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Abstract. In this paper, we obtain a basic inequation, investigate the relation between the
growth as well as the singular direction of algebroid functions and those of their coefficients, and
give some applications of the results.

1. Introduction and main results

Let A,(2)(# 0),A,-1(2), - ,Ao(2) (¢ € C) be entire functions without any
common zero, where v (> 1) € N. Then the equation

(1) V(z,w) = A, (2)w” + A, (2)w” 4+ 4 Ag(2) =0

defines a v-valued algebroid function w = w(z) in the complex plane (see [2,4]).
When v = 1, w(z) is a meromorphic function. If ¢)(z, w) is irreducible in the polyno-
mial ring M [w] of meromorphic functions (see [4, 8]), then w(z) is called a v-valued
irreducible algebroid function. In this paper, we do not require that the polynomial
¥ (z,w) be irreducible. A general v-valued algebroid function w(z) might be decom-
posed into n (1 < n < v) y-valued irreducible algebroid functions (including the case
of w = ¢ being constant), and Y, v; = v (see [7, 8]).

Let S, denote the set of the critical points of w(z)(see [2,4,8]). Then for any
2o € C\ S,, there exists v single-valued branches wy(2),wa(z), -+ ,w,(2) of w(z)
satisfying the equation (1) in some neighborhood of zy, i.e.

P(z,w) = A, (2)(w —wi(2))(w—wy(z)) - (w—w,(z)) =0, z€&U(z).

We sometimes use w(z) := {w;(z)}?_; to denote a v-valued algebroid functions (see
[7,8]).

In addition, the coefficient A;(z) of w’ in ¥ (z,w) is called the coefficient of
the algebroid function w(z), where the coefficient A, (z) of w” is called the leading
coefficient of w(z), and the coefficient Ag(z) of w® = 1 is called the constant coefficient
of w(z). If not particularly explained, we generally consider that there is at least one
transcendental entire function among {A4;(2)}}_,.

Definition 1. Let w(z) = {w;(2)}/_; be an algebroid function defined by (1).
Then

T(r,w)=m(r,w)+ N(r,w) = %Zm(r, w;) + %N(r, Ai,,)
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is said the characteristic function of w(z) or its Nevanlinna characteristic, where
m(r,w) is the proximity function, and N(r,w) is the counting function of poles of
w(z) (see [2,4]). The Nevanlinna characteristic of the coefficient A;(z) is

T(Tv A]) = m(r, AJ) + N<T7 AJ) = m(r, AJ)
p(w) denotes the order of w(z), and p(A;) denotes the order of A;(z). They are

respectively

log™ T log™ T'(r, A;
plw) = limsup 22 L) Ay i sup 128 LA
P00 logr P00 log r

Definition 2. Let A,(z),--, Ag(2) be the coefficients in (1). Set
A(z) = max{|4;(2); j =0,1,--- ,v} (2€C),
and define
1 [ : log" p(r, A
p(r, A) = —/ log A(re®®) df, p(A) = limsup log” ulr, 4)
0

2Ty r—00 IOgT
where p(r, A) is said the Valiron characteristic of w(z) (see [11,2]), and p(A) is the
order of u(r, A).

Definition 3. Suppose that w(z) is a v-valued algebroid function defined by (1).
If for arbitrary ¢ (0 < d < 7/2), in the angular region A(6y,9) = {z | |argz — 6y| <
0,0 <6y < 27T},

2) lim sup log n(r, A(6y,9),a)
r—00 log r

=p (0<p<o0)

holds for any a € C U oo except at most 2v values, then the radial argz = 6, is
called a Borel direction of w(z), where p is the order of w(z), and n(r, A(6y,9),a)
denotes the number of a-points of w(z) in the sector {|z| < r} N A(fy, ) counting
multiplicities (see [12,6]).

If (2) is replaced by

: N(T>A<0075)7a)
®) A )

> 0,

then the radial arg z = 6, is called a T" direction of w(z) (see [13]), where

1 /7" n(t, A, d),a) —n(0, A0y, d),a)

N(r, A6y, 0),a) = dt

v t

+ 1n(O7 A (0o, ), a)logr.
v

Some people have studied the growth of algebroid function from the characteristic
function, but an algebroid function is an implicit function, so it is very difficult to
calculate its order. However, if we can obtain the order by virtue of its coefficients,
then the problem will become simple. This has been studied by Valiron [11], He [2],
Katajaméki [4], Sun [9] and so on, where Katajaméki [4] indicated Theorem A by a
basic inequation of Selberg [10].
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Theorem A. Let w(z) be a v-valued irreducible algebroid function defined by
(1). Then

0 o mas (o (2 =01, -1}

where
AN log* T (r, 4%)
P A_l, N Hff;gp logr

is the order of A;(2)/AL(z).

Sun and Kong 9] obtained the following result by means of the canonical product
theorem (see [16]).

Theorem B. Let w(z) be a v-valued irreducible algebroid function defined by
(1). Then

8 s mas{p (). 51,0,

For the entire functions {4;(z)}’_, without any common zero, put
Q= {w | Atu(z>wy + Atuﬂ(z)wy_l +ot Ato(z) = 0}7

where (t,,t,_1,--+ ,to) is one of the permutation of (0,1,--- ,v). Then £ contains
(v + 1)! equations at most, and each equation defines an algebroid function. Hence
2 contains at most (v + 1)! algebroid functions. Obviously, w(z) defined by (1) is
one element in 2. When A,(z),---,Ap(z) are all non-vanishing, every element in
Q) is a v-valued algebroid function; otherwise, there are less-than-v-valued algebroid
functions in €.

We have considered the relation between the growth of the algebroid functions in
Q and that of {A;(2)}7_, (see [14,15]), and we continue to study the relation. Here
Theorem 1 is obtained. It makes Theorems A and B become its special cases.

Theorem 1. Let {A;(z)}7_, be v + 1 entire functions without common zeros.
Then

plu) = max {p(F )i 1€ 0.1 ] (V) € 0)
for any Ai(z) £0 (0 <1< v).

The following Theorem 2 gives the relation between the singular direction of
algebroid functions in  and that of their coefficients. In a sense, it gives a way
to determine the existence of Borel direction and T direction of a class of algebroid
functions.

Theorem 2. Suppose that {A;(z)}}_, are v+1 entire functions with no common
zeros, where A;(z) (0 <1 <v) is transcendental and the rest functions are constant.

1. If p(A;)) = p (0 < p < o0), then Borel direction of A;(z) is also that of w(z)
for arbitrary w(z) € ).

2. If A(z) exists T direction, then T direction of A;(z) is also that of w(z) for
arbitrary w(z) € Q.



482 Songmin Wang

2. Lemmas

In this section, we give three basic inequations, which are needed in the proofs
of the theorems.

Lemma 1. [2,11] Suppose that w(z) is an algebroid function defined by (1).
Then

1
T(T‘, ’LU) - HJ(T’ A) + - 1Og |Cw| < log 2,
v
where ¢, is the first non-zero coefficient of the Laurent expansion of the leading
coefficient of w(z) at the origin.

Remark. w(z) is an irreducible algebroid function in Lemma 1 in the original
literature, but the proof process of the result has nothing to do with the reducibility
of w(z) (see [2,11]). Therefore, the result is true for a general algebroid function, so
that it is true for each element in 2. Moreover, the lemma shows that p(w) = p(A).

Lemma 2. [14] Let w(z) € Q. Then for any coefficient A;(z) and non-vanishing
coefficient A,(z),t,u € {0,1,--- , v}, we have

(e, A) > (7‘ %) +O(1), namely p(j ) < p(w).

u u

We obtained the basic inequation in Lemma 2 in 2008. In this paper, we obtain
another basic inequation. The result is the following Lemma 3.

Lemma 3. Let {A;(2)}_, be v+ 1 entire functions without common zeros. If
Ay(2) (#£0), 0 <u <, then

N(r,A)gy;l 3 T(r,j—i)+0(1).

j#u, 0<5<v

In particular, if A,(z) is a unique transcendental function among {A;(z)}"_, and the
rest functions are constants, then

u(r, A) < %T(r, A)+0(1).

Proof. Set f;,(2) = max{|4;()|,|4u(2)|} = |G [" - [Au(z)], where [F2E[* =

max{1, |2 ((z) |}. Then it can be deduced from Deﬁmtlon 2 and Jensen formula that
2
vi(r,A) < Z / log f]u re?
Jj#u, O<]<u
2 0 27
= Z / Te)d0+—/ log | A, (re’ “)| do
j#u, 0<]<l/ )

A; 1
= Z m(r, —]) +(v—1) (N(r, —) + log \cu|) :
J7u, 0<j<v Au Au

where ¢, is the first non-zero coefficient of the Laurent expansion of A,(z) at the
origin. Since A,(z),---, A1(2), Ao(2) are entire functions with no common zeros, we
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N(r,Aiu) < Z N<r,j—i).

J#u,0<j<v

have

Hence

v—1 A; v—1
A) < T(r =2 1 .
) <0 T (n ) S ol

j#u,0<j<v

In particular, let A,(z) be the unique transcendental function and A;(z) = ¢;
(€ C) (0 <j #u <v). Without loss of generality, we may assume that A;(z) = ¢
is a non-zero constant. Then for A;(z), applying the above similar method, we can
conclude

MRS /

)‘dﬁ—i- (v —1)log |ct

Jj#t, 0<]<I/
A .
= m(r, —“) + ) log" 51 4 (v —1)logle| < T(r, Ay) + O(1).
Cy . . C
J#tu; 0<j<v
Thus
1
wlr, A) < ~T(r, Au) + O(1). O

3. Proof of Theorem 1 and its applications

Since A;(z) # 0, we obtain from Lemma 2 and Lemma 3 that

1T( A)+0()<WA ( ) O(1), i€ {0,1,--- ,v}\{l}.

A
A AV
’ _"(AJ_#%?SV{”(E)}’ o € {01, A\ {1}

When p < oo, for arbitrary € > 0, there exists R > 0 such that
A; 1 1 —1)2
r(n 52 (14 -2 ) <ty < o oqy
Ay T(r, 5) v

holds for » > R. This implies that

Set

p(A) = p.

In addition, noting that the Valiron characteristic p(r, A) only depends on the co-
efficients {A4;(2)}/_, and combining with Lemma 1, we have p(w) = p(A) for all
w(z) € Q. Hence

(6) ot =max o (4) i€ 01 0y}

When p = oo, for any w(z) € €2, we have p(w) = oo by Lemma 2. Hence (6) still
holds. The theorem is completed.

According to Theorem 1, we know that the order of an algebroid function can be
obtained by virtue of its coefficients, and the order of every element in €2 is equal.
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Therefore, the order of two algebroid functions is equal provided that their non-
vanishing coefficients are the same even if they are different-valued functions. For

example, let
[e'e} 1 2n . [e'e} 1 .
Cz) = Z nlogn @ D)= Z (2n)! o

n=2 n=0
Then C(z) is an entire function with the order p(C) = 1/2 (see [2,P10]), and D(z)
is an entire function with the order p(D) = 1/2 (see [15]). Set

Y(z,w) = O(2)w* + cw® + D(2) =0, ¢(z,w) = D(2)w* + cw + CO(z) =0,

where ¢ € C is a non-zero constant. Choose ¢ as A;(z) in Theorem 1, then it is easy
to see that the 4-valued algebroid function defined by v (z,w) = 0 and the 2-valued
algebroid function defined by ¢(z,w) = 0 have the same order 1/2 (here §2 can be
considered as the set of algebroid functions with the coefficients {0, 0, ¢, C(z), D(z2)}),
while the result is not easily obtained by Theorem A or Theorem B.

Next we give other two applications of Theorem 1.

1. First, we can study the growth of an algebroid function compounding an
entire function.

Let w(z) be a v-valued algebroid function defined by (1), and g(z) be a non-
constant entire function. Then w(z) := w(g(z)) is a v-valued algebroid function
defined by the following equation (see [18])

Ay (g(2))w” + -+ Ai(g(2))w + Ao(9(2)) = 0.
Hence by Theorem 1, the order of w(g(z)) is

0 plula)) = ple) =max{p (490 ) i€ 0.1 bV 1), YA 20}

Gross [1] discussed the growth of the composite function of a meromorphic func-
tion and an entire function, and obtained the following result.

Theorem C. Let f(z) be a meromorphic function with the order p(f) > 0. Then
p(f(g)) = oo for arbitrary transcendental entire function g(z).

For an algebroid function compounding an entire function, Zheng and Yang [18|
proved Theorem D by getting an inequation on their characteristic functions.

Theorem D. Suppose that w(z) is an algebroid function of p(w) > 0, and g(z)
is an arbitrary transcendental entire function. Then p(w(g)) = cc.

In fact, we can also obtain the result of Theorem D easily by Theorem 1 and
Theorem C: Since p(w) > 0, there exists ¢, € {0,1,--- v} such that

’ (%) — p(w) > 0.

(3) =

Combining with (7), we get the result.

Then by Theorem C,

2. Second, we can study the growth of the derivative of an algebroid function.
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Let w(z) be a v-valued algebroid function defined by (1). Then its derivative w'(2)
is also a v-valued algebroid function. Without loss of generality, we may assume that
w'(z) is defined by the following equation
(8) C,(z)w"” + -+ Ci(z)w' + Cy(z) = 0,
where C,(2) (#0),---,C1(z),Co(z) are entire functions without any common zero.

Jacobson [3, 5] indicated that if (1) was written as

w” + B, 1 (2)w” 4 -+ Bi(2)w + By(z) = 0,
where B;(z) = A;i(2)/A,(2) (0 <i < v—1), then (8) could be obtained by calculating
the resultant ((v — 1) 4+ v-order determinant) of the polynomials

w’ + B,_ w4+ - 4+ Byw + By
and
(vw' + B, _Jw” ' 4 -+ 2By’ + B))w + Biw' + B}

and being properly multiplied by a factor at both ends. Then we can get p(w') by
Theorem 1.

For example, if w(z) is a 2-valued algebroid function, then by the resultant equal-
ing zero:

1 B, By
2w + Bi Blw’ + B[,) = O,
20"+ B} Biw' + Bj
we get
(9 (4Bo— BYw?+ B{(4B — BYw' + Bf — BiB{B{ + BoBf = 0.

If 4By — B? = 0, then w(z) is a reducible algebroid function defined by

B? B \?
w2+Blw+I1: (w+71) = 0.
Its two branches are wi(z) = wy(z) = —Bi1(2)/2 = —A1(2)/(245(2)) (Vz € C),
then w(z) is equivalent to the meromorphic function —A;(z)/(2A42(z)). Hence, we

generally discuss the case of 4By — B? # 0. Combining (8) with (9), we deduce
Ci_ 0 Co_ BE—BiBiBi + BoB?
Cy b, 4B, — B? ‘

Then p(w') can be obtained by Theorem 1. If w(z) is a more-than-2-valued algebroid
function, then we can calculate the resultant by Matlab. Therefore, we can also
obtain p(w’).

4. Proof of Theorem 2

Let B(z) := Aj(z). Then it follows from Theorem 1 that p(w) = p(B) (Vw(z) €

1. If 6y is an arbitrary Borel direction of the entire function B(z), then for
arbitrary § (0 < § < 7/2), in the angular region A(fy, d),

1 A B =
lim sup Ogn(7”> (0075>7 a) =
00 log r

holds, where a € C with at most one exceptional value. We distinguish three cases
below.
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Case 1. B(z) is the leading coefficient of w(z). Without loss of generality, we
assume that w(z) is defined by

Y(z,w) = B(2)w” + cp_qw” M 4. 4 cow +co = 0,

where ¢; e C, 0 <1 <v—1.
For any a € C U oo, we have from [2,P77] that

(10) n(r,w =a) =n(r,¥(z,a) =0), a€ C;
(11) n(r,w) =n(r,B=0), a=o0.
(i) If a € C\ {0}, then

Cp10" P+ cia+co -

(12) Y(z,a) =0 <= B(z) = =a.

al/
Therefore, if @ is not an exceptional value of B(z) in the Borel direction 6, then by
(10) and (12), we have

1 A = 1 A B=a
(13) lim sup ogn(r, A(fo, 0),w = a) = lim sup og n(r, A6, 9), a)
r—00 10g7“ 00 10g7«

If @ is an exceptional value of B(z) in the direction 6y, then there are at most v
exceptional values of w(z) in 6y (a is just one of them). These exceptional values are
the roots of the equation

aw’ 4+ c,_w”t o+ qw + o = 0.

(i) If @ = 0, then ¥(z,0) = ¢.

When ¢y = 0, we have 1(z,0) = 0. Then by (10), for any z € C, it is deduced
that w = 0 (in fact, some branch(es) of v-valued algebroid function w(z) is(are)
identically vanishing). Obviously, 0 is not an exceptional value of w(z).

When ¢ # 0, then w # 0 for any z € C. Hence 0 is an exceptional value of w(z).

(iii) If @ = oo, combining with (11), then an equality similar to (13) holds when 0
is not an exceptional value of B(z) in the Borel direction 6, else oo is an exceptional
value of w(z) in 6y when 0 is a Borel exceptional value of B(z).

Summing up the above discussions: if B(z) does not have exceptional values in
the direction 6y, then w(z) has at most one exceptional value a = 0. If B(z) has one
finite exceptional value in 6, then w(z) has at most max{r+1,2} = v+1 exceptional
values.

Therefore, we obtain that (2) holds for arbitrary a € C U co with at most v + 1
(< 2v) exceptional values. Then 6, is a Borel direction of w(z).

Case 2. B(z) is the coefficient of w’. Without loss of generality, we assume that
w(z) is defined by

Y(z,w) = qu' 4+ + Bz)w 4+ + ¢y =0,
where 1 <j<t<v,¢eC,0<i(#j) <t
(i) For any a € C\{0}, in the similar way, we have

cal 4+ ed ™ +ejdd T 4 g o~

a’

I
8

P(z,a) =0 < B(z) = —
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(13) holds when @ is not an exceptional value of B(z) in #y. Otherwise, corresponding
to the exceptional value @ of B(z), w(z) has at most t exceptional values (a is one of
them) in 6. They are the roots of the equation

cw' + -+ aw! 4+ -+ ¢y = 0.

(ii) a = 0. We can discuss the case in the similar way to (ii) of Case 1.

(iii) @ = oo. Since the leading coefficient of an algebroid function is not identically
vanishing, we have ¢; # 0. Then w(z) # oo. Hence oo is an exceptional value of
w(z).

Noting t > 1, thus t + 2 < 2t. Combining (i)—(iii) in Case 2, similar to Case 1,
we show that (2) holds for any a € C U 0o except at most t 4+ 2 values. Then 6 is a
Borel direction of w(z).

Case 3. B(z) is the constant coefficient. Without loss of generality, we assume
that w(z) is defined by

V(z,w) = cw' + w4 - qw + B(2) =0,

where 1 <t <v,¢ e C,1<i<t.

(i) For any a € C\{0}, in the similar way, we have
¥(z,a) =0 <= B(2) = —(¢a' + -+ cia) == a.

When @ is not an exceptional value of B(z) in the direction 6y, (13) holds. When a
is an exceptional value of B(z) in 6y, w(z) has at most ¢ exceptional values (a is one
of them). They are the roots of the equation

cqw' + e + -+ qw+a=0.

(ii) If @ = 0, then 1 (z,0) = B(z). Therefore, (13) holds for w = 0 when 0 is not
an exceptional value of B(z) in 6y, else 0 is also an exceptional value of w(z) in the
direction 6.

(iii) If @ = oo, similar to (iii) of Case 2, we obtain that oo is an exceptional value
of w(z).

Therefore, for arbitrary a € C U oo with at most max{t + 1,2} = ¢t + 1 (< 2t)
exceptional values, (2) holds. Then 6, is a Borel direction of w(z).

2. Suppose that 6y is any 7" direction of B(z). Then for arbitrary § (0 < 6 < 7/2),
in the angular region A(6y,0),

>0

B pr—
lim sup N(r, A;?((: (2’) a)

holds, where a € C with at most one exceptional value. Similar to the proof of the
Borel direction, from the above three cases, we can show that 6, is also a T direction
of t-valued (1 <t < v) algebroid function w(z) (€ Q). In the process, just noting

N, A(60,6),w = ) = S Nr, A6, 0),(2,0) = 0) = 1 N(r, A0y, 6), B =17),



488 Songmin Wang

a € C\{0}, and combining Lemma 1 with Lemma 3, we deduce
N<T7A(9075)7w:a) N<T7A(8075)7B :a)

i > i
P T(r,w) = P T A + o)
_ N(r, A(6,,6), B =a) 1
> ] .
R ( T(r.B) 1+ 245

I N(r,A(6y,0), B =1a)

= lim su

b T(r,B)

In addition, combining Lemma 1, Lemma 2 with the first fundamental theorem, we
obtain

N(r, A6y, 0),w = a) N(r, A(by,0), B =1a)

lim sup < lim sup

r—o00 T<T7 w) r—o00 t/,[,('f” A) —+ O(l)

. N(r,\(6y,0), B =a) 1

< lim sup .
e ( T(r B) 1+ To(ag,lf)z)
. N(r,/\(6y,6), B =a)

=1 .
P T(r, B)

Fhen N(r, A6y, o N(r,A(0y,0),B=a
lim sup (r, &(60,9),w = a) — lim sup (1, A(6p,0), B = a)'

00 T(r,w) P00 T(r,B)

Therefore, when @ is not an exceptional value of B(z) in 6, a is not an exceptional
value of w(z) in Oy either. Otherwise, corresponding to the exceptional value a of
B(z), w(z) has at most ¢ exceptional values (a is just one of them) in 6.

Moreover, if a = 0 or a = 0o, we can discuss these cases similar to 1.

Therefore, for any t-valued (1 < ¢ < v) algebroid function w(z) € €, (3) holds
for arbitrary a € C U oo except at most s (< 2t) values, where s = ¢+ 1 if ¢t > 1,
s=t+2if ¢t > 1. Then 6, is a T direction of w(z). Theorem 2 is completed.

In addition, since any transcendental entire function exists Julia direction (see
[17]), we can show similarly that Julia direction of A4,(z) is also that of w(z) (Vw(z) €
Q). Next we put forward two questions.

Question 1. For Q in Theorem 2 and arbitrary w(z) € 2, are the above singular
directions of w(z) also those of A;(z)? If it is true, then all the singular directions of
the algebroid functions in {2 are the same.

Question 2. For a general set ) of algebroid functions, let w(z) € Q be defined
by (1). If Ag(z) # 0, then w'(z) which is the reciprocal element of w(z) is defined
by (see [3])

Ao(2)w” + Ay (2)w” '+ ..+ A (2) = 0.
It is obvious that w(z) and w=!(z) have the same singular directions, such as the
same Borel direction, 7" direction and Julia direction. Therefore, it is natural to ask
whether it is true for all the algebroid functions in ).
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