_{n} \rightarrow 0$, $\rho_{n} \rightarrow 0^{+}$and a nonconstant meromorphic function on $\mathbf{C}, g(\zeta)$ such that

$$
\begin{equation*}
g_{n}(\zeta)=\frac{F_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{2}}=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{2} h\left(z_{n}+\rho_{n} \zeta\right)} \xlongequal{\chi} g(\zeta) \quad \text { on } \mathbf{C} \tag{31}
\end{equation*}
$$

all of whose zeros are multiple and

$$
\begin{equation*}
\text { for every } \zeta \in \mathbf{C}, \quad g^{\sharp}(\zeta) \leq g^{\sharp}(0)=2 A+1, \tag{32}
\end{equation*}
$$

where $A>1$ is a constant. After renumbering we can assume that $\left\{z_{n} / \rho_{n}\right\}_{n=1}^{\infty}$ converges. We separate now into two cases.

Case (A). $\frac{z_{n}}{\rho_{n}} \rightarrow \infty$. Similar to the proof of Theorem 2, we can prove that $g(\zeta)=0 \Longrightarrow g^{\prime \prime}(\zeta)=1$ and that $g^{\prime \prime}(\zeta)=1 \Longrightarrow g^{\prime \prime \prime}(\zeta)=g^{(s)}(\zeta)=0$. Then by Lemmas 4 and 3, we have

$$
g(\zeta)=\frac{(\zeta-b)^{2}}{2}
$$

for some $b \in \mathbf{C}$. Thus $g^{\sharp}(0)=\frac{|b|}{1+|b|^{4} / 4}$ and then $g^{\sharp}(0) \leq 1$, which contradicts (32).
Case (B).

$$
\begin{equation*}
\frac{z_{n}}{\rho_{n}} \rightarrow \alpha \in \mathbf{C} \tag{33}
\end{equation*}
$$

As in the proof of Theorem 2, we have $g\left(\zeta_{0}\right)=0 \Longrightarrow g^{\prime \prime}\left(\zeta_{0}\right)=1$. Now set $G_{n}(\zeta)=$ $\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{2+\ell}}$. From (31) and (33) we have

$$
G_{n}(\zeta) \Longrightarrow G(\zeta)=b(0) g(\zeta-\alpha) \zeta^{\ell} \quad \text { on } \mathbf{C}
$$

Since g has a pole of order ℓ at $\zeta=-\alpha, G(0) \neq 0, \infty$.
We now consider several subcases, depending on the nature of G.
Case (BI). G is a polynomial. By a similar method of proof used in the proof of Theorem 2 (and using Lemma 8 instead of Lemma 7 in the appropriate places), we can get

$$
G(\zeta)=\frac{b(0) \zeta_{0}^{\ell}\left(\zeta-\zeta_{0}\right)^{2}}{2}
$$

and also we can arrive at a contradiction.
Case (BII). $G(\zeta)$ is a transcendental entire function. Consider the family

$$
\mathcal{F}(G)=\left\{t_{n}(z):=\frac{G\left(2^{n} z\right)}{2^{n(2+\ell)}}: n \in \mathbf{N}\right\} .
$$

We have
(i) $t_{n}(z)=0 \Longrightarrow t_{n}^{\prime \prime}(z)=z^{\ell}$, and
(ii) $t_{n}^{\prime \prime}(z)=z^{\ell} \Longrightarrow t_{n}^{\prime \prime \prime}(z)=t_{n}^{(s)}(z)=0$.

We then get by Theorem CFZ3 that $\mathcal{F}(G)$ is normal in \mathbf{C}^{*}. Set $r(\zeta):=G(\zeta) / \zeta^{2+\ell}$, and we have that, for every $\zeta,|\zeta| \geq 2$, there exists $n \geq 1$ and $z \in R_{1,2}$, such that

$$
\left|\zeta r^{\sharp}(\zeta)\right| \leq M \cdot 2^{2+\ell+1}+(2+\ell) 2^{2(2+\ell)} .
$$

But, according to Theorem $\mathrm{B}, \varlimsup_{\zeta \rightarrow \infty}|\zeta| r^{\sharp}(\zeta)=\infty$, and we thus have a contradiction (cf. [3, pp. 19-21]). Theorem 3 is proved.

References

[1] Chang, J. M., M. L. Fang, and L. Zalcman: Normal families of holomorphic functions. Illinois J. Math. 48:1, 2004, 319-337.
[2] Clunie, J., and W. K. Hayman: The spherical derivative of integral and meromorphic functions. - Comment. Math. Helv. 40, 1966, 117-148.
[3] Lehto, O.: The spherical derivative of a meromorphic function in the neighborhood of an isolated singularity. - Comment. Math. Helv. 33, 1959, 196-205.
[4] Liu, X. J., and S. Nevo: A criterion of normality based on a single holomorphic function. Acta Math. Sin. (Engl. Ser.) 27:1, 2011, 141-154.
[5] Lucas, F.: Géométrie des polynômes. - J. École Polytech. 46:1, 1879, 1-33.
[6] Marden, M.: Geometry of polynomials. - Amer. Math. Soc., Providence, Rhode Island, 1966.
[7] Nevo, S.: Applications of Zalcman's Lemma to Q_{m}-normal families. - Analysis 21, 2001, 289-325.
[8] Nevo, S., X. C. Pang, and L. Zalcman: Quasinormality and meromorphic functions with multiple zeros. - J. Anal. Math. 101, 2007, 1-23.
[9] Pang, X. C.: Bloch's principle and normal criterion. - Sci. China Ser. A 32, 1989, 782-791.
[10] Pang, X. C.: Shared values and normal families. - Analysis 22, 2002, 175-182.
[11] Pang, X. C., and L. Zalcman: Normal families and shared values. - Bull. London Math. Soc. 32, 2000, 325-331.
[12] Pang, X. C., and L. Zalcman: Normal families of meromorphic functions with multiple zeros and poles. - Israel J. Math. 136, 2003, 1-9.
[13] Zalcman, L.: A heuristic principle in complex function theory. - Amer. Math. Monthly 82, 1975, 813-817.
[14] Zalcman, L.: Normal families: new perspectives. - Bull. Amer. Math. Soc. (N.S.) 35, 1998, 215-230.
[15] Zhang, G. M., W. Sun, and X. C. Pang: On the normality of certain kind of holomorphic functions. - Chinese Ann. Math. Ser. A 26:6, 2005, 765-770.

[^0]: doi:10.5186/aasfm. 2013.3810
 2010 Mathematics Subject Classification: Primary 30D35.
 Key words: Normal family, holomorphic functions, zero points.
 *Research supported by the NNSF of China Approved No. 11071074 and also supported by the Outstanding Youth Foundation of Shanghai No. slg10015.
 ${ }^{\dagger}$ Research supported by the Israel Science Foundation Grant No. 395/07.

