Annales Academi� Scientiarum Fennic�
Mathematica
Volumen 38, 2013, 839-847
University of Belgrade, Faculty of Mathematics
Studentski Trg 16, 11000 Belgrade, Serbia; elhrarya 'at' yahoo.com
University of Belgrade, Faculty of Mathematics
Studentski Trg 16, 11000 Belgrade, Serbia; arsenovic 'at' matf.bg.ac.rs
University of Belgrade, Faculty of Mathematics
Studentski Trg 16, 11000 Belgrade, Serbia; miodrag 'at' matf.bg.ac.rs
University of Belgrade, Faculty of Mathematics
Studentski Trg 16, 11000 Belgrade, Serbia; abejelashkhea 'at' yahoo.com
Abstract.
We prove that \omegau(\delta) \leq C\omegaf(\delta),
where u : \overline{\Omega} -> Rn is the harmonic
extension of a continuous map f -> \partial{\Omega} -> Rn,
if u is a K-quasiregular map and \Omega is bounded in
Rn with C
2010 Mathematics Subject Classification: Primary 30C80, 30C62; Secondary 30C55, 30H05.
Key words: Lipschitz-type spaces, harmonic mappings, quasiregular mappings, uniform domains.
Reference to this article: A. Abaob, M. Arsenovic, M. Mateljevic and A. Shkheam: Moduli of continuity of harmonic quasiregular mappings on bounded domains. Ann. Acad. Sci. Fenn. Math. 38 (2013), 839-847.
doi:10.5186/aasfm.2013.3848
Copyright © 2013 by Academia Scientiarum Fennica