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Abstract. Let (X , d, µ) be a metric measure space and satisfy the so-called upper doubling
condition and the geometrically doubling condition. Under this assumption, in this paper, the
authors establish a new characterization of the space RBMO(µ). As applications, the authors prove
that the Lp(µ)-boundedness with p ∈ (1,∞) of the Calderón–Zygmund operator is equivalent to its
various endpoint estimates.

1. Introduction

The theory of singular integrals on classical Euclidean spaces has been proved
to be a very fruitful part of analysis. Later, the results of the Calderón–Zygmund
theory for singular integrals on classical Euclidean spaces have been extended to
more general spaces under the assumption that the measure on the underlying space
satisfies the doubling property (see (1.1) below). One of the most general settings
for the Calderón–Zygmund theory is that of the space of homogeneous type in the
sense of Coifman and Weiss [2]. A metric space (X , d) equipped with a nonnegative
Borel measure µ is called a space of homogeneous type if (X , d, µ) satisfies the fol-
lowing doubling condition: there exists a positive constant Cµ such that for any ball
B(x, r) := {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

(1.1) µ(B(x, 2r)) ≤ Cµµ(B(x, r)).

In recent years, there has been significant progress in the study of the Calderón–
Zygmund theory associated with non-doubling measures. To be precise, let µ be
a non-negative Radon measure on Rd which only satisfies some polynomial growth
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condition: there exist positive constants C and n ∈ (0, d] such that for all x ∈ Rd

and r ∈ (0,∞),

(1.2) µ(B(x, r)) ≤ Crn.

Such a measure needs not satisfy the doubling condition (1.1). Many results of
the classical Calderón–Zygmund theory have been proved still valid if the doubling
condition of the measure is replaced by (1.2); see, for example, [17, 18, 20, 21, 22]
and their references.

Since the measures satisfying the polynomial growth condition (1.2) are different
from, not more general than, the doubling measures, the Calderón–Zygmund theory
associated with non-doubling measures is not in all respects a generalization of the
corresponding theory on spaces of homogeneous type. To unite spaces of homoge-
neous type and Euclidean spaces with the underlying measure satisfying the polyno-
mial growth condition (1.2), Hytönen [7] introduced a new class of metric measure
spaces which satisfy the so-called upper doubling condition and the geometrically
doubling condition (see Definitions 1.1 and 1.2 below).

Let (X , d, µ) be a non-homogeneous space in the sense of Hytönen [7]. Hytönen [7]
also introduced the space of regularized BMO, namely, RBMO(µ) (see Definition 1.3
below), which is a generalization of the regularized BMO of Tolsa [20] in the setting
of Rd equipped with the measure satisfying (1.2). It has to be pointed out that the
regularized BMO space introduced by Tolsa is a suitable substitute for the classical
BMO space, which is small enough to fulfil the properties of the classical BMO
space, such as the John–Nirenberg inequality, and large enough so that an L2(µ)
bounded Calderón–Zygmund operator is also bounded from L∞(µ) to RBMO(µ).
These properties are still true on non-homogeneous spaces in the sense of Hytönen;
see [7, 1]. Recently, Lin and Yang [13] introduced the space of regularized BLO,
which is a subspace of RBMO(µ), and established several useful characterizations of
this space.

The main purpose of this paper is to establish a new characterization of RBMO(µ)
in term of the John–Strömberg sharp maximal functions on the non-homogeneous
spaces introduced by Hytönen [7]. As applications, we prove the equivalence between
the Lp(µ)-boundedness with p ∈ (1,∞) of the Calderón–Zygmund operator and
several corresponding endpoint estimates. To state these results, we first recall some
notions.

Definition 1.1. Ametric measure space (X , d, µ) is said to be upper doubling if µ
is a Borel measure on X and there exist a dominating function λ : X×(0,∞) → (0,∞)
and a positive constant Cλ such that for each x ∈ X , r → λ(x, r) is non-decreasing
and, for all x ∈ X and r ∈ (0,∞),

(1.3) µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

Obviously, a space of homogeneous type is an upper doubling space if we choose
λ(x, r) := µ(B(x, r)). Also, (Rd, | · |, µ) is also an upper doubling measure space if µ
satisfies the polynomial growth condition (1.2).

The function λ in Definition 1.1 needs not satisfy the additional property that
there exists a positive constant C such that for all x, y ∈ X with d(x, y) ≤ r,

(1.4) λ(x, r) ≤ Cλ(y, r).
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However, it was proved in [9] that there always exists another dominating function λ̃

such that λ̃ ≤ λ, Cλ̃ ≤ Cλ and, for all x, y ∈ X with d(x, y) ≤ r, λ̃(x, r) ≤ Cλ̃λ̃(y, r).
Hence, in this paper, we always assume that the function λ also satisfies (1.4).

Throughout the whole paper, we also always assume that the underlying metric
space (X , d) satisfies the following geometrically doubling condition.

Definition 1.2. A metric space (X , d) is said to be geometrically doubling if
there exists a positive integer N0 such that for any ball B(x, r) ⊂ X , there exists a
finite number of balls covering {B(xi, r/2)}i of B(x, r) such that the cardinality of
this covering is at most N0.

Some equivalent characterizations of the geometrically doubling property were
proved in [7, Lemma 2.3]. Moreover, it is well known that spaces of homogeneous type
are geometrically doubling spaces; see [2, p. 67]. In this paper, a metric measure space
(X , d, µ) is called a non-homogeneous metric measure space, if µ is upper doubling
and (X , d) geometrically doubling.

We now recall the coefficients δ(B,S) for all balls B and S introduced in [7]. For
all balls B ⊂ S ⊂ X , let

δ(B, S) :=

ˆ

(2S)\B

1

λ(xB, d(x, xB))
dµ(x),

where above and in what follows, for any ball B := B(xB, r(B)) and ρ ∈ (0,∞),
ρB := B(xB, ρr(B)).

Definition 1.3. Let ρ ∈ (1,∞). A function f ∈ L1
loc(µ) is said to be in the space

RBMO(µ) if there exist a positive constant C and a number fB for any ball B such
that for all balls B,

1

µ(ρB)

ˆ

B

|f(y)− fB| dµ(y) ≤ C,

and that for all balls B ⊂ S,

|fB − fS| ≤ C[1 + δ(B, S)].

Moreover, the RBMO(µ) norm of f is defined to be the minimal constant C as above
and denoted by ‖f‖RBMO(µ).

It was proved in [7, Lemma 4.6] that the space of RBMO(µ) is independent of
the choice of ρ.

The organization of this paper is as follows. In Section 2, we show that a µ-
measurable function f belongs to RBMO(µ) if and only if its John–Strömberg sharp
maximal function is in L∞(µ) and the local integrability of f is superfluous in the defi-
nition of f ∈ RBMO(µ) (see Theorem 2.1 below). In Section 3, based on Corollary 2.1
in Section 2, we prove that for a Calderón–Zygmund operator, its boundedness on
Lp(µ) with p ∈ (1,∞) is equivalent to its boundedness from Hardy space H1(µ) (see
Definition 3.1 in Section 3) into weak L1(µ), or from L∞(µ) into RBMO(µ) or some
other estimates (see Theorem 3.1 below).

We remark that there exists other application of the new characterization of the
space RBMO(µ) established in Section 2. Using Corollary 2.1 as an important tool,
Lin and Yang [14] proved that a sublinear operator, which is bounded from the Hardy
space H1(µ) into L1,∞(µ) and from L∞(µ) into RBMO(µ), is also bounded on Lp(µ)
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for all p ∈ (1,∞); see [14, Proposition 2.6] and the proofs of [14, Lemma 3.1 and
Theorem 1.1] for more details.

Finally, we make some conventions on notation. Throughout this paper, we
denote by C a positive constant which is independent of the main parameters, but
may vary from line to line. Constants with subscript, such as C1, do not change in
different occurrences. The symbol f . g means that there exists a positive constant
C such that f ≤ Cg, and the symbol f ∼ g means f . g . f . For any ball B ⊂ X ,
we denote its center and radius by xB and rB, respectively. Also, for any subset
E ⊂ X , χE denotes its characteristic function.

2. A new characterization of RBMO(µ)

In this section, we introduce a space of functions via the John–Strömberg sharp
maximal function and then prove that this space and RBMO(µ) coincide with equiv-
alent norms.

To introduce the John–Strömberg sharp maximal function, we first recall the
notion of (α, β)-doubling balls for α, β ∈ (1,∞). Given α, β ∈ (1,∞), a ball B ⊂ X
is called (α, β)-doubling if µ(αB) ≤ βµ(B). It was proved in [7, Lemmas 3.2 and
3.3] that for any α ∈ (1,∞), β ∈ (C

log2 α
λ ,∞) and any ball B ⊂ X , there exists some

j ∈ N := {1, 2, · · · } such that αjB is (α, β)-doubling. On the other hand, let (X , d)
be geometrically doubling, β ∈ (αn,∞) with n := log2 N0 and µ a Borel measure
on X which is finite on bounded sets, where N0 is as in Definition 1.2. Then for
µ-almost every x ∈ X , there exist arbitrarily small (α, β)-doubling balls centered at
x; furthermore, the radii of these balls may be chosen to be of the form α−jr for
j ∈ N and any preassigned number r ∈ (0,∞). In this section, for fixed % ∈ [1,∞),
by a doubling ball B, we always mean that B is a (6%2, β6%2)-doubling ball with
β6%2 := (6%2)max{n,d} + 30n + 30d, where d satisfies C

log2(6%2)
λ = (6%2)d. For any ball

B ⊂ X , we use the symbol B̃ to denote the smallest (6%2, β6%2)-doubling ball of the
form (6%2)jB with j ∈ Z+ := {0, 1, · · · }.

Let f be a µ-measurable function. If f is real-valued, then for all balls B with
µ(B) 6= 0, define the median value of f on the ball B, denoted by mf (B), to be one
of the numbers such that

µ ({x ∈ B : f(x) > mf (B)}) ≤ µ(B)/2

and
µ ({x ∈ B : f(x) < mf (B)}) ≤ µ(B)/2;

see [6, p. 161]. For all balls B with µ(B) = 0, set mf (B) = 0. If f is complex-valued,
we take mf (B) := mRe f (B) + imIm f (B).

Let s ∈ (0, 1) and % ∈ (1,∞). For any fixed ball B and µ-measurable function f ,
define m%

0,s;B(f) by setting

m%
0,s;B(f) := inf {t > 0: µ ({y ∈ B : |f(y)| > t}) < sµ (%B)}

when µ(B) > 0, and m%
0,s;B(f) := 0 when µ(B) = 0. For any µ-measurable function

f , the John–Strömberg sharp maximal function M%,]
0,s(f) is defined by setting, for all

x ∈ X ,

M%,]
0,s(f)(x) := sup

B3x
m%

0,s;B

(
f −mf

(
B̃

))
+ sup

x∈B⊂S
B,S (6%2,β

6%2 )−doubling

|mf (B)−mf (S)|
1 + δ(B, S)

.
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Using M%,]
0,s , we introduce the space RBMO0,s(µ) as follows.

Definition 2.1. Let s ∈ (0, 1) and % ∈ (1,∞). A µ-measurable function f is said
to belong to the space RBMO0,s(µ) if M%,]

0,s(f) ∈ L∞(µ). Moreover, ‖M%,]
0,s(f)‖L∞(µ)

is defined to be the RBMO0,s(µ) norm of f and denoted by ‖f‖RBMO0,s(µ).

The main result of this section is as follows.

Theorem 2.1. Let % ∈ (1,∞) and s ∈ (0, β−2
6%2/4). Then the spaces RBMO(µ)

and RBMO0,s(µ) coincide with equivalent norms.

If (X , d, µ) := (Rd, |·|, dx), Strömberg [19] proved that RBMO(µ) = RBMO0,s(µ)
if and only if s ∈ (0, 1/2]. Moreover, if µ is an absolutely continuous measure on Rd,
namely, there exists a weight w such that dµ = w dx, Lerner [12] established the John–
Strömberg characterization of BMO(w). Furthermore, if (X , d, µ) := (Rd, | · |, µ) with
µ satisfying (1.2), it was proved that RBMO(µ) = RBMO0,s(µ) for s ∈ (0, β−2

d /2)
with βd ∈ (2d,∞) in [6].

By Theorem 2.1, we obtain the following conclusion.

Corollary 2.1. Let % ∈ (1,∞) and ϕ be a strictly increasing and nonnegative
continuous function on [0,∞) such that limt→∞ ϕ(t) = ∞. If f ∈ L1

loc(µ) and there
exists a positive constant C such that for all balls B ⊂ X ,

1

µ(%B)

ˆ

B

ϕ
(∣∣∣f(x)−mf

(
B̃

)∣∣∣
)

dµ(x) ≤ C

and that for all (6%2, β6%2)-doubling balls B ⊂ S, |mf (B)−mf (S)| ≤ C[1 + δ(B, S)],
then f ∈ RBMO(µ).

A typical example of ϕ satisfying Corollary 2.1 is ϕ(r) := rp for all r ∈ [0,∞)
with p ∈ (0,∞). We remark that if p ∈ [1,∞), the conclusion that a µ-locally inte-
grable function satisfying the hypothesis of Corollary 2.1 belongs to RBMO(µ) can be
deduced from the John–Nirenberg inequality established by Hytönen in [7]. However,
if p ∈ (0, 1), this conclusion cannot be deduced from the John–Nirenberg inequality
anymore. Other typical examples of ϕ satisfying the hypothesis of Corollary 2.1 are

ϕ(r) := log(e + log(e + · · · log︸ ︷︷ ︸
k

(e + r) · · · )

with k ∈ N.
The remaining part of this section is devoted to the proofs of Theorem 2.1 and

Corollary 2.1. To this end, we first establish the corresponding John–Nirenberg
inequality for the space RBMO0,s(µ) with % ∈ (1,∞) and s ∈ (0, β−2

6%2/4). It plays an
important role in the proof of Theorem 2.1.

Proposition 2.1. For any % ∈ (1,∞) and s ∈ (0, β−2
6%2/4), there exist two positive

constant C% and c% such that for all f ∈ RBMO0,s(µ), all balls B0 ⊂ X and t ∈ (0,∞),

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

≤ C%e
− c%t

‖f‖RBMO0,s(µ) µ
(
%2B0

)
.

We point out that Proposition 2.1 is a generalization of the John–Nirenberg
inequality for the space RBMO(µ) on the non-homogeneous spaces, which was proved
in [7, Proposition 6.1] by Hytönen.
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To prove Proposition 2.1, we need some technical lemmas. The following Lem-
ma 2.1 is a direct corollary of [3, Theorem 1.2] and [7, Lemma 2.5].

Lemma 2.1. Let (X , d) be a geometrically doubling metric space. Then every
family F of balls of uniformly bounded diameter contains an at most countable
disjointed subfamily G such that ∪B∈FB ⊂ ∪B∈G5B.

Lemma 2.2. [9, Lemma 2.1]
(i) For all balls B ⊂ S ⊂ R, δ(B,S) ≤ δ(B,R).
(ii) For any ρ ∈ [1,∞), there exists a positive constant C, depending on ρ, such

that for all balls B ⊂ S with r(S) ≤ ρr(B), δ(B, S) ≤ C.
(iii) There exists a positive constant C̃ such that for all balls B, δ(B, B̃) ≤ C.
(iv) There exists a positive constant c such that for all balls B ⊂ R ⊂ S, δ(B, S) ≤

δ(B,R) + cδ(R, S). In particular, if B and R are concentric, then c = 1.
(v) There exists a positive constant c̃ such that for all balls B ⊂ R ⊂ S, δ(R,S) ≤

c̃[1 + δ(B, S)]; moreover, if B and R are concentric, then δ(R,S) ≤ δ(B, S).

Lemma 2.3. [7, Corollary 3.6] Let (X , d) be a geometrically doubling metric
space and µ a Borel measure on X which is finite on bounded sets. Let β ∈ (5n,∞).
Then for all f ∈ L1

loc(µ) and µ-almost every x ∈ X ,

f(x) = lim
B↓x

(5,β)−doubling

1

µ(B)

ˆ

B

f(y) dµ(y).

Let % ∈ (1,∞). The doubling maximal operator N and the doubling local maximal
operator Md

0,s are, respectively, defined by setting, for all f ∈ L1
loc(µ) and x ∈ X ,

N(f)(x) := sup
B3x

B (6%2, β
6%2 )−doubling

1

µ(B)

ˆ

B

|f(y)| dµ(y)

and, for all µ-measurable functions f and x ∈ X ,

Md
0,s(f)(x) := sup

B3x
B (6%2, β

6%2 )−doubling

m%
0,s;B(f).

Lemma 2.4. Let % ∈ (1,∞) and s ∈ (0, β−1
6%2). If f is a µ-measurable function,

then for all t ∈ (0,∞),

(2.1) µ({x ∈ X : |f(x)| > t}) ≤ µ
({

x ∈ X : Md
0,s(f)(x) ≥ t

})
.

Proof. It is easy to see that for all t ∈ (0,∞),

{x ∈ X : |f(x)| > t} =
{
x ∈ X : χ{y∈X : |f(y)|>t}(x) = 1

}
,

which, along with Lemma 2.3 and the fact s ∈ (0, β−1
6%2), implies that for µ-almost

every x ∈ X satisfying |f(x)| > t,

N
(
χ{y∈X : |f(y)|>t}

)
(x) ≥ χ{y∈X : |f(y)|>t}(x) = 1 > sβ6%2 .

This means that

{x ∈ X : |f(x)| > t} ⊂ {
x ∈ X : N

(
χ{y∈X : |f(y)|>t}

)
(x) > β6%2s

} ∪Θ,

where µ(Θ) = 0. By Lemma 2.3 again, we see that for any x ∈ X satisfying

N(χ{y∈X : |f(y)|>t})(x) > β6%2s,
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there exists a (6%2, β6%2)-doubling ball B containing x such that

1

µ(B)

ˆ

B

χ{y∈X : |f(y)|>t}(y) dµ(y) > sβ6%2 .

This means that
µ({y ∈ B : |f(y)| > t}) > sβ6%2µ(B).

Notice that
µ (%B) ≤ µ(6%2B) ≤ β6%2µ(B).

Hence,
µ({y ∈ B : |f(y)| > t}) > sµ (%B) .

On the other hand, by the definition of m%
0,s:B(f), we easily conclude that for any

r ∈ (m%
0,s:B(f),∞), µ({y ∈ B : |f(y)| > r}) < sµ (%B) . Therefore, m%

0,s;B(f) ≥ t and
hence Md

0,s(f)(x) ≥ t, which implies that

{x ∈ X : |f(x)| > t} ⊂ {
x ∈ X : Md

0,s(f)(x) ≥ t
} ∪Θ.

The desired conclusion (2.1) then follows directly, which completes the proof of
Lemma 2.4. ¤

Lemma 2.5. Let % ∈ (1,∞), s ∈ (0, β−1
6%2/2] and B be a (6%2, β6%2)-doubling ball.

Then for all µ-measurable real-valued functions f ,

|mf (B)| ≤ m%
0,s;B(f).

The proof of Lemma 2.5 is similar to that of [6, Lemma 1]. For brevity, we
omit the details here. Moreover, by Lemma 2.5, we easily conclude that for all
µ-measurable complex-valued functions f and all (6%2, β6%2)-doubling balls B ⊂ X ,

(2.2) |mf (B)| ≤ |mRe f (B)|+|mIm f (B)| ≤ m%
0,s;B(Re f)+m%

0,s;B(Im f) ≤ 2m%
0,s;B(f),

which is used in Section 3.

Lemma 2.6. Let ρ ∈ (1,∞) and % ∈ [1,∞). For any given f ∈ L1
loc(µ), let ‖f‖∗

be the minimal nonnegative constant C such that for all balls B,

1

µ(ρB)

ˆ

B

∣∣f(y)−mB̃(f)
∣∣ dµ(y) ≤ C,

and that for all (6%2, β6%2)-doubling balls B ⊂ S,

|mB(f)−mS(f)| ≤ C[1 + δ(B,S)],

where B̃ denotes the smallest (6%2, β6%2)-doubling ball with the form (6%2)iB for
i ∈ Z+, and for any g ∈ L1

loc(µ) and any ball B ⊂ X , mB(g) denotes the mean of
g over B, namely, mB(g) := 1

µ(B)

´
B

g(x) dµ(x). Then ‖ · ‖∗ is a norm of RBMO(µ),
which is equivalent to ‖ · ‖RBMO(µ).

Lemma 2.6 is a variant of [9, Proposition 2.2], in which % = 1. The proof therein
is still valid in the current case.

Proof of Proposition 2.1. We use some ideas from Hytönen [7] and adapt them
to the space RBMO0,s(µ). It suffices to prove that there exist two positive constant
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C̃% and c̃% such that for any real-value function f ∈ RBMO0,s(µ), any ball B0 ⊂ X
and t ∈ (0,∞),

(2.3) µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

≤ C̃%e
− c̃%t

‖f‖RBMO0,s(µ) µ
(
%2B0

)
.

In fact, for any complex-valued function f , we write f := f1+if2, where f1 and f2 are,
respectively, the real and the imaginary parts of f . Notice that ‖f1‖RBMO0,s(µ) and
‖f2‖RBMO0,s(µ) are both not greater than ‖f‖RBMO0,s(µ). Therefore, if the inequality
(2.3) holds for the real-valued functions f1 and f2, then

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

≤ µ
({

x ∈ B0 :
∣∣∣f1(x)−mf1

(
B̃0

)∣∣∣ > t/2
})

+ µ
({

x ∈ B0 :
∣∣∣f2(x)−mf2

(
B̃0

)∣∣∣ > t/2
})

≤ C̃%

[
e
− c̃%t

2‖f1‖RBMO0,s(µ) + e
− c̃%t

2‖f2‖RBMO0,s(µ)

]
µ

(
%2B0

)

≤ C̃%

[
e
− c̃%t

2‖f‖RBMO0,s(µ) + e
− c̃%t

2‖f‖RBMO0,s(µ)

]
µ

(
%2B0

)

≤ 2C̃%e
− c̃%t

2‖f‖RBMO0,s(µ) µ
(
%2B0

)
.

Therefore, Proposition 2.1 holds for all complex-valued functions with C% := 2C̃% and
c% := c̃%/2.

To show (2.3), without loss of generality, we may assume that ‖f‖RBMO0,s(µ) >
0. Otherwise, by the definition of ‖f‖RBMO0,s(µ), we easily conclude that for all
(6%2, β6%2)-doubling balls B ⊂ S, mf (B) = mf (S) and

sup
B⊂X

m%
0,s;B

(
f −mf (B̃)

)
= 0.

Thus, there exists a constant M such that for any (6%2, β6%2)-doubling ball B, mf (B)
= M and hence m0,s;B(f − M) = 0. This further implies that for all x ∈ X ,
Md

0,s(f − M)(x) = 0. From this and Lemma 2.4, it follows that f(x) = M for
µ-almost every x ∈ X , which implies that for any ball B0 ⊂ X and t ∈ (0,∞),

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

= 0.

Therefore, the inequality (2.3) holds in this case.
Denote by L a large positive constant which is determined later. Choose γ ∈

(2β6%2 ,∞) such that γs < β−1
6%2/2. It is easy to see that for all x ∈ B0 satisfying

|f(x)−mf (B̃0)| > 2L,

χ{y∈B0 : |f(y)−mf (B̃0)|>2L}(x) = 1 > γs.

On the other hand, from Lemma 2.3, it follows that for µ-almost every x ∈ B0

satisfying |f(x)−mf (B̃0)| > 2L,

χ{y∈B0 : |f(y)−mf (B̃0)|>2L}(x) = lim
B↓x

(6%2,β
6%2 )−doubling

1

µ(B)

ˆ

B

χ{y∈B0 : |f(y)−mf (B̃0)|>2L}(y) dµ(y).



A new characterization of regularized BMO spaces on non-homogeneous spaces and its applications 11

Therefore, for µ-almost every x ∈ B0 satisfying |f(x) −mf (B̃0)| > 2L, there exists
an arbitrarily small (6%2, β6%2)-doubling ball B := B(x, (6%2)−kr) such that

1

µ(B)

ˆ

B

χ{y∈X : |f(y)−mf(B̃0)|>2L}(y) dµ(y) > γs.

This means that

(2.4) µ
({

y ∈ B :
∣∣∣f(y)−mf

(
B̃0

)∣∣∣ > 2L
})

> γsµ(B).

Let B∗
x be the maximal (6%2, β6%2)-doubling ball of the form B(x, (6%2)−kr) with

k ∈ N satisfying B∗
x ⊂ %B0 and (2.4).

Denote by B∗∗
x the smallest (6%2, β6%2)-doubling ball of the form (6%2)kB∗

x with
k ∈ N. We claim that

(2.5)
∣∣∣mf (B∗∗

x )−mf

(
B̃0

)∣∣∣ ≤ 2L.

To show (2.5), we consider the following three cases.
Case A. B∗∗

x * %B0 and r(B∗∗
x ) ≤ r(B̃0). In this case, B∗∗

x ⊂ 6%2B̃0. By Defini-
tion 2.1, we conclude that

(2.6)
∣∣∣∣mf

(
B̃0

)
−mf

(
6̃%2B̃0

)∣∣∣∣ ≤
[
1 + δ

(
B̃0, 6̃%2B̃0

)]
‖f‖RBMO0,s(µ).

On the other hand,

(2.7)
∣∣∣∣mf (B∗∗

x )−mf

(
6̃%2B̃0

)∣∣∣∣ ≤
[
1 + δ

(
B∗∗

x , 6̃%2B̃0

)]
‖f‖RBMO0,s(µ).

Let (6%2)k0B∗
x be the smallest expansion of B∗

x such that (6%2)kB∗
x * %B0 with k ∈ N.

Then, r((6%2)k0B∗
x) ∼ r(B0), (6%2)k0−1B∗

x ⊂ %B0 and (6%2)k0−1B∗
x ⊂ B∗∗

x . Thus, by
(iv), (v), (ii) and (iii) of Lemma 2.2, we see that there exists a positive constant C1,1,
depending on % and µ, such that

2 + δ

(
B̃0, 6̃%2B̃0

)
+ δ

(
B∗∗

x , 6̃%2B̃0

)

≤ 2 + δ
(
B̃0, 6%

2B̃0

)
+ δ

(
6%2B̃0, 6̃%2B̃0

)

+ δ
((

6%2
)k0−1

B∗
x, 6%

2B0

)
+ c

[
δ
(
6%2B0, 6%

2B̃0

)
+ δ

(
6%2B̃0, 6̃%2B̃0

)]

≤ C1,1.

From this, the estimates (2.6) and (2.7), it follows that
∣∣∣mf (B∗∗

x )−mf

(
B̃0

)∣∣∣ ≤
∣∣∣∣mf (B∗∗

x )−mf

(
6̃%2B̃0

)∣∣∣∣ +

∣∣∣∣mf

(
6̃%2B̃0

)
−mf

(
B̃0

)∣∣∣∣
≤ C1,1‖f‖RBMO0,s(µ).

Case B. B∗∗
x * %B0 and r(B∗∗

x ) > r(B̃0). In this case, B̃0 ⊂ 6%2B∗∗
x . It follows,

from Definition 2.1, that

(2.8)
∣∣∣mf (B∗∗

x )−mf

(
˜(6%2)2B∗∗

x

)∣∣∣ ≤
[
1 + δ

(
B∗∗

x , ˜(6%2)2B∗∗
x

)]
‖f‖RBMO0,s(µ)
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and

(2.9)
∣∣∣mf

(
B̃0

)
−mf

(
˜(6%2)2B∗∗

x

)∣∣∣ ≤
[
1 + δ

(
B̃0, ˜(6%2)2B∗∗

x

)]
‖f‖RBMO0,s(µ).

Since B̃0 ⊂ 6%2B∗∗
x , it follows that there exists a positive constant m ∈ N such

that r(B̃0) ≥ r((6%2)mB∗
x)/(6%

2)2 and B̃0 ⊂ (6%2)mB∗
x ⊂ ˜(6%2)2B∗∗

x . Thus, r(B̃0) ∼
r((6%2)mB∗

x) and hence, by (iv), (v), (ii) and (iii) of Lemma 2.2, we see that there
exists a positive constant C1,2, depending on % and µ, such that

2 + δ
(
B∗∗

x , ˜(6%2)2B∗∗
x

)
+ δ

(
B̃0, ˜(6%2)2B∗∗

x

)

≤ 3 + δ
(
B∗∗

x , (6%2)2B∗∗
x

)
+ δ

(
(6%2)2B∗∗

x , ˜(6%2)2B∗∗
x

)

+ c
[
δ
(
B̃0, (6%

2)mB∗
x

)
+ δ

(
B∗

x, (6%
2)2B∗∗

x

)
+ δ

(
(6%2)2B∗∗

x , ˜(6%2)2B∗∗
x

)]

≤ C1,2.

This, along with (2.8) and (2.9), implies that
∣∣∣mf (B∗∗

x )−mf

(
B̃0

)∣∣∣ ≤
∣∣∣mf (B∗∗

x )−mf

(
˜(6%2)2B∗∗

x

)∣∣∣

+
∣∣∣mf

(
˜(6%2)2B∗∗

x

)
−mf

(
B̃0

)∣∣∣ ≤ C1,2‖f‖RBMO0,s(µ).

Case C. B∗∗
x ⊆ %B0. Recall the fact γs < β−1

6%2/2. Then we choose η ∈ (0,∞)

such that γs + η < β−1
6%2/2. From the choice of B∗

x, it follows that (2.4) does not hold
for the ball B∗∗

x , that is,

µ
({

y ∈ B∗∗
x :

∣∣∣f(y)−mf

(
B̃0

)∣∣∣ > 2L
})

≤ γsµ (B∗∗
x ) < (γs + η)µ (B∗∗

x ) .

This means that
m%

0,γs+η;B∗∗x

(
f −mf

(
B̃0

))
≤ 2L,

which, along with Lemma 2.5, implies that
∣∣∣mf (B∗∗

x )−mf

(
B̃0

)∣∣∣ =
∣∣∣mf−mf (B̃0)(B

∗∗)
∣∣∣ ≤ m%

0,γs+η;B∗∗x

(
f −mf

(
B̃0

))
≤ 2L,

where we used the fact that for any ball B, c ∈ C and µ-measurable function h,
mh(B)− c = mh−c(B).

Let C1 := max{C1,1, C1,2}. Choose L ≥ C1

2
‖f‖RBMO0,s(µ). Then (2.5) is true.

Let C2 ∈ (1,∞) be a constant, depending on % and µ, such that 1+δ (B∗
x, B

∗∗
x ) ≤

C2. Then, if L ≥ 2C2‖f‖RBMO0,s(µ), by Definition 2.1, (2.5) and Lemma 2.2(iii), we
conclude that∣∣∣mf (B∗

x)−mf

(
B̃0

)∣∣∣

≤ |mf (B∗
x)−mf (B∗∗

x )|+
∣∣∣mf (B∗∗

x )−mf

(
B̃0

)∣∣∣

≤ [1 + δ (B∗
x, B

∗∗
x )] ‖f‖RBMO0,s(µ) + 2L ≤ C2‖f‖RBMO0,s(µ) + 2L ≤ 5

2
L.

(2.10)

By Lemma 2.1, we choose disjoint balls {B∗
xi
}i among the balls {B∗

x}x∈B0 so that the
expanded balls {5B∗

xi
}i cover all the original B∗

x. It follows, from Definition 2.1, (iv),
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(ii) and (iii) of Lemma 2.2, that there exists a constant C3 ∈ (1,∞), depending on %
and µ, such that

∣∣∣mf (B
∗
xi

)−mf

(
5̃B∗

xi

)∣∣∣ ≤
[
1 + δ

(
B∗

xi
, 5̃B∗

xi

)]
‖f‖RBMO0,s(µ)

≤
[
1 + δ

(
B∗

xi
, 5B∗

xi

)
+ δ

(
5B∗

xi
, 5̃B∗

xi

)]
‖f‖RBMO0,s(µ)

≤ C3‖f‖RBMO0,s(µ),

which, along with (2.10), implies that if x ∈ 5B∗
xi

satisfying |f(x) −mf (B̃0)| > kL
with k ≥ 3 and L ≥ 2C3‖f‖RBMO0,s(µ), then

∣∣∣f(x)−mf

(
5̃B∗

xi

)∣∣∣

≥
∣∣∣f(x)−mf

(
B̃0

)∣∣∣−
∣∣∣mf

(
B̃0

)
−mf (B

∗
xi

)
∣∣∣−

∣∣∣mf (B
∗
xi

)−mf

(
5̃B∗

xi

)∣∣∣

> kL− 5

2
L− C3‖f‖RBMO0,s(µ) ≥ (k − 3)L.

Therefore,
{

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > kL
}

⊂
⋃

{x∈B0, |f(x)−mf(B̃0)|>kL}

{
y ∈ B∗

x :
∣∣∣f(y)−mf

(
B̃0

)∣∣∣ > kL
}

⊂
⋃
i

{
y ∈ 5B∗

xi
:

∣∣∣f(y)−mf

(
5̃B∗

xi

)∣∣∣ > (k − 3)L
}

.

Using Definition 2.1, (iv), (ii) and (iii) of Lemma 2.2, we see that there exists a
constant C4 ∈ (1,∞), depending on % and µ, such that

∣∣∣mf

(
%̃B0

)
−mf

(
B̃0

)∣∣∣

≤
∣∣∣mf

(
%̃B0

)
−mf (B0)

∣∣∣ +
∣∣∣mf (B0)−mf

(
B̃0

)∣∣∣

≤
[
2 + δ

(
B0, %̃B0

)
+ δ

(
B0, B̃0

)]
‖f‖RBMO0,s(µ)

≤
[
2 + δ (B0, %B0) + δ

(
%B0, %̃B0

)
+ δ

(
B0, B̃0

)]
‖f‖RBMO0,s(µ)

≤ C4‖f‖RBMO0,s(µ).

(2.11)

Take L such that L ≥ C4‖f‖RBMO0,s(µ). Then by the facts that {B∗
xi
}i are (6%2, β6%2)-

doubling and disjoint, which are contained in %B0, (2.11) and (2.4), we conclude
that

∑
i

µ
(
5%2B∗

xi

) ≤
∑

i

µ
(
6%2B∗

xi

) ≤ β6%2

∑
i

µ
(
B∗

xi

)

≤ β6%2

γs

∑
i

µ
({

y ∈ B∗
xi

:
∣∣∣f(y)−mf

(
B̃0

)∣∣∣ > 2L
})

≤ β6%2

γs
µ

({
y ∈ %B0 :

∣∣∣f(y)−mf

(
B̃0

)∣∣∣ > 2L
})
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≤ β6%2

γs
µ

({
y ∈ %B0 :

∣∣∣f(y)−mf

(
%̃B0

)∣∣∣ +
∣∣∣mf

(
%̃B0

)
−mf

(
B̃0

)∣∣∣ > 2L
})

≤ β6%2

γs
µ

({
y ∈ %B0 :

∣∣∣f(y)−mf

(
%̃B0

)∣∣∣ > L
})

<
β6%2

γ
µ

(
%2B0

)
.

Therefore,
{

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > kL
}

⊂
⋃
i

{
y ∈ 5B∗

xi
:

∣∣∣f(y)−mf

(
5̃B∗

xi

)∣∣∣ > (k − 3)L
}

and ∑
i

µ
(
5%2B∗

xi

) ≤ β6%2

γ
µ

(
%2B0

)
.

Denote 5B∗
xi

simply by Bi. Let n ∈ N. Iterating n times with the balls Bi in place
of B0, we see that

{
x ∈ B0 :

∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > 3nL
}

⊂
⋃
i1

{
y ∈ Bi1 :

∣∣∣f(y)−mf

(
B̃i1

)∣∣∣ > 3(n− 1)L
}

⊂
⋃
i1,i2

{
y ∈ Bi1,i2 :

∣∣∣f(y)−mf

(
B̃i1,i2

)∣∣∣ > 3(n− 2)L
}

⊂ · · · ⊂
⋃

i1,i2,··· ,in

{
y ∈ Bi1,i2,··· ,in :

∣∣∣f(y)−mf

(
˜Bi1,i2,··· ,in

)∣∣∣ > 0
}

and hence

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > 3nL
})

≤
∑

i1,··· ,in−1,in

µ
(
Bi1,··· ,in−1,in

)

≤
∑

i1,··· ,in−1

∑
in

µ
(
Bi1,··· ,in−1,in

) ≤ β6%2

γ

∑
i1,··· ,in−1

µ
(
%2Bi1,··· ,in−1

)

≤ · · · ≤
(

β6%2

γ

)n

µ
(
%2B0

)
.

Take L := C5‖f‖RBMO0,s(µ) with C5 := max{C1/2, 2C2, 2C3, C4} and choose n ∈ N
such that t ∈ [3nL, 3(n + 1)L). We then know that

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

≤ µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > 3nL
})

≤
(

β6%2

γ

)n

µ
(
%2B0

) ≤
(

β6%2

γ

) t
3L
−1

µ
(
%2B0

)

≤ 2e
− (ln 2)t

3C5‖f‖RBMO0,s(µ) µ
(
%2B0

)
.

This means that (2.3) is true for any t ∈ [3L,∞).
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On the other hand, it is easy to show that for any t ∈ (0, 3L),

µ
({

x ∈ B0 :
∣∣∣f(x)−mf

(
B̃0

)∣∣∣ > t
})

≤ µ(%2B0)

≤ e
(ln 2)t

3C5‖f‖RBMO0,s(µ) e
− (ln 2)t

3C5‖f‖RBMO0,s(µ) µ
(
%2B0

) ≤ 2e
− (ln 2)t

3C5‖f‖RBMO0,s(µ) µ
(
%2B0

)
.

Thus, (2.3) still holds for any t ∈ (0, 3L), which completes the proof of Proposi-
tion 2.1. ¤

Based on Proposition 2.1, we now prove Theorem 2.1.

Proof of Theorem 2.1. We first show that if f ∈ RBMO(µ), then f ∈ RBMO0,s(µ).
Let % ∈ (1,∞). For any ball B ⊂ X , from the definition of m%

0,s;B(f −mf (B̃)), we
deduce that for any t ∈ (0,m%

0,s;B(f −mf (B̃))),

µ
({

y ∈ B :
∣∣∣f(y)−mf

(
B̃

)∣∣∣ > t
})

≥ sµ(%B),

which implies that

t ≤ 1

sµ(%B)

ˆ

B

∣∣∣f(x)−mf

(
B̃

)∣∣∣ dµ(x).

Letting t → m%
0,s;B(f −mf (B̃)), we then conclude that

m%
0,s;B

(
f −mf

(
B̃

))
≤ 1

sµ(%B)

ˆ

B

∣∣∣f(x)−mf

(
B̃

)∣∣∣ dµ(x).

Choose ρ = % in Lemma 2.6. Then the above estimate, along with the fact that
for any ball B, c ∈ C and µ-measurable function h, mh(B) − c = mh−c(B) and
Lemmas 2.5 and 2.6, implies that

m%
0,s;B

(
f −mf

(
B̃

))

≤ 1

sµ(%B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x) +

µ(B)

sµ(%B)

∣∣∣mB̃(f)−mf

(
B̃

)∣∣∣

≤ 1

sµ(%B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x) +

∣∣∣mf−mf (B̃)

(
B̃

)∣∣∣

≤ 1

sµ(%B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x) + m%

0,s;B̃

(
f −mf

(
B̃

))

≤ 1

sµ(%B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x) +

1

sµ(%B̃)

ˆ

B̃

∣∣f(x)−mB̃(f)
∣∣ dµ(x)

≤ s−1‖f‖RBMO(µ).

On the other hand, by the similar argument, we conclude that for all (6%2, β6%2)-
doubling balls B ⊂ S ⊂ X ,
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|mf (B)−mf (S)| ≤ |mf (B)−mB(f)|+ |mB(f)−mS(f)|+ |mS(f)−mf (S)|
≤

∣∣mf−mB(f)(B)
∣∣ + |mB(f)−mS(f)|+

∣∣mf−mS(f)(S)
∣∣

≤ m%
0,s;B (f −mB(f)) + [1 + δ(B, S)] ‖f‖RBMO(µ)

+ m%
0,s;S (f −mS(f))

≤ 1

sµ(%B)

ˆ

B

|f(x)−mB(f)| dµ(x) + [1 + δ(B,S)] ‖f‖RBMO(µ)

+
1

sµ(%S)

ˆ

S

|f(x)−mS(f)| dµ(x)

≤ (2s−1 + 1)‖f‖RBMO(µ).

Therefore, for any f ∈ RBMO(µ), f ∈ RBMO0,s(µ) and ‖f‖RBMO0,s(µ) . ‖f‖RBMO(µ).
Now we prove that if f ∈ RBMO0,s(µ), then f ∈ RBMO(µ) and

(2.12) ‖f‖RBMO(µ) . ‖f‖RBMO0,s(µ).

To prove (2.12), we consider the following two cases.
Case I. ‖f‖RBMO0,s(µ) = 0. Just as in the proof of Proposition 2.1, we know that

there exists a constant M such that f(x) = M for µ-almost every x ∈ X , which
implies that ‖f‖RBMO(µ) = 0.

Case II. ‖f‖RBMO0,s(µ) > 0. We now show (2.12). Indeed, by Definition 2.1 and
Lemma 2.6, to prove (2.12), it suffices to show that

sup
B3x

1

µ(%2B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x) . ‖f‖RBMO0,s(µ),(2.13)

and that

sup
x∈B⊂S

B,S (6%2,β
6%2 )−doubling

|mB(f)−mS(f)| . [1 + δ(B, S)]‖f‖RBMO0,s(µ).(2.14)

With the aid of Proposition 2.1, we easily see that for all balls B ⊂ X ,
1

µ(%2B)

ˆ

B

∣∣f(x)−mB̃(f)
∣∣ dµ(x)

≤ 1

µ(%2B)

ˆ

B

∣∣∣f(x)−mf

(
B̃

)∣∣∣ dµ(x) +
∣∣∣mf

(
B̃

)
−mB̃(f)

∣∣∣

≤ 1

µ(%2B)

ˆ

B

∣∣∣f(x)−mf

(
B̃

)∣∣∣ dµ(x) +
1

µ(B̃)

ˆ

B̃

∣∣∣f(x)−mf

(
B̃

)∣∣∣ dµ(x)

=
1

µ(%2B)

ˆ ∞

0

µ
({

x ∈ B :
∣∣∣f(x)−mf

(
B̃

)∣∣∣ > t
})

dt

+
1

µ(B̃)

ˆ ∞

0

µ
({

x ∈ B̃ :
∣∣∣f(x)−mf

(
B̃

)∣∣∣ > t
})

dt

. 1

µ(%2B)

ˆ ∞

0

exp

(
− c%t

‖f‖RBMO0,s(µ)

)
µ

(
%2B

)
dt

+
1

µ(B̃)

ˆ ∞

0

exp

(
− c%t

‖f‖RBMO0,s(µ)

)
µ

(
B̃

)
dt . ‖f‖RBMO0,s(µ),
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which implies (2.13).
On the other hand, applying Proposition 2.1 again, we conclude that for all

(6%2, β6%2)-doubling balls B ⊂ S ⊂ X ,

|mB(f)−mS(f)| ≤ |mB(f)−mf (B)|+ |mf (B)−mf (S)|+ |mf (S)−mS(f)|

≤ 1

µ(B)

ˆ

B

|f(x)−mf (B)| dµ(x) + [1 + δ(B, S)]‖f‖RBMO0,s(µ)

+
1

µ(S)

ˆ

S

|f(x)−mf (S)| dµ(x)

=
1

µ(B)

ˆ ∞

0

µ ({x ∈ B : |f(x)−mf (B)| > t}) dt

+ [1 + δ(B, S)]‖f‖RBMO0,s(µ)

+
1

µ(S)

ˆ ∞

0

µ ({x ∈ S : |f(x)−mf (S)| > t}) dt

. 1

µ(B)

ˆ ∞

0

exp

(
− c%t

‖f‖RBMO0,s(µ)

)
µ

(
%2B

)
dt

+ [1 + δ(B, S)]‖f‖RBMO0,s(µ)

+
1

µ(S)

ˆ ∞

0

exp

(
− c%t

‖f‖RBMO0,s(µ)

)
µ(%2S)dt

. [1 + δ(B, S)]‖f‖RBMO0,s(µ),

which implies (2.14). This finishes the proof of Theorem 2.1. ¤
We end this section with the proof of Corollary 2.1.

Proof of Corollary 2.1. From the fact that ϕ is strictly increasing, it follows that
for any t ∈ (0,∞), any ball B ⊂ X and y ∈ B such that |f(y)−mf (B̃)| > t,

ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

> ϕ(t).

This implies that
{

y ∈ B :
∣∣∣f(y)−mf

(
B̃

)∣∣∣ > t
}
⊂

{
y ∈ B : ϕ

(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

> ϕ(t)
}

.

Furthermore,

µ
({

y ∈ B :
∣∣∣f(y)−mf

(
B̃

)∣∣∣ > t
})

≤ µ
({

y ∈ B : ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

> ϕ(t)
})

.
(2.15)

On the other hand, by the definition of m%
0,s;B(f − mf (B̃)), we see that for all t ∈

(0,m%
0,s;B(f −mf (B̃))),

µ
({

y ∈ B :
∣∣∣f(y)−mf

(
B̃

)∣∣∣ > t
})

≥ sµ(%B),

which, along with (2.15), yields

µ
({

y ∈ B : ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

> ϕ(t)
})

≥ sµ(%B).
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Therefore,

ϕ(t) ≤ 1

sµ(%B)

ˆ

B

ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

dµ(y).(2.16)

By the choice of the function ϕ, we easily know that the inverse function of ϕ
exists, which is denoted by ϕ−1. From (2.16) and the facts that ϕ is nonnegative
continuous and

lim
t→∞

ϕ(t) = ∞,

we infer that for all t ∈ (0,m%
0,s;B(f −mf (B̃))),

t ≤ ϕ−1

(
1

sµ(%B)

ˆ

B

ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

dµ(y)

)
.

By letting t → m%
0,s;B(f −mf (B̃)), we conclude that

m%
0,s;B

(
f −mf

(
B̃

))
≤ ϕ−1

(
1

sµ(%B)

ˆ

B

ϕ
(∣∣∣f(y)−mf

(
B̃

)∣∣∣
)

dµ(y)

)
.

From this fact and Theorem 2.1, we deduce that if f satisfies the assumptions of
Corollary 2.1, then f ∈ RBMO0,s(µ). Hence, f ∈ RBMO(µ), which completes the
proof of Corollary 2.1. ¤

3. Some applications

We begin this section with the notion of the Calderón–Zygmund operator on the
non-homogeneous metric measure spaces.

Let ∆ := {(x, x) : x ∈ X} and K be a µ-locally integrable function mapping
(X × X ) \ ∆ to C, which satisfies the size condition that there exists a positive
constant C such that for all x, y ∈ X with x 6= y,

(3.1) |K(x, y)| ≤ C
1

λ(x, d(x, y))
,

and the regularity condition that there exist some positive constants τ and C such
that for all x, x′, y ∈ X with d(x, y) ≥ 2d(x, x′),

(3.2) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
[d(x, x′)]τ

[d(x, y)]τλ(x, d(x, y))
.

The Calderón–Zygmund operator associated to the above kernel K and the measure
µ is formally defined by

(3.3) Tf(x) :=

ˆ

X
K(x, y)f(y) dµ(y).

This integral may not be convergent for many functions. Thus, we consider the
truncated operators Tε for ε ∈ (0,∞) defined by setting, for any suitable function f
and x ∈ X ,

(3.4) Tεf(x) :=

ˆ

d(x,y)>ε

K(x, y)f(y) dµ(y).

Throughout this paper, we say that T is bounded on Lp(µ) if the operators Tε are
bounded on Lp(µ) uniformly on ε ∈ (0,∞), and T satisfies some type of estimate if
Tε satisfies the same type of estimate uniformly on ε ∈ (0,∞).
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A new example of operators with kernel satisfying (3.1) and (3.2) is the so-called
Bergman-type operator appearing in [25]; see also [8] for an explanation. Notice
that (3.1) and (3.2) are more general than the conditions satisfied by the classical
Calderón–Zygmund operators.

The purpose of this section is to show that the Lp(µ)-boundedness with p ∈ (1,∞)
of the Calderón–Zygmund operator is equivalent to several corresponding endpoint
estimates, based on the results obtained in Section 2. To this end, we first recall the
definition of the atomic Hardy space H1(µ) as follows.

Definition 3.1. Let ρ ∈ (1,∞) and p ∈ (1,∞]. A function b ∈ L1
loc(µ) is called

a (p, 1)λ-atomic block if
(i) there exists some ball B ⊂ X such that supp(b) ⊂ B;
(ii)

´
X b(x) dµ(x) = 0;

(iii) for j ∈ {1, 2}, there exist a function aj supported on ball Bj ⊂ B and a
number κj ∈ R such that b = κ1a1 + κ2a2 and

‖aj‖Lp(µ) ≤ [µ(ρBj)]
1/p−1 [1 + δ (Bj, B)]−1 .

Then define |b|H1,p
atb(µ) := |κ1| + |κ2|. A function f ∈ L1(µ) is said to belong to the

space H1,p
atb(µ) if there exist (p, 1)λ-atomic blocks {bi}i∈N such that f =

∑∞
i=1 bi with∑∞

i=1 |bi|H1,p
atb(µ) < ∞. The H1,p

atb(µ) norm of f is defined by

‖f‖H1,p
atb(µ) := inf

{ ∞∑
i=1

|bi|H1,p
atb(µ)

}
,

where the infimum is taken over all the possible decompositions of f into (p, 1)λ-
atomic blocks.

It was proved in [9, Proposition 3.1(ii)] that for each p ∈ (1,∞], the space H1,p
atb(µ)

is independent of the choice of ρ ∈ (1,∞) and, for all p ∈ (1,∞), the spaces H1,p
atb(µ)

and H1,∞
atb (µ) coincide with equivalent norms. Thus, in this paper, we write H1,p

atb(µ)
simply by H1(µ).

The following theorem is the main result of this section.

Theorem 3.1. Let ρ ∈ (1,∞), K be a µ-locally integrable function mapping
(X×X )\∆ to C which satisfies (3.1) and (3.2), and T a Calderón–Zygmund operator
as in (3.3). Then the following seven statements are equivalent:

(i) T is bounded from H1(µ) into L1(µ);
(ii) T is bounded from H1(µ) into weak L1(µ);
(iii) for some ν ∈ (0,∞), there exists a positive constant C such that for all

ε, t ∈ (0,∞), balls B and bounded functions f with supp(f) ⊂ B,
µ({x ∈ B : |Tε(f)(x)| > t}) ≤ Ct−νµ(ρB)‖f‖ν

L∞(µ);

(iv) for some σ ∈ (0, 1), there exists a positive constant C such that for all ε ∈
(0,∞), balls B and bounded functions f with supp(f) ⊂ B,

1

µ(ρB)

ˆ

B

|Tε(f)(x)|σ dµ(x) ≤ C‖f‖σ
L∞(µ);

(v) T is bounded from L∞(µ) into RBMO(µ);
(vi) T is bounded on Lp(µ) for some p ∈ (1,∞);
(vii) T is bounded on Lp(µ) for all p ∈ (1,∞).
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When (X , d, µ) := (Rd, | · |, µ) with µ satisfying the polynomial growth con-
dition (1.2), the corresponding result was obtained in [5]. Furthermore, it was al-
ready proved in [15] that for the Calderón–Zygmund operator T on non-homogeneous
spaces, its boundedness on Lp(µ) with some p ∈ (1,∞) is equivalent to its bounded-
ness from H1(µ) into weak L1(µ). To be precise, (i) ⇔ (ii)⇔ (vi) and (ii) ⇒ (iii)⇒
(iv) have been proved in [15]. In this article, applying the new characterization of the
space RBMO(µ) in Section 2 (to be precise, Corollary 2.1), we prove the implication
(iv) ⇒ (v).

From Theorem 3.1, we further deduce the following result.

Corollary 3.1. Let K be a µ-locally integrable function mapping (X × X ) \∆
to C which satisfies (3.1) and (3.2), and T a Calderón–Zygmund operator as in (3.3).
Let Φ be a Young function such that for all t1, t2 ∈ [0,∞), Φ(t1t2) ≤ CΦΦ(t1)Φ(t2),
where CΦ is a positive constant independent of t1 and t2, and that for some σ ∈ (0, 1),

ˆ ∞

0

Φ

(
1

t

)
tσ−1dt < ∞.

If there exists a positive constant C such that for all ε, t ∈ (0,∞) and bounded
functions f with bounded support,

µ({x ∈ X : |Tε(f)(x)| > t}) ≤ C

ˆ

X
Φ

( |f(x)|
t

)
dµ(x),

then T is bounded on Lp(µ) for all p ∈ (1,∞).

We remark that if we let Φ(t) := t logγ(2 + t) with γ ∈ [1,∞) for all t ∈ [0,∞),
then by Corollary 3.1, we easily see that if T is of weak type (L logγ L(µ), L1(µ)),
namely, there exists a positive constant C such that for all t ∈ (0,∞) and bounded
functions f with bounded support,

µ({x ∈ X : |Tε(f)(x)| > t}) ≤ C

ˆ

X

|f(x)|
t

logγ

(
e +

|f(x)|
t

)
dµ(x),

then T is also bounded on Lp(µ) for all p ∈ (1,∞).
To prove Theorem 3.1, we need the following technical lemma.

Lemma 3.1. Let K be a µ-locally integrable function mapping (X × X ) \ ∆
to C which satisfies (3.1) and (3.2), and T a Calderón–Zygmund operator as in
(3.3). Let σ ∈ (0, 1). If Theorem 3.1(iv) with ρ = 3/2 is true, then for all ε ∈
(0,∞) and bounded functions f with bounded support, |Tε(f)|σ ∈ RBMO(µ) and
‖|Tε(f)|σ‖RBMO(µ) ≤ C‖f‖σ

L∞(µ), where C is a positive constant independent of f and
ε.

Proof. By the homogeneity of ‖ · ‖RBMO(µ), we may assume that ‖f‖L∞(µ) = 1.
For any ball B ⊂ X , set

hB,σ := mB

(∣∣∣Tε

(
fχX\ 4

3
B

)∣∣∣
σ)

,

where for any µ-locally integrable function g and any ball B ⊂ X , mB(g) denotes
the mean of g over B, namely, mB(g) := 1

µ(B)

´
B

g(x)dµ(x). It follows, from Defini-
tion 1.3, that the proof of Lemma 3.1 can be reduced to proving that

(3.5)
1

µ(2B)

ˆ

B

∣∣∣|Tε(f)(x)|σ − hB,σ

∣∣∣ dµ(x) . 1,
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and that for all balls B and S with B ⊂ S,

(3.6) |hB,σ − hS,σ| . 1 + δ(B,S).

We first show (3.5). For any fixed ball B and bounded function f with bounded
support and ‖f‖L∞(µ) = 1, decompose f as f = fχ 4

3
B + fχX\ 4

3
B =: f1 + f2. Write

1

µ(2B)

ˆ

B

∣∣∣|Tε(f)(x)|σ − hB,σ

∣∣∣ dµ(x)

≤ 1

µ(2B)

ˆ

B

∣∣∣|Tε(f)(x)|σ−|Tε(f2)(x)|σ
∣∣∣ dµ(x) +

1

µ(2B)

ˆ

B

∣∣∣|Tε(f2)(x)|σ − hB,σ

∣∣∣ dµ(x)

≤ 1

µ(2B)

ˆ

B

|Tε(f1)(x)|σ dµ(x) +
1

µ(2B)

ˆ

B

∣∣∣|Tε(f2)(x)|σ − hB,σ

∣∣∣ dµ(x).

By the hypothesis, we easily know that
1

µ(2B)

ˆ

B

|Tε(f1)(x)|σ dµ(x) ≤ 1

µ(2B)

ˆ
4
3
B

|Tε(f1)(x)|σ dµ(x) . 1.

On the other hand, from (3.1) and (3.2), it follows that for all x, y ∈ B,
∣∣∣|Tε(f2)(x)|σ − |Tε(f2)(y)|σ

∣∣∣ ≤ |Tε(f2)(x)− Tε(f2)(y)|σ . ‖f‖σ
L∞(µ) . 1,

which implies that
1

µ(2B)

ˆ

B

∣∣∣|Tε(f2)(x)|σ − hB,σ

∣∣∣dµ(x)

≤ 1

µ(2B)

1

µ(B)

ˆ

B

ˆ

B

∣∣∣|Tε(f2)(x)|σ − |Tε(f2)(y)|σ
∣∣∣ dµ(y) dµ(x) . 1.

Therefore, (3.5) holds.
We now turn to prove (3.6). For all balls B and S with B ⊂ S, we denote the

smallest positive integer k such that 4
3
S ⊂ 2kB by N . Write

|hB,σ − hS,σ| ≤
∣∣∣mB

(∣∣∣Tε

(
fχX\ 4

3
B

)∣∣∣
σ)
−mB

(∣∣Tε

(
fχX\2NB

)∣∣σ)
∣∣∣

+
∣∣mB

(∣∣Tε

(
fχX\2NB

)∣∣σ)−mS

(∣∣Tε

(
fχX\2NB

)∣∣σ)∣∣

+
∣∣∣mS

(∣∣∣Tε

(
fχX\ 4

3
S

)∣∣∣
σ)
−mS

(∣∣Tε

(
fχX\2NB

)∣∣σ)
∣∣∣

≤ mB

(∣∣∣Tε

(
fχ2NB\ 4

3
B

)∣∣∣
σ)

+
∣∣∣mB

(∣∣Tε

(
fχX\2NB

)∣∣σ)

−mS

(∣∣Tε

(
fχX\2NB

)∣∣σ)
∣∣∣ + mR

(∣∣∣Tε

(
fχ2NB\ 4

3
S

)∣∣∣
σ)

=: E1 + E2 + E3.

By (3.1), we first conclude that for all x ∈ B,
∣∣∣Tε

(
fχ2NB\ 4

3
B

)
(x)

∣∣∣ .
ˆ

2NB\2B

|f(y)|
λ(x, d(x, y))

dµ(y)

+

ˆ

2B\ 4
3
B

|f(y)|
λ(x, d(x, y))

dµ(y) . 1 + δ(B, S),
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which, along with the fact σ ∈ (0, 1), implies that

E1 . [1 + δ(B,S)]σ ≤ 1 + δ(B, S).

Analogously, E3 . 1. It follows, from (3.1) and (3.2), that for all x ∈ B and y ∈ S,
∣∣|Tε(fχX\2NB)(x)|σ − |Tε(fχX\2NB)(y)|σ

∣∣ ≤ |Tε(fχX\2NB)(x)−Tε(fχX\2NB)(y)|σ . 1.

This further shows that

E2 ≤ 1

µ(B)

1

µ(S)

ˆ

B

ˆ

S

∣∣|Tε(fχX\2NB)(x)|σ − |Tε(fχX\2NB)(y)|σ
∣∣ dµ(y) dµ(x) . 1.

By the estimates for E1, E2 and E3, we obtain (3.6), which completes the proof of
Lemma 3.1. ¤

Proof of Theorem 3.1. By [15, Theorem 1.1, Corollary 1.1 and Lemma 3.1], we
know that (i)⇔ (ii)⇔ (vi) and (ii)⇒ (iii)⇒ (iv). Now we prove that (iv)⇒ (v)⇒
(i), which implies the statements (i)–(vi) are equivalent. We then finally show that
(vi) ⇔ (vii).

(iv) ⇒ (v). For simplicity, assume that (iv) is true with ρ = 3/2. To show (v),
it suffices to prove that for all ε ∈ (0,∞) and bounded functions f with bounded
support,

‖Tε(f)‖RBMO(µ) . ‖f‖L∞(µ).

It follows, from Lemma 3.1, that |Tε(f)|σ ∈ RBMO(µ), where σ ∈ (0, 1). By the
John–Nirenberg inequality in [7], we know that Tεf is µ-locally integrable. For each
fixed ball B, set hB := mB(Tε(fχX\ %+1

2
B)). By some arguments similar to those used

in the proof of Lemma 3.1, we conclude that for all balls B,

(3.7)
1

µ(%B)

ˆ

B

|Tε(f)(x)− hB|σ dµ(x) . ‖f‖σ
L∞(µ),

and that for all balls B and S with B ⊂ S,

(3.8) |hB − hS| . [1 + δ(B, S)]‖f‖L∞(µ).

Notice that for any ball B, c ∈ C and µ-measurable function h, mh(B)−c = mh−c(B).
From this fact, (3.7), (3.8) and (2.2), it follows that for all balls B,

ˆ

B

∣∣∣Tε(f)(y)−mTε(f)

(
B̃

)∣∣∣
σ

dµ(y)

≤
ˆ

B

∣∣∣Tε(f)(y)− hB

∣∣∣
σ

dµ(y) +
∣∣hB − hB̃

∣∣σ µ(B) +
∣∣∣hB̃ −mTε(f)

(
B̃

)∣∣∣
σ

µ(B)

. µ(%B)‖f‖σ
L∞(µ) +

[
1 + δ(B, B̃)

]σ

µ(B)‖f‖σ
L∞(µ) +

∣∣∣m[Tε(f)−h
B̃

]

(
B̃

)∣∣∣
σ

µ(B)

. µ(%B)‖f‖σ
L∞(µ) +

(
m%

0,s;B̃

[
Tε(f)− hB̃

])σ

µ(B)

. µ(%B)‖f‖σ
L∞(µ) +

µ(B)

µ(%B̃)

ˆ

B̃

∣∣∣Tε(f)(y)− hB̃

∣∣∣
σ

dµ(y) . µ(%B)‖f‖σ
L∞(µ),
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and that for any two (6%2, β6%2)-doubling balls B ⊂ S,
∣∣mTε(f)(B)−mTε(f)(S)

∣∣ ≤ ∣∣mTε(f)(B)− hB

∣∣ + |hB − hS|+
∣∣mTε(f)(S)− hS

∣∣
.

∣∣m[Tε(f)−hB ](B)
∣∣+[1 + δ(B,S)]‖f‖L∞(µ)+

∣∣m[Tε(f)−hS ](S)
∣∣

. m%
0,s;B (Tε(f)− hB) + [1 + δ(B, S)]‖f‖L∞(µ)

+ m%
0,s;S (Tε(f)− hS)

.
[

1

µ(%B)

ˆ

B

∣∣∣Tε(f)(y)− hB

∣∣∣
σ

dµ(y)

]1/σ

+ [1 + δ(B, S)]‖f‖L∞(µ)

+

[
1

µ(%S)

ˆ

S

∣∣∣Tε(f)(y)− hS

∣∣∣
σ

dµ(y)

]1/σ

. [1 + δ(B,S)]‖f‖L∞(µ),

where B̃ is the smallest (6%2, β6%2)-doubling ball of the form (6%2)jB with j ∈ Z+

as in Section 2. By Corollary 2.1 with ϕ(t) := tσ for all t ∈ [0,∞), we see that
‖Tε(f)‖RBMO(µ) . ‖f‖L∞(µ). Thus, (v) holds.

(v) ⇒ (i). We first claim that for all ε ∈ (0,∞), balls B and bounded functions
f with support contained in B,

(3.9)
ˆ

B

|Tε(f)(x)| dµ(x) . µ(2B)‖f‖L∞(µ).

We consider the following two cases for rB.
Case I. rB ≤ diam(supp µ)/40. In this case, choose ρ = 2 and % = 1 in Lemma 2.6.

From the hypothesis and Lemma 2.6, it follows that for all ε ∈ (0,∞),
ˆ

B

∣∣Tε(f)(x)−m
B̃6(Tε(f))

∣∣ dµ(x) . µ(2B)‖f‖L∞(µ),

where for any ball B ⊂ X , B̃6 denotes the smallest (6, β6)-doubling ball of the form
6jB with j ∈ Z+. Hence, in this case, the proof of (3.9) is reduced to showing

(3.10)
∣∣m

B̃6(Tε(f))
∣∣ . µ(2B)‖f‖L∞(µ).

We use the same notation as in the proof of [15, Lemma 3.1]. Let S be the smallest
ball of the form 6jB such that µ(6jB \ 2B) > 0 with j ∈ N. Thus, µ(6−1S \ 2B) = 0

and µ(S \ 2B) > 0. This leads to µ(S \ (6−1S ∪ 2B)) > 0 and B̃6 ⊂ S̃6. By this
and [7, Lemma 3.3], we choose x0 ∈ S \ (6−1S ∪ 2B)) such that the ball center at
x0 with the radius 6−krS for some integer k ≥ 2 is (6, β6)-doubling. Let B0 be the
largest ball of this form. Then it is easy to show that B0 ⊂ 2S and d(B0, B) ≥ rB/2.
It was proved in the proof of [15, Lemma 3.1] that δ(B, 2S) . 1 and δ(B0, 2S) . 1,
which imply that δ(B, (̃2S)6) . 1 and δ(B0, (̃2S)6) . 1. Therefore, via Lemma 2.6,
we conclude that

∣∣mB0(Tε(f))−m
B̃6(Tε(f))

∣∣

≤
∣∣∣mB0(Tε(f))−m

(̃2S)6
(Tε(f))

∣∣∣ +
∣∣∣m

(̃2S)6
(Tε(f))−m

B̃6(Tε(f))
∣∣∣

≤
[
2 + δ

(
B0, (̃2S)6

)
+ δ

(
B̃6, (̃2S)6

)]
‖Tε(f)‖RBMO(µ) . ‖f‖L∞(µ),
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which implies that to prove (3.10), it suffices to show

(3.11) |mB0(Tε(f))| . ‖f‖L∞(µ).

Notice that for all y ∈ B0 and z ∈ B, d(y, z) ≥ rB/2 and hence d(xB, y) ≤ d(xB, z)+
d(z, y) . d(z, y). From this, (3.1) and (1.4), it follows that for all y ∈ B0,

|Tε(f)(y)| .
ˆ

B

|f(z)|
λ(y, d(y, z))

dµ(z) .
ˆ

B

|f(z)|
λ(xB, d(y, z))

dµ(z)

. µ(B)

λ(xB, rB)
‖f‖L∞(µ) . ‖f‖L∞(µ),

which implies (3.11). Therefore, (3.9) holds in this case.
Case II. rB > diam(supp µ)/40. In this case, without loss of generality, we may

assume rB ≤ 8diam(supp µ). Then B ∩ supp(µ) is covered by balls {Bj}M
j=1 with

radius rB/400, where M ∈ N. For j ∈ {1, · · · ,M}, define

aj :=
χBj∑M

k=1 χBk

f.

Since (3.9) holds if we replace B by 2Bj, which supports the function aj, we then see
that
ˆ

B

|Tε(f)(x)| dµ(x) ≤
M∑

j=1

ˆ

B\2Bj

|Tε(aj)(x)| dµ(x) +
M∑

j=1

ˆ

2Bj

|Tε(aj)(x)| dµ(x)

.
M∑

j=1

‖aj‖L∞(µ)µ(B) +
M∑

j=1

‖aj‖L∞(µ)µ(4Bj) . ‖f‖L∞(µ)µ(2B).

Thus, the claim (3.9) also holds in this case.
Now based on the claim (3.9), we prove (i). Take ρ = 4 and p = ∞ in Defini-

tion 3.1. It suffices to show that for all (∞, 1)λ-atomic blocks b,

(3.12) ‖Tε(b)‖L1(µ) . |b|H1,∞
atb (µ).

Let b :=
∑2

j=1 κjaj be a (∞, 1)λ-atomic block, where for any j ∈ {1, 2}, supp(aj) ⊂
Bj ⊂ B for some Bj and B as in Definition 3.1. Write

‖Tε(b)‖L1(µ) =

ˆ

2B

|Tε(b)(x)| dµ(x) +

ˆ

X\(2B)

· · ·

≤
2∑

j=1

|κj|
ˆ

2Bj

|Tε(aj)(x)| dµ(x) +
2∑

j=1

|κj|
ˆ

2B\2Bj

· · ·

+

ˆ

X\(2B)

|Tε(b)(x)| dµ(x) =:
3∑

i=1

Fi.

It follows, from (3.9), that

F1 .
2∑

j=1

|κj|µ(4Bj)‖a‖L∞(µ) .
2∑

j=1

|κj|.



A new characterization of regularized BMO spaces on non-homogeneous spaces and its applications 25

On the other hand, by (3.1) and (1.4), we conclude that

F2 .
2∑

j=1

|κj|
ˆ

(2B)\(2Bj)

ˆ

Bj

|aj(y)|
λ(x, d(x, y))

dµ(y) dµ(x)

.
2∑

j=1

|κj|
ˆ

(2B)\(2Bj)

ˆ

Bj

|aj(y)|
λ(xBj

, d(x, xBj
))

dµ(y) dµ(x)

.
2∑

j=1

|κj|δ (Bj, B) ‖aj‖L1(µ) .
2∑

j=1

|κj|.

It remain to estimate F3. We consider the following two cases.
Case (i). ε ∈ (0, rB). In this case, it is easy to show that for all x ∈ X \ (2B)

and y ∈ B, d(x, y) < ε. Thus, by the vanishing moment of b with (3.2) and (1.4), we
easily see that

F3 .
ˆ

X\(2B)

ˆ

X
|K(x, y)−K(x, xB)||b(y)| dµ(y) dµ(x)

.
ˆ

X\(2B)

ˆ

X

[
d(y, xB)

d(x, xB)

]τ |b(y)|
λ(x, d(x, y))

dµ(y) dµ(x)

.
2∑

j=1

|κj|
ˆ

X\(2B)

ˆ

Bj

[
rB

d(x, xB)

]τ |aj(y)|
λ(xB, d(x, xB))

dµ(y) dµ(x)

.
2∑

j=1

|κj|
∞∑

k=1

ˆ

(2k+1B)\(2kB)

[
rB

2krB

]τ
dµ(x)

λ(xB, d(x, xB))
.

2∑
j=1

|κj|.

Case (ii). ε ∈ [rB,∞). In this case, we first write

F3 ≤
ˆ

d(x,xB)>rB+ε

ˆ

d(x,y)>ε

|K(x, y)−K(x, xB)||b(y)| dµ(y) dµ(x)

+

ˆ

2rB≤d(x,xB)≤rB+ε

ˆ

d(x,y)>ε

|K(x, y)||b(y)| dµ(y) dµ(x) =: F3,1 + F3,2.

For the term F3,1, notice that for all x ∈ X such that d(x, xB) > rB +ε and all y ∈ B,
d(x, y) > ε. Thus, by the same argument as to the Case (i), we conclude that

F3,1 .
2∑

j=1

|κj|.

On the other hand, from (3.1), (1.3) and (1.4), it follows that

F3,2 .
2∑

j=1

|κj|
ˆ

d(x,xB)≤2ε

ˆ

d(x,y)>ε

1

λ(x, d(x, y))
|aj(y)| dµ(y) dµ(x)

.
2∑

j=1

|κj|
ˆ

d(x,xB)≤2ε

1

λ(xB, ε)
dµ(x)‖aj‖L1(µ) .

2∑
j=1

|κj|.
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Combining the estimates for F3,1 and F3,2, we see that

F3 .
2∑

j=1

|κj|

in this case.
The estimates for F1, F2 and F3 imply (3.12). Thus, (v) ⇒ (i), which further

implies that (i)–(vi) are equivalent.
(vi) ⇔ (vii). The implication (vii) ⇒ (vi) is obvious. Let us prove (vi) ⇒ (vii).

Indeed, based on the equivalence of (i)–(vi) proved above, we conclude that if (vi)
holds, then T is bounded from H1(µ) into L1(µ) and from L∞(µ) into RBMO(µ). By
the interpolation result [1, Theorem 6.4], we see that T is bounded for all p ∈ (1,∞).
This means that (vii) holds. Thus, we proved that (vi) ⇔ (vii), which completes the
proof of Theorem 3.1. ¤

Proof of Corollary 3.1. By Theorem 3.1, the proof of Corollary 3.1 is reduced
to proving that Theorem 3.1(iv) is true. Let B be a fixed ball and f a bounded
function with support contained in B. By the homogeneity of ‖ · ‖RBMO(µ), we may
assume that ‖f‖L∞(µ) = 1. By some trivial computation, we easily see that for any
σ ∈ (0, 1),

ˆ

B

|Tε(f)(x)|σ dµ(x) = σ

ˆ 1

0

tσ−1µ({x ∈ B : |Tε(f)(x)| > t}) dt + σ

ˆ ∞

1

· · ·

. µ(B) +

ˆ ∞

1

tσ−1Φ

(
1

t

)
dt

ˆ

B

Φ(|f(x)|) dµ(x) . µ(B),

which completes the proof of Corollary 3.1. ¤
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