
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 37, 2012, 285–300

TRANSITIVITY ON WEIERSTRASS POINTS

Zoë Laing and David Singerman

University of Southampton, School of Mathematics
Southampton SO17 1BJ, United Kingdom; zelaing@googlemail.com

University of Southampton, School of Mathematics
Southampton SO17 1BJ, United Kingdom; ds@maths.soton.ac.uk

Abstract. We search for Riemann surfaces whose automorphism groups act transitively on
their Weierstrass points. One example is Klein’s quartic. We find all hyperelliptic surfaces with
this property, all surfaces with this property whose automorphism group is PSL(2, q), many Pla-
tonic surfaces and other examples including Fermat curves. Basically, we find that the transitivity
property seems quite rare and that the surfaces we have found with this property are interesting
for other reasons too.

1. Preliminaries

Weierstrass Gap Theorem. [6] Let X be a compact Riemann surface of genus
g. Then for each point p ∈ X there are precisely g integers 1 = γ1 < γ2 < . . . < γg <
2g such that there is no meromorphic function on X whose only pole is one of order
γj at p and which is analytic elsewhere.

The integers γ1, . . . , γg are called the gaps at p. The complement of the gaps at
p in the natural numbers are called the non-gaps at p. Thus α is a non-gap at p if
there is a meromorphic function on X that has a pole of order α at p and is analytic
on X \ {p}. If f has a pole of order α at p, and g has a pole of order β at p, then
fg has a pole of order α + β at p so that the non-gaps at p form a semi-group under
addition.

Definition 1. The weight of p, denoted by wp, is given by

(1) wp =

g∑
i=1

(γi − i).

Definition 2. p is called a Weierstrass point if its weight is non-zero. Alterna-
tively, p is a Weierstrass point if there is a meromorphic function on X with a pole
of order ≤ g at p and analytic elsewhere. (Thus α1 ≤ g or γg > g at p.)

Theorem 1. [6]

(2)
∑
p∈X

wp = g3 − g.
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Theorem 2. [6] The number |W | of Weierstrass points on X(of genus g ≥ 2)
obeys

2g + 2 ≤ |W | ≤ g3 − g.

Furthermore, X has 2g + 2 Weirstrass points if and only if X is hyperelliptic (a two
sheeted covering of the sphere) and the branch points are the Weierstrass points,
(this follows from section 3). Generically, a Riemann surface of genus g will have
g3 − g Weierstrass points (see Rauch [20]).

A useful method of showing that p is a Weierstrass points is the following theorem
whose proof can be found in [6] as Theorem V.1.7.

Theorem 3. (Schoeneberg) Let h be an automorphism of a compact Riemann
surface of genus g ≥ 2. If h fixes more than 4 points, then these fixed points are
Weierstrass points.

This is equivalent to a theorem first stated by Schoeneberg in [22]. In this form
it is due to Lewittes [14].

A compact Riemann surface X of genus g ≥ 2 can be represented as U/K where
K is a torsion free Fuchsian group (a surface group). The full group of automorphisms
of X is then N(K)/K, and it is well known that N(K) is a Fuchsian group, and so a
group G of automorphisms of X has the form Γ/K, where Γ is a cocompact Fuchsian
group. We call Γ the lift of G.

Because of Schoeneberg’s theorem we want to know the number of fixed points
of an automorphism. For this we need a Theorem of Macbeath [17]. Rather than
stating this theorem in full generality we will give a few consequences, also pointed
out in [17]. The following result is useful.

Theorem 4. Let G be a cyclic group of automorphisms of X of order n and
represent G as Γ/K as above. Suppose that Γ has periods m1, . . . ,mr. If t ∈ G has
order d, then the number F (t) of fixed points of t is

F (t) = n
∑

d|mi

1

mi

.

In section 4 we will use automorphism groups of the form PSL(2, q), where q = pn,
p a prime.

Theorem 5. Let Aut X ∼= PSL(2, q), q odd and again represent Aut X = Γ/K
as above. If t ∈ Aut X has order d and q is odd, then

F (t) =





(q − 1)
∑

d|mi

1

mi

if d | q−1
2
,

(q + 1)
∑

d|mi

1

mi

if d | q+1
2
,

(n, 2)

2
pn−1(p− 1)

∑
mi=p

1 if d = p.
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If q is even, then

F (t) =





2(q − 1)
∑

d|mi

1

mi

if d | q − 1,

2(q + 1)
∑

d|mi

1

mi

if d | q + 1,

2n−1
∑
mi=2

1 if d = 2.

2. Maps on surfaces

It is now useful to introduce maps on surfaces. We think of the word map in
its geographic sense. Basically we just decompose the surface into simply-connected
regions.

A formal theory was given in [9], although the origins of the theory go much
further back. A map on a surface X is an embedding of a graph G into X such
that the components of the complement of M, which are called the faces of M, are
simply-connected. The detailed theory is set out in [9] but for briefer versions see [25]
or [10]. There it is shown that if a surface carries a map, then it has the structure
of a Riemann surface. A dart of a map M is a directed edge and the automorphism
group of the map is also an automorphism group of the associated Riemann surface.

Definition 3. A map is regular if the automorphism group of the map acts
transitively on the darts of the map.

The theory of regular maps goes back to the end of the 19th century; for a survey
of the classical work see [5].

Definition 4. [25] A geometric point of a map is a vertex, face, centre or edge-
centre.

Definition 5. A Riemann surface that contains a regular map is called Platonic.

In [25] we investigated the question of when the geometric points are Weierstrass
points.

Platonic surfaces are those that are of the form U/K where K is a torsion-free
normal subgroup of a Fuchsian triangle group, with one period equal to 2, so that the
automorphism group of a Platonic surface is an image of a (2,m, n) triangle group.
Two very famous Platonic surfaces are

(1) Klein’s Riemann surface of genus 3. This surface has automorphism group
PSL(2, 7) of order 168. It corresponds to a map of type {3, 7}.

(2) Bring’s surface of genus 4. This surface has automorphism group S5 of order
120. It corresponds to a map of type {5, 4} which gives the small stellated
dodecahedron. For Bring’s surface, see [28].

These surfaces will appear again in section 7.
Since Grothendieck’s esquisse d’un programme, maps are known as clean dessins

d’enfants. Grothendieck pointed out that Belyi’s Theorem implies that the Riemann
surface underlying a map corresponds to an algebraic curve defined over the field of
algebraic numbers.
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3. Hyperelliptic surfaces

Hyperelliptic surfaces are Riemann surfaces that are two-sheeted coverings of the
Riemann sphere. They admit an automorphism J , called the hyperelliptic involution,
that interchanges the two sheets and which is central in the automorphism group of
the surface. By the Riemann–Hurwitz formula there are 2g + 2 branch points on the
surface which are fixed by J . If the genus of the surface is greater than 1 then these
branch points are the Weierstrass points on the surface (see [6, 111.7]), or just use
Schoeneberg’s Theorem. We want to find the cases where the automorphism group of
a hyperelliptic surface acts transitively on the 2g + 2 Weierstrass points. The group
then acts transitively on the projections of these Weierstrass points on the sphere.
We study the cases where these points are vertices, face centres or edge centres of
regular maps on the sphere. These are the Platonic solids. A study of branched
coverings of the Platonic solids has been made by Jones and Surowski [11], and we
use their results. (Except they considered branching over face-centres, whereas we
consider branching over vertices.) First, some notation. If M is a platonic solid (or
any map on a surface), we let v, e, and f denote the number of vertices, edges and
faces of M. We let m be the valency of a vertex, and n the valency of a face, that is
the number of edges of the face. The type of the solid is then {n,m}.

If we take a double cover, branched over the vertices we get a regular map of
type {n, 2m}, with v vertices, 2f faces and 2e edges. The vertex valency is 2m and
the face valency is n and so the map has has type {n, 2m}. As the v vertices are the
branch points we can compute the genus g from the formula 2g + 2 = v, that is

g = (v − 2)/2

or just by the Euler formula.
We note the following result which follows from Proposition 4 of [11]. Consider

the Riemann surface as a double covering of a platonic solid with automorphism
group G, which is branched over the vertices. Then the automorphism group of the
surface (and of the lifted map) is C2×G if the vertex valency is odd. We now consider
the Platonic solids in turn.

(1) The cube, type {4, 3}, v = 8, f = 6, e = 12, so the double cover branched
over the vertices has type {4, 6}. It has 8 vertices, 12 faces and 24 edges. The
vertices are the Weierstrass points so that 2g + 2 = 8 giving g = 3, which
can also be found using the Euler characteristic. The genus of the surface is
3 and its automorphism group is C2 × S4.

The results for other double covers, branched over the vertices is similar
and we just give the results, for details see [11].

(2) The tetrahedron, type {3, 3}. The double cover branched over the vertices
has type {3, 6}; it has 4 vertices, 8 faces and has 12 edges and is of genus 1.
Its automorphism group is C2 × A4 of order 24. It has genus 1.

(3) The octahedron, type {3, 4}. The double cover branched over vertices has type
{3, 8}; it has 6 vertices, 16 faces and 24 edges and genus 2. Its automorphism
group is GL(2, 3) of order 48 (for the only group of automorphisms of a surface
of genus 2 of order 48 is GL(2, 3)).

(4) The dodecahedron, type {5, 3}. The double cover branched over the vertices
has type {5, 6}; it has 20 vertices, 24 faces and 60 edges It is of genus 9. Its
automorphism group is C2 × A5.
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(5) The icosahedron, type {3, 5}. The double-cover branched over the vertices
has type {3, 10}; It has 12 vertices and 40 faces and 60 edges It is of genus 5.
Its automorphism group is C2 × A5.

(6) The dihedron ∆, type {n, 2}. This solid has n equally spaced vertices on the
equator. It has n edges and two faces, the upper and lower halves of the
sphere. The double cover branched over the vertices has type {n, 4}. It has
n vertices, 4 faces and 2n edges. Its genus is (n − 2)/2. The automorphism
group of the Riemann surface that we obtain is twice as large as that of Dn

and so is equal to 4n = 8(g+1). These are the well known Accola–Maclachlan
surfaces. (The order of the largest automorphism group M(g) of a Riemann
surface of genus g obeys M(g) ≥ 8(g +1); the lower bound is always attained
by the Accola–Maclachlan surfaces, [1, 18].) The automorphism group has
presentation 〈r, s | r4 = sn = (rs)2 = (r−1s)2 = 1〉.

(7) The hosohedron, type {2, n}. This is the dual of the dihedron. It has 2
vertices, n edges and n faces. The double cover branched over the vertices
has type {2, 2n} and has 2 vertices, 2n edges and 2n faces and genus 0. Its
automorphism group is D2n if n is even and C2 ×Dn if n is odd.

Branching over face-centres. By considering the dual we see that we get
the same set of Riemann surfaces as we get by branching over faces.

Branching over edge-centres. We just find the genera of the double covers
branched over the edge-centres. If there are e edges in the Platonic solid then
the double cover branched over these edge-centres also has e edge-centres so
that e = 2g + 2. We thus find that the double covers branched over the
edge-centres have genus g = 2, for the tetrahedron, g = 5 for the cube or
octahedron g = 14, for the icosahedron or dodecahedron.

(8) Star maps. A free edge of a map is an edge, which is not a loop, that only has
one vertex. The star map Se is a map on the sphere with one vertex p, 1 face
and e free edges which all have p as its only vertex. If we draw the map so
that the angles between its edges are all equal, then its automorphism group
is Ce which acts transitively by rotation on the edges. If we consider the
double cover branched over the e edge-centres, then its genus is g = (e−2)/2.
Its automorphism group is C2 × Ce if e is odd and De if e is even. In both
cases its order is 2e = 4g + 4. Now this is half the order that we got when we
considered branching over the vertices of of a dihedron. As these edge-centres
are the vertices of a regular n-gon, we get the same set of Riemann surfaces
as in (6), the Accola–Maclachlan surfaces.

A Fuchsian group interpretation. We briefly mention how this can be inter-
preted using Fuchsian groups. First of all we state the following result which is due
to Maclachlan [18].

Theorem 6. X = U/K,K a surface group is hyperelliptic if and only if K is a
subgroup of index 2 in a Fuchsian group Γ of signature (0; 22g+2), where the notation
indicates 2g + 2 periods equal to 2. The quotient Γ/K acts as the hyperelliptic
involution.

We just consider one example, the octahedron with automorphism group GL(2, 3)
as in (3) above. It lifted to a map of type {3, 8} which lies on a Riemann surface X =
U/K, K a surface group. Let j denote the hyperelliptic involution. By the results
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in [9] or [5] there is a homomorphism θ : Γ → GL(2, 3) where Γ has presentation
〈x, y, z | x3 = y8 = (xy)2 = 1〉. If j denotes the hyperelliptic involution (which is
represented by −I ∈ GL(2, 3)), then by standard Fuchsian group results [23], it can
be shown that θ−1(〈j〉) is a Fuchsian group of signature (0; 26) which contains K with
index 2 so that X is hyperelliptic by Maclachlan’s Theorem.

Having found these hyperelliptic surfaces whose automorphism group acts tran-
sitively on the Weierstrass points we now show that these are all the surfaces with
this property.

So suppose that G < Aut X acts transitively on the Weierstrass points of a hyper-
elliptic surface X with hyperelliptic involution J . Then X/〈J〉 = Σ. The Weierstrass
points on X lower to 2g + 2 points on Σ, which are permuted transitively by a fi-
nite subgroup of AutΣ which is well-known to be PSL(2,C). The finite subgroups of
PSL(2,C) are the finite rotation groups of the sphere which are the ones that appear
above in (1),. . . ,(8). Thus there are no more hyperelliptic surfaces with transitive
groups of automorphisms.

We sum up in

Theorem 7. For every integer g ≥ 1 there is a hyperelliptic surface of genus
g whose automorphism group acts transitively on the Weierstrass points. These
surfaces are the Accola–Maclachlan surfaces described in (6). If we assume that the
branch points lie over the geometric points (see definition 4) of a Platonic solid, the
only other hyperelliptic surfaces with transitive automorphism groups have genera
1, 2, 3, 5, 9 and 14 which occur in the cases (1) to (5) above, and the last from the
covering of the icosahedron branched over the edge-centres. As all these surfaces are
covers of regular solids branched over the vertices or edge-centres they are unique.
(Note: we get two surfaces of genus 5. The first is the two-sheeted cover of the
icosahedron branched over the 12 vertices, the second being the two-sheeted cover of
the cube branched over the edge-centres.)

We should also consider the case where he branch points do not lie over a geo-
metric point of a platonic solid. In this case the finite rotation group of the solid
acts freely on the projections of these branch points and so the number of branch
points is |G|, where G is the rotation group of the solid. For the tetrahedron, cube
or icosahedron, this gives 12, 24, or 60 branch points, giving further hyperelliptic
surfaces of genus 5, 11, or 29 with a transitive automorphism group. If for the solid
we choose the dihedron ∆n we get g = n− 1 giving other surfaces of arbitrary genus,
some of which will be Accola–Maclachlan.

4. Surfaces with automorphism group PSL(2, q)

If G is a group of automorphisms of a Riemann surface X of genus g ≥ 2, then
the size of its automorphism group Aut X is bounded above by 84(g− 1). This is by
a classic theorem of Hurwitz. The surfaces for which this bound is attained are called
Hurwitz surfaces and their automorphism groups are known as Hurwitz groups. It is
well known that G is a Hurwitz group if and only if there is a homomorphism from
the (2, 3, 7) triangle group onto G. The smallest Hurwitz group is PSL(2, 7) of order
168; the corresponding surfaces is Klein’s surface, which corresponds to the Klein
quartic

(3) x3y + y3z + z3x = 0.
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In [16] Macbeath proved

Theorem 8. Let q be a prime power. The group PSL(2, q) is a Hurwitz group
if and only if

(i) q = 7 or
(ii) q = p ≡ ±1 (mod 7) or
(iii) q = p3, where p ≡ ±2 or ±3 (mod 7).

Thus there are infinitely many surfaces that admit Hurwitz groups as their auto-
morphism groups, and for this reason it is worth us studying the transitivity problem
for Riemann surfaces whose automorphism group is PSL(2, q). However, there are
many other Hurwitz groups. For example, Conder [2] showed that the alternating
group An, is Hurwitz for all n ≥ 168. The first 3 Hurwitz groups are of the form
PSL(2, q), namely for q = 7, 8, 13, corresponding to genera 3, 7, 14. The next largest
is of order 1344 which acts on a surface of genus 17.

Theorem 9. If q > 15, then the Hurwitz group PSL(2, q) does not give a tran-
sitive action on the Weierstrass points of a Riemann surface that it defines.

By Theorem 5, the number of fixed points of an element of order 3 is greater than
5, whereas the number of fixed points of an element of order 2 is greater than 7 and
hence by Schoeneberg’s Theorem these fixed points are Weierstrass points. Hurwitz
groups are associated to a regular map on a surface, so the fixed points of elements
of order 3 are vertices of the associated map, whereas the elements of order 2 are
edge-centres. As Γ(2, 3, 7) is maximal, the automorphism group of the surface and
the automorphism group of the map coincide. As no automorphism of the map can
take vertices to edge centres, the automorphism group of the surface does not act
transitively on the Weierstrass points.

The cases q = 7, 8 and 13 are still to be dealt with.
Firstly, if q = 7, then the corresponding Riemann surface of genus 3 is the well-

known Klein surface. Transitivity on the Weierstrass points was proved in [25] as
the 24 Weirstrass points are shown to be the face-centres of the regular map of type
{7, 3} on the surface. It is also proved in [19] by more group-theoretic methods. We
just use a counting argument similar to [19]. This will also work for q = 8 and is
applicable to q = 13 as also noted in [19].

Theorem 10. Let W denote the set of Weierstrass points on the Klein surface
X of genus 3. The automorphism group Aut(X) acts transitively on W .

Proof. As g = 3, the total weight of the Weierstrass points on X is 33 − 3 = 24
by Theorem 1. Now PSL(2, 7) besides acting as a group of automorphisms X also
acts as a group of automorphisms of the regular map of type {3, 7} underlying X.
The only points with non-trivial stabilizers are the vertices, face-centres and edge-
centres, where the stabilizers have orders 3, 7 and 2 respectively. Thus the size of
the possible orbits are σ1 = 168/7 = 24, σ2 = 168/3 = 56, σ3 = 168/2 = 84 and
σ4 = 168/1 = 168, the latter case occurring for interior points of the faces of the
map, i.e non-geometric points. If we let w1, w2, w3, w4 denote the weights of the
Weierstrass points in these 4 orbits, we get

(4)
4∑

i=1

wjσj = 24,
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or

(5) 24σ1 + 56σ2 + 84σ3 + 168σ4 = 24.

The only solution is σ1 = 1, σ2 = σ3 = σ4 = 0. Thus only the face-centres are
Weierstrass points, and they all have weight 1, and so Aut X is transitive on the 24
Weierstrass points. ¤

The next largest Hurwitz group is PSL(2, 8) of order 504, and this acts on a
surface of genus 7, often called Macbeath’s surface. (Macbeath wrote an important
paper on this Riemann surface, [15].)

Theorem 11. Let W denote the set of Weierstrass points of Macbeath’s surface
X of genus 7. The automorphism group of X acts transitively on W .

Proof. The total weight of the Weierstrass points is 73 − 7 = 336. We follow the
proof of Theorem 10, we now get the equation

(6)
4∑

i=1

wjσj = 336,

or

(7) 72w1 + 168w2 + 252w3 = 336.

The only solution is w2 = 2, w1 = w3 = 0, and so only vertices are Weierstrass points
of weight 2 and Aut X acts transitively on the Weierstrass points. ¤

The next largest Hurwitz group is PSL(2, 13) of order 1092. This acts as a group
of automorphisms of a surface of genus 13. The total weight of the Weierstrass points
is 143 − 14 = 2730. Again, we follow the proof of Theorem 10 and we get

156w1 + 364w2 + 546w3 + 1092w4 = 2730.

This has 10 solutions in positive integers; These are (w1, w2, w3, w4) =

(1) (0, 0, 5, 0)
(2) (0, 0, 1, 2)
(3) (0, 0, 3, 1)
(4) (0, 3, 3, 0)
(5) (0, 6, 1, 0)
(6) (7, 0, 3, 0)
(7) (14, 0, 1, 0)
(8) (0, 3, 1, 1)
(9) (7, 0, 1, 1)

(10) (7, 3, 1, 0)

If the first case occurs, then PSL(2, 13) acts transitively on the Weierstrass points
which are all edge-centres of weight 5, but if cases 2–7 occur, there are two orbits
of Weierstrass points, while if cases 8–10 occur, then there are 3 orbits. We cannot
decide which of these occur so as in [19], we cannot decide transitivity. In fact it
is possible that there are one, two, or three orbits of Weierstrass points. (However,
because of the large number of solutions of the above equation we might guess that
transitivity does not occur.) We can now easily deduce
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Theorem 12. If X is a Hurwitz surface of genus 14, on which PSL(2, 13) acts
as a group of automorphisms (there are 3 of them [16]), then the edge-centres of the
corresponding map of type {7, 3} are Weierstrass points.

Proof. By Theorem 5, the number of fixed points of an element of order 2 is 6,
so by Schoeneberg’s Theorem these are Weierstrass points. Alternatively, in all the
above solutions, w3 6= 0. ¤

So even though we cannot decide transitivity we know where 546 of the Weier-
strass points are.

Added note. Very recently, Manfred Streit in a detailed investigation of the genus
14 Hurwitz surfaces has shown that the vertices and face-centres of he corresponding
map are not Weierstrass points so that w1 = w2 = 0. Thus only the first 3 of the
above possibilities can occur, so the chances of transitivity have increased from one
in ten to one in three! Also, there are at most two orbits of Weierstrass points.

By Theorems 9, 10 and 11 we see that only for the Macbeath–Hurwitz surfaces
of genus 14 are we, as yet, unable to decide transitivity.

Macbeath [16] has shown that for all q 6= 9, that PSL(2, q) is an image of
PSL(2,Z), the modular group which is a free product of C2 and C3. Thus PSL(2, q)
is an image of the triangle group (2, 3, t) for some t ≥ 7. Let Kt,q be the kernel of
the homomorphism θ : (2, 3, t) → PSL(2, q) and let Xt,q = U/Kt,q.

Theorem 13. If q > 15 or q = 11 or q = t = 13, then Aut Xt,q
∼= PSL(2, q) does

not act transitively on Xt,q.

Proof. If q > 15, then the proof follows as in theorem 9. If q = 11, then by
Theorem 5 we see that the number of fixed points of both an element of order 2 and
of order 5 is equal to 5, and so by Theorem 3, the edge-centres and face-centres of the
corresponding map are Weierstrass points and so Aut X does not act transitively. If
q = t = 13, then by Theorem 5 the number of fixed points of the element of order 13
is 6 and so again edge-centres and face-centres are Weierstrass points. ¤

For p prime let Γ(p) be the principal congruence subgroup of the modular group
Γ of level p and let the modular surface X(p)be the compactification of U/Γ(p). Then
X(p) = Xp,p, so by Theorems 10 and 13 we have

Corollary 14. Aut X(p) acts transitvely on the Weierstrass points of X(p) if
and only if p = 7.

5. Platonic surfaces of low genus

In [25] the following problem was investigated: When is a Weierstrass point on
a Platonic surface a geometric point? We solved this for g = 2, 3, 4 and, except for
one possible exception, for g = 5. This one exception corresponded to a map of type
{15, 6} where we found that the vertices and face-centres were Weierstrass points, but
we could not decide about the edge centres. (In [25], {m, n}, meant vertex valencies
m and face valencies n, unlike this paper.) We found the following results which we
present as in the following two examples.
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g V F E G order of G

(i) {12, 3} 3 42 161 24 〈〈2, 3 | 3〉〉 48
(ii) {8, 3} 3 122 32 48 (2, 3, 8; 3) 96

In (i) this means that the map type is {12, 3}, the genus is 3, there are 4 faces
which are Weierstrass points of weight 2, there are 16 vertices of weight 1, and the
edges are not Weierstrass points. As there are Weierstrass points at both vertices
and face-centres (or, alternatively as they have different weights), we do not get
transitivity on the Weierstrass points.

In (ii), we find that all of the Weierstrass points are at the face-centres, so that,
as the automorphism group permutes the faces transitively, we get a transitive action
on the Weierstrass points, The automorphism group G is usually described in the
Coxeter–Moser notation [5], but if the surface is an Accola–Maclachlan surface (see
section 3 (6) where we give the presentation) we denote the group by AM ; it has
order 8(g + 1).

We now examine the other cases in [25], where all the Weierstrass points are of
the same type. We have to be careful of the fact that it is possible for a Riemann
surface to carry more than one map (see [26]). This is when there is an inclusion
relation between triangle groups, for example (2, n, n) < (2, 4, n), so that when a
surface carries a regular map of type (n, n) it may also carries one of type (4, n).
Also (2, n, 2n) < (2, 3, 2n), (see [24]). We then choose the larger group.

We find the following cases:

g V F E G order of G

(1) {6, 4} 2 61 4 12 AM 24
(2) {8, 3} 2 16 61 24 GL(2, 3) 48
(3) {8, 4} 3 83 4 16 AM 32
(4) {6, 4} 3 12 83 24 S4 × C2 48
(5) {8, 3} 3 32 122 48 〈x, y|x2 = y3 = (xy)8 = [x, y]3 = 1〉 96
(6) {7, 3} 3 56 241 84 PSL(2, 7) 168
(7) {10, 4} 4 106 4 20 AM 40
(8) {5, 4} 4 30 24 601 S5 120
(9) {12, 4} 5 1210 4 24 AM 48
(10) {3, 10} 5 40 1210 60 C2 × A5 120
(11) {8,3} 5 64 245 96 Γ/Γ(8) 192
(12) {5, 4} 5 403 32 80 〈x, y|x5 = y4 = (xy)2 = (xy−1)4 = 1〉 160

Now (1), (2), (3), (4), (7), (9) and (10) correspond to hyperelliptic surfaces and
so have already appeared in section 3. Also (6) is Klein’s surface which appeared
in section 4. The cases (5), (8), (11) and (12) give new examples where transitivity
occurs. ((5) is the Fermat curve F4, (see section 10), (8) is Bring’s surface, (11) is
a double cover of the Fermat curve, sometimes known as Wiman’s curve and (12)
is known as Humbert’s curve. For these curves see [13]. For more details about the
group in (12) see [4, p. 135]. This group is an elementary abelian group of order 16
semidirect product with D5. For more details on the regular map and the group
see [4, p. 135].
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6. Simple Weierstrass points

A Weierstrass point of weight 1 is called a simple Weierstrass point. By equa-
tion 1, if all Weierstrass points of a surface of genus g have weight 1, then the number
of Weierstrass points is equal to g3 − g. As shown in [20] in some sense this is the
general case. However the following result shows that this is certainly not the case for
Riemann surfaces whose automorphism group is transitive on the Weierstrass points.

Theorem 15. If there is a transitive action on the Weierstrass points on a
Riemann surface X of genus g > 2 and the Weierstrass points are simple, then either
g = 4 and X is Bring’s surface, or g = 3 and X is Klein’s surface or g = 3 and
Aut X ∼= S4. If the latter case occurs, then Aut X acts freely on the Weierstrass
points.

Proof. Let |W | denote the number of Weierstrass points on X. As these Weier-
strass points form an orbit under the action of G = Aut X then |W ||Gp| = |G| ≤
84(g−1), where Gp is the stabilizer of a Weierstrass point p so that |W | ≤ 84(g−1).
By Theorem 2, |W | = g3 − g. Hence g3 − g ≤ 84(g − 1) and so g ≤ 8. In general,
transitivity implies that |W | ≤ M(g), the order of the largest group of automorphism
for a surface of genus g. We now note that if X = U/K (K a surface group) has
large enough automorphism group, then X must be platonic. For Aut X ∼= Γ/K
and if |Aut X| > 24(g − 1), then by the Riemann–Hurwitz formula, the measure of
a fundamental region for Γ is < 1/12 and so Γ must be a (2,m, n) triangle group so
that X is platonic. So the largest automorphism groups are automorphism groups
of regular maps, so we can consult [3] where we find that M(6) = 150,M(7) = 504,
(for the Macbeath surface) and M(8) = 336. However, 63 − 6 = 210 > 150, and
83 − 8 = 504 > 336 so we do not get transitivity for g = 6 or 8. If g = 7, then
the largest automorphism group is 504 which gives Macbeath’s surface, the unique
surface of genus 7 with 504 automorphisms, [16]. But we saw in the proof of Theo-
rem 11 that the weights of the Weierstrass points of Macbeath’s surface are 2 and so
are not simple. The next highest order for an automorphism group in genus 7 is 288
corresponding to a (2, 3, 8) group. As 288 < 73 − 7 we cannot have transitivity.

Thus the genus of X is 2, 3, 4 or 5. As X is platonic we can use the lists in [25]
to get information about the Weierstrass points.

(1) If g = 5, then |G| = (53 − 5)|Gp| = 120|Gp|. The surface X must then be
platonic. From [25] we find that |G| = 120 and the map has type {3, 10}
and the Weierstrass points have weight 10. (In fact this surface is the two-
sheeted covering of the icosahedron branched over the vertices that we found
as example (5) in section 4.)

(2) If g = 4, then |G| = 60|Gp|. From [25] we find that either |G| = 120 or
|G| = 60, (G being S5 or A5.) In the first case the map has type {4, 5} and is
the map underlying Bring’s surface. In the second case we get a map of type
{5, 5} on the the same surface. This is because of the inclusion relationship
(2, 5, 5) < (2, 4, 5), and so the first map is a truncation of the second map.
(See [26].) By [25] we see that the 60 edge centres are simple Weierstrass
points.

(3) If g = 3, then |G| = 24|Gp|. If the surface is platonic, then again we consult
[25] and we find that we must have |G| = 168, the map has type {3, 7} so
the surface is Klein’s surface. However, we cannot guarantee that X must be
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Platonic. A possibility is that |G| = 24, G ∼= S4 and G lifts up to a Fuchsian
group of signature {2, 2, 2, 3}. If this were to occur, then G would permute the
Weierstrass points freely. Also, as the complex dimension of the Teichmüller
space of {0, 2, 2, 2, 3} groups is equal to 1 there will be an uncountable number
of surfaces of genus 3 admitting S4 as a group of automorphisms. It is unclear
whether there could be any where the group does not fix any Weierstrass
points or whether the weight of the Weierstrass points is equal to one. ¤

7. A necessary condition for transitivity

Let G be a group of automorphisms of a Riemann surface X. Then G lifts to a
Fuchsian group Γ with periods m1, . . . , mr, corresponding to elliptic elements xi (i =
1, . . . , r) with fixed points ai (i = 1, . . . , r). Furthermore, there is a homomorphism
φ : Γ → G with torsion-free kernel. All points of U with non-trivial stabilizer have
the form γai, (γ ∈ Γ) this point being stabilized by γxiγ

−1 of order m1. The point
γai projects to a point in X stabilized by a cyclic group of order mi, and all fixed
points have this form. Now suppose that G acts transitively on the the Weierstrass
points W of X. Then W is an orbit so that

(8) |W ||Gp| = |G|

where Gp is the stabilizer of p, so that |Gp| = mi, one of the periods of Γ.
As all points of W have the same weight w, it follows from Theorem 1, that

(9) |W |w = g3 − g.

We can therefore deduce

Theorem 16. If G acts transitively on the Weierstrass points, then

(10) w =
|Gp|(g3 − g)

|G| .

(Thus the weight of a Weierstrass point is calculated in group theoretic terms!
However we do have the group theoretic condition of transitivity.)

Example. If G is a Hurwitz group of order 84(g − 1), a homomorphic image of
a triangle group (2, 3, 7), then mi is one of 2, 3 or 7, so that if G acts transitively on
the Weierstrass points then g(g + 1) is divisible by 12, 28 or 42.

For example, the Hurwitz group of order 1344 which acts on a surface of genus
17, does not act transitively. Unfortunately, this does not tell us anything about
PSL(2, 13) acting on a surface of genus 14.

8. Bi-elliptic surfaces

A Riemann surface X is called γ-elliptic if X admits an involution J such that
X/〈J〉 has genus γ. 0-hyperelliptic is just hyperelliptic, and 1-hyperelliptic is called
bi-elliptic. To investigate transitivity on bi-elliptic surfaces we need the following
theorems of Kato [12] and Garcia [7].
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Theorem 17. (Kato) Let X be a non-hyperelliptic Riemann surface of genus
g ≥ 3. Then for every point p of X,

0 ≤ wp ≤





g(g − 1)

3
if g = 3, 4, 6, 7, 9, 10,

g2 − 5g + 10

2
otherwise,

where wp is the weight of p.

Kato also exhibited a link between this bound and bi-elliptic surfaces.

Theorem 18. Let X be a Riemann surface of genus g ≥ 11. Then X is bi-elliptic
if and only if there exists p ∈ X with weight wp such that

g2 − 5g + 6

2
≤ wp <

g2 − g

2
.

In this case the possible values of wp are g2−5g+6
2

or g2−5g+10
2

.

Garcia [7] proved that both these bounds are attained.

Theorem 19. Let X be a bi-elliptic Riemann surface of genus g ≥ 11, g 6= 15.
If there exists p ∈ X such that wp = g2−5g+10

2
or wp = g2−5g+6

2
, then Aut X does not

act transitively on the Weierstrass points W of X.

Proof. We prove this by contradiction so suppose that Aut X does act transitively
on W . If wp = g2−5g+10

2
then all Weierstrass points of X have this weight. Thus

g2−5g+10
2

divides g3 − g the quotient being |W |. Thus

|W | = 2g + 10 +
28g − 100

g2 − 5g + 10
.

Therefore ν(g) = 28g−100
g2−5g+10

must be an integer. However, ν(g) decreases for g > 11

and for g = 11, ν(g) < 3 and so ν(g) = 1 or 2. There is no integral solution if g = 1
and ν(g) = 2 implies that g = 4 or g = 15. Thus for g > 11, g 6= 15 we cannot get a
transitive action.

Similarly g2−5g+6
2

cannot divide g3 − g for g ≥ 11. ¤
We thus have

Theorem 20. Let X be an bi-ellipticsurface of genus g > 11, g 6= 15. Then
Aut X does not act transitively on the Weierstrass points of X.

Using similar results of Garcia [7] we can also show that with the possible excep-
tion of a small number of values of g, that no 2-hyperelliptic surface of genus g can
have an automorphism group that acts transitively on the Weierstrass points.

9. Fermat surfaces

The Fermat surface Fn is the Riemann surface of the projective algebraic curve

(11) {x, y, z) | xn + yn + zn = 0}.
Let Γ(n, n, n) be the triangle group with the presentation 〈x, y, z|xn = yn = zn =

xyz = 1〉. If we abelianize this group, we get Zn ⊕ Zn so that the commutator
subgroup Kn has index n2. It is known that Fn

∼= U/Kn, [10]. We then find that
Kn has genus (n− 1)(n− 2)/2. As Kn is characteristic in Γ(n, n, n) and as Γ(n, n, n)
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is normal in the maximal triangle group Γ(2, 3, 2n) with Γ(2, 3, 2n)/Γ(n, n, n) ∼= S3,
it follows that Aut Fn

∼= (Zn ⊕ Zn)o S3

We now describe how (Zn ⊕ Zn) o S3 acts on the points of the Fermat curve
Fn. We first define an action of Z3

n on Fn. If (a, b, c) ∈ Z3
n and (x, y, z) ∈ Fn, we

let (a, b, c)∧ (x, y, z) = (e2πi(a/n), e2πi(b/n), e2πi(c/n)). The kernel of this action consists
of the set of points (a, b, c) where a = b = c which form a group isomorphic to Zn

and so if we factor out this subgroup we get an action of Zn ⊕ Zn as a group of
automorphisms of Fn. Also there is an action of S3 by permuting the coordinates
and so we find an action of Fn

∼= (Zn⊕Zn)oS3 as a group of automorphisms of Fn.

Weierstrass points on the Fermat curve. Let α = e2πi/n and β = eπi/n.
Then the 3n points of Fn of the form

(0, αj, β), (β, 0, αj), (αj, β, 0)

(j = 0, . . . , n− 1), are called the trivial points of Fn and Hasse [8] showed that these
points are Weierstrass points of weight

(n− 1)(n− 2)(n− 3)(n + 4)/24.

When n = 4 this is equal to 2 and so the total weight is 24. By (2) in section 1,
this shows that these are all the Weierstrass points of F4. For n ≥ 5 there are more
Weierstrass points, called the Leopoldt points [21]. These are the 3n2 points of the
form (γ, β1, β2), where γn = 2, βn

1 = βn
2 = −1. According to Towse [27], their weight

is ≥ (n− 1)(n− 3)/8 if n is odd and (n− 2)(n− 4)/8 if n is even and this inequality
is an equality if n ≤ 8.

When n = 5, the total weight of the Leopoldt points is equal to 1 and so the
total weights of the trivial points and the Leopoldt points is equal to 15 · 9 + 75 · 1 =
210 = 63−6 and so by Theorem 2, the trivial points and the Leopoldt points include
all of the Weierstrass points. When n ≥ 6, a similar count shows that there must be
further Weierstrass points.

Theorem 21. The automorphism group of Fn acts transitively on the Weier-
strass points if and only if n = 4.

Proof. We consider the action of the automorphism group of the Fermat curve
defined above. Clearly the set of trivial points is an orbit. The set of Leopoldt points
is also an orbit and these orbits are distinct. For n = 4 the only Weierstrass points are
the trivial ones and thus we get transitivity. For n > 4, there are Weierstrass points
of Leopoldt type and so we do not get transitivity on all the Weierstrass points. ¤

Notes.
(1) As Rohrlich remarked [21], the automorphisms like

(x, y, z) 7→ (αx, y, z)

(or multiply the 2nd or 3rd coordinates by α) are automorphisms that fix n
trivial points and hence for n > 4 we know these are Weierstrass points by
Schoeneberg’s Theorem. Also, we can see that the automorphim (x, y, z) 7→
(x, z, y) fixes the Leopoldt points of the form (γ, β, β) showing these are Weier-
strass points. As all Leopoldt points form an orbit under AutFn we see that
they are all Weierstrass points.
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(2) Because of the inclusion relationship Γ(4, 4, 4) < Γ(2, 3, 8) we can deduce that
F4 is the Platonic surface of type {8, 3} in section 5.

10. Conclusion

We showed in Theorem 7 that there is one family of hyperelliptic surfaces, namely
the Accola–Maclachlan surfaces, where the automorphism group acts transitively on
the Weierstrass points. However for the families of non-hyperelliptic surfaces we
have considered there seem to be few examples and the surfaces we have found which
have this property such as the Klein surface, Bring’s surface, the Macbeath surface,
the Fermat curve F4 are important for other reasons. It would be interesting to
search for other non-hyperelliptic Riemann surfaces whose automorphism group acts
transitively on the Weierstrass points.
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