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Abstract. We study the question of whether for a given nonconstant holomorphic function
f there is a pair of domains U, V such that f is the only nonconstant holomorphic function with
f(U) ⊆ V . We show existence of such a pair for several classes of rational functions, namely maps
of degree 1 and 2 as well as arbitrary degree Blaschke products. We give explicit constructions of
U and V , where possible. Consequences for the generalized Kobayashi and Carathéodory metrics
are also presented.

1. Introduction

Let U = {∞, eπi/6, eπi/3, eπi/2, eπi/6}c, with this and all future complements taken
in the Riemann sphere, Ĉ = C ∪ {∞}. Let f(z) = z2 and V = f−1(U). In [3]
and [4, pp. 162, 171] it was shown that if g is a nonconstant holomorphic function
on V such that g(V ) ⊆ U then g = f . This example is motivated by the subjects
of [3] and [4, Sec.’s 8.2, 9.2], the generalized Kobayashi and Carathéodory metrics
on plane domains, which are defined in terms of the family of holomorphic maps
from one domain to another(definitions given in Section 5 below). When a pair of
domains has only one nonconstant holomorphic function between them, the metrics
are explicitly computable.

The object of this paper is to study this question in more generality. That is,
loosely speaking, we study the question of whether for a given nonconstant holomor-
phic function f there is a pair of domains V, U such that (a) f(V ) ⊆ U and (b) if
g is a nonconstant holomorphic function such that g(V ) ⊆ U then g = f . In this
paper we will restrict to rational functions; the question for arbitrary functions will
be discussed briefly in the final section.

We will begin by making the problem a bit more concrete. To abbreviate the
language somewhat, in what follows we will refer to a nonconstant holomorphic
function as a map. If the domain V admits bounded maps, then clearly there will
be many different maps into any image domain U . If V c contains a continuum, then
there will be bounded maps on V , so it is necessary for V c to be small. We will see
that in our results it is convenient and sufficient to consider only finite sets for U c, V c.
If U c has 1 or 2 points then proper transformations of eh for any holomorphic function
h on V will map into U . We therefore restrict our attention to the case where U c

contains at least 3 points. In this case any map f from V to U contains no essential
singularities on the sphere, and thus is the restriction of a rational function to V .
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We must have f−1(U c) ⊆ V c, and we see that it is enough to consider only the case
V c = f−1(U c), V = f−1(U). In light of this, for any rational function f and domain
U define

(1.1) Hf (U) = {h : h is a map from f−1(U) to U}.
Our goal is now to find a domain U such that Hf (U) = {f}, for a given f .

Suppose that we have accomplished this for some f , so that Hf (U) = {f}. If g
is a different rational function such that g = φ1 ◦ f ◦ φ2, where φ1, φ2 are Möbius
transformations, then it is not hard to see that Hg(φ1(U)) = {g}. In this case we
will say that f and g are Möbius equivalent, and it is clear that we need only study
our problem on Möbius equivalence classes. In the next section we give complete
solutions when f is of degree 1 or 2. In Section 3 we prove an existence theorem for
Blaschke products of arbitrary degree. This theorem guarantees the existence of a
suitable domain U , but is nonconstructive. In Section 4 we give explicit solutions
for the functions f(z) = zn. Section 5 gives some applications of these results to
the generalized Kobayashi and Carathéodory metrics. Finally, Section 6 gives a few
further problems which may be of interest.

2. Rational functions of degree 1 and 2

A rational function of degree 1 is a Möbius transformation and is therefore clearly
Möbius equivalent to the identity. The following proposition therefore gives the
complete solution in the degree 1 case.

Proposition 1. Let f(z) = z and E = {−1, 0, 1,∞, 2i}. Then Hf (E
c) = {f}.

Proof. Suppose h is a map in Hf (E
c). Since E has more than 3 points, h

extends to a rational function on the sphere. Let the degree of h be denoted d.
By the Riemann-Hurwitz formula, h has 2d− 2 critical points counting multiplicity,
so the size of h−1(E) is at least 5d − (2d − 2) = 3d + 2. Since we must have
h−1(E) ⊆ E, we conclude d = 1, and h is a Möbius transformation. Set h(z) = az+b

cz+d
.

The set h({−1, 0, 1,∞})∪{−1, 0, 1,∞} must contain at least 3 points, which means
h(R) = R and thus we can take a, b, c, d to all be real and we have h(2i) = 2i.
Equating real and imaginary parts in a(2i) + b = 2i(c(2i) + d) shows that a = d,
b = −4c. If a = d = 0, then h(z) = −4

z
, which does not map E to E. We can

therefore set a = d = 1, and h = z+b
−4bz+1

. This maps ∞ to 1
−4b

and 0 to b. The only
choice for b such that b, 1

−4b
∈ E is b = 0, so that h is the identity. ¤

Remark. In this proposition it was necessary that E contain at least 5 points.
This can be seen by noting that f(z) = a

z
is a nonconstant self-map of {0, 1,∞, a}c

for any a.

It was shown in [3] that Hz2({∞, eπi/6, eπi/3, eπi/2, eπi}c) = {z2}. The following
proposition shows that this extends to all rational functions of degree 2.

Proposition 2. Suppose f(z) is a rational function of degree 2. Then there is
a set E of 5 points such that Hf (E

c) = {f}.
Proof. Since f is of degree 2, topological considerations or direct calculations

show that f has exactly two critical values. That is, there are two points u, v such
that f−1(u) and f−1(v) are singletons. We see that f is Möbius equivalent to a
degree 2 rational function with f−1(0) = {0} and f−1(∞) = {∞}. We may therefore
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take f(z) = cz2, and again via Möbius equivalence we may assume c = 1. The case
f(z) = z2, as has been mentioned, appeared in [3] and [4]. Alternatively, Theorem 1
below applies. ¤

Remark. The remark following Proposition 1 shows that again E must have
at least 5 points, since if E has 4 or less points Hf (E

c) will always contain Möbius
transformations.

3. Functions Möbius equivalent to Blaschke products

The following theorem, together with the ensuing corollary, give a solution for
all Möbius equivalence classes containing a Blaschke product of degree at least 3.

Theorem 1. Suppose that f(z) = λ
∏d

j=1
z−aj

1−ajz
, where |a1|, . . . , |ad| < 1, |λ| = 1,

and d ≥ 3. Then there is a set E of 2d + 1 points such that if U c = E, then
Hf (U) = {f}.

Proof. E will be∞ together with 2d−1 points p1, . . . , p2d−1 chosen arbitrarily on
the unit circle, as well as another point p2d, also on the unit circle, to be determined
later. Set U = Ec, and suppose that h is a map from f−1(U) to U . Since U c has more
than 3 points, h extends to a rational function on the sphere. Let the degree of h be
denoted dh. By the Riemann–Hurwitz formula, h has 2dh−2 critical points counting
multiplicity, and thus the size of h−1(E) is at least dh(2d + 1)− (2dh − 2) = dh(2d−
1) + 2. On the other hand, we must have h−1(E) ⊆ f−1(E), and f−1(E) can have at
most d(2d + 1) points. Thus, d(2d + 1) ≥ dh(2d− 1) + 2, which implies that dh ≤ d.
Since f is a Blaschke product, f−1({p1, . . . , p2d}) ⊆ {|z| = 1}. Any members of
h−1({p1, . . . , p2d}) not on the unit circle must therefore lie in f−1(∞), which contains
at most d points. Since 2d ≥ d + 3, we can find points a, b, c ∈ {p1, . . . , p2d} such
that h−1({a, b, c}) ⊆ {|z| = 1}. Since Möbius transformations act transitively on the
set of circles and lines, h is Möbius equivalent to a rational function h̃ of degree dh

such that h̃−1({0, 1,∞}) ⊆ R. h̃ must be of the form

(3.1) h̃(z) = k
(z − α1) . . . (z − αdh

)

(z − β1) . . . (z − βdh
)

and since h̃−1({0, 1,∞}) ⊆ R we see that k, α1, . . . , αdh
, β1, . . . , βdh

∈ R. Thus,
h̃(R ∪ {∞}) ⊆ R ∪ {∞}, and it follows that h({|z| = 1}) ⊆ {|z| = 1}. This implies
that h−1(∞)∩{|z| = 1} = ∅, so that h−1(∞) ⊆ f−1(∞). Let k be a Blaschke product
having the same poles of the same order as h. Then, since |k(z)| = |h(z)| = 1 on
the unit circle, by the reflection principle k and h have the same zeroes of the same
orders as well, so that h(z)

k(z)
is a map from the sphere to itself which is never 0 or

∞ and is hence constant. We conclude that h is itself a Blaschke product. Write
h(z) = λ′

∏dh

j=1
z−bj

1−bjz
. h may only have poles at poles of f , so there are only finitely

many possibilities for the function
∏dh

j=1
z−bj

1−bjz
. Recall that p1, . . . , p2d−1 were fixed

arbitrarily, while p2d is at this point still a variable point on the unit circle. Consid-
ering the cardinality of the sets, it is clear that h−1({p1, . . . , p2d−1}) 6⊆ f−1(p2d), so
there is at least one point u in f−1({p1, . . . , p2d−1}) such that h(u) ∈ {p1, . . . , p2d−1}.
Thus, for any choice of

∏dh

j=1
z−bj

1−bjz
there are only finitely many possibilities for λ′

which need to be considered, regardless of the choice of p2d. Through all of this, we
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conclude that

(3.2) Ĥ =
⋃

p2d∈A

Hf ({∞, p1, . . . , p2d}c)

is a finite set of functions, where A is the unit circle minus {p1, . . . , p2d−1}. Suppose
that Hf ({∞, p1, . . . , p2d}c) ) {f} for all choices of p2d in A. Then there must be a
function k ∈ Ĥ not equal to f which lies in Hf ({∞, p1, . . . , p2d}c) for infinitely many
choices of p2d. It must be that f−1(p2d) ∩ k−1(p2d) 6= ∅ for infinitely many choices of
p2d, and it then follows that k = f on infinitely many points. We conclude that k = f
identically. This is a contradiction, since it was assumed that k is different from f .
We conclude that there is some choice of p2d such that Hf ({∞, p1, . . . , p2d}c) = {f},
and we are done. ¤

Corollary. Suppose that f is a rational function of degree d and that there is
a circle or line C such that f−1(C) is also a circle or line. Then there is a set E of
2d + 1 points such that if U c = E then Hf (U) = {f}.

Proof. Such a function is readily seen to be Möbius equivalent to a Blaschke
product. ¤

4. An explicit example for zn

We now give explicit domains Un where Hzn(Un) = {zn}. Examples have already
been given for n = 1, 2, so we assume n ≥ 3.

Proposition 3. Let U c
n = {∞, 1, ω, ω2, . . . , ωn−1, e2πi/n3} where ω = e2πi/n, and

let f(z) = zn. Then Hf (Un) = {f}.
Proof. Suppose h ∈ Hzn(Un). By the same argument as in Theorem 1, h({|z| =

1}) = {|z| = 1} and h−1(∞) = {∞}. This means that h is a polynomial, and by
the reflection principle we have h−1(0) = {0}. Thus, h(z) = czm for some m and
some constant c with |c| = 1. There are exactly n(n + 1) + 1 = n2 + n + 1 points
in f−1(U c), while h−1(U c

n) has at least m(n + 2) − (2m − 2) = mn + 2 points by
the Riemann–Hurwitz formula. Since we must have h−1(U c

n) ⊆ f−1(U c
n) we obtain

mn + 2 ≤ n2 + n + 1, which implies m ≤ n. For two points on the unit circle a, b,
define d(a, b) = 1

2π
|Arg(a/b)|, where Arg(z) is the argument of the point z in the

interval (−π, π]. So, for example, d(1, e2πi/n3
) = 1/n3. We have

(4.1) inf
u∈h−1(a),v∈h−1(b)

d(u, v) =
1

m
d(a, b).

There are therefore points u and v in h−1(U c
n) which are preimages of 1 and e2πi/n3

such that d(u, v) = 1
n3m

. Let us refer to the intervals on {|z| = 1} between neighboring
points in f−1(U c

n) as gaps, and let the size of these gaps be the distance between
their endpoints, measured in our metric d. Applying (4.1) with f in place of h to the
configuration of points forming U c

n shows that the sizes of the gaps of f−1(U c
n) are

1
n2 ,

n2−1
n4 , and 1

n4 . Furthermore, each gap of size 1
n4 has a gap of size 1

n2 on one side of
it and a gap of size n2−1

n4 on the other. If m < n, then we have 1
n4 < d(u, v) < n2−1

n4 , 1
n2 .

This contradicts {u, v} ⊆ f−1(U c
n), as d(u, v) must be equal to the size of a gap in

f−1(U c
n) or to a sum of the sizes of several adjacent gaps. We conclude that m = n.



A rigidity theorem for special families of rational functions 281

Thus, h(z) is a rotation of zn, and since Un is not invariant under any nontrivial
rotations, we conclude that h = f . ¤

5. Applications to the generalized Kobayashi and Carathéodory metrics

An application of the results given above lies in studying the generalized Kobayashi
and Carathéodory metrics, as introduced in [3] and [4]. Indeed, this was the initial
motivation for studying this problem. Given two hyperbolic domains Ω and X with
hyperbolic densities ρΩ, ρX , let H denote the family of holomorphic functions from
Ω into X. Set

(5.1) KΩ
X(w) = inf

f∈H,f(z)=w

ρΩ(z)

|f ′(z)| .

This is known as the generalized Kobayashi density, and is a density on X. The
classical Kobayashi density is obtained when Ω is the unit disk ∆.

Set

(5.2) CΩ
X(z) = sup

f∈H
ρX(f(z))|f ′(z)|.

This is known as the generalized Carathéodory density, and is a density on Ω. Again,
the classical Carathéodory density is obtained when X = ∆. The integrated forms
of these densities are known as the generalized Kobayashi metric and generalized
Carathéodory pseudo-metric, respectively. Many nice and expected properties of
KΩ

X and CΩ
X(z) appear in [3] and [4], but the results in Sections 2 through 4 can

be used to show that these generalized densities have some properties that are quite
different from their classical counterparts. We now demonstrate this through a series
of propositions.

Let us begin with KΩ
X(w). Set f(z) = zn, and let X = Un be as in Section 4

so that Hf (X) = {f}. Set Ω = f−1(X). KΩ
X(w) is then a density on X, and since

H = {f} we may explicitly compute

(5.3) KΩ
X(w) = inf

zn=w

ρΩ(z)

n|w|(n−1)/n
.

In particular, KΩ
X(0) = ∞. This “pole” of the density function allows us to show that

a number of properties enjoyed by the classical density fail to hold in the generalized
case. We will state these results as Propositions 4 through 7. It is known that the set
{KΩ

X(w) = 0} is closed for any Ω, X, and a reasonable guess might be that if this set
of degeneracy is non-empty then it must be all of X. Our example shows, however,
that this guess is incorrect.

Proposition 4. It is possible for KΩ
X to be nondegenerate on X but degenerate

at certain points of X.

Next, it is known that ρX(w) ≤ KΩ
X(w). Our example shows, however, that we

cannot obtain an inequality in the opposite direction.

Proposition 5. ρX(w) and KΩ
X(w) are not equivalent, in general, even when

KΩ
X(w) is nondegenerate. That is, there is no constant M such that KΩ

X(w) ≤
MρX(w).



282 Greg Markowsky

Since
´ ε

0
r−(n−1)/n dr < ∞, the distance between 0 and any point in the general-

ized Kobayashi metric is finite in this case. Nevertheless, if we do the standard thing
in defining the area of any open set B as

(5.4) Area(B) =

ˆ

B

(KΩ
X(w))2 dA(w),

then upon converting to polar coordinates in a neighborhood of 0, we see that
Area(B) is infinite if n ≥ 3 and 0 ∈ B. We obtain

Proposition 6. It is possible for a compact set in X to have infinite area when
measured in terms of the density KΩ

X(w).

To motivate our next example let us consider the hyperbolic metric in the punc-
tured unit disk ∆∗ = ∆\{0}. We can find a sequence of sets in ∆∗ of the form
B(b, r) = {a : ρ∆∗(b, a) < r}, which we refer to as balls, whose radii approach 0 and
each of which are not homeomorphic to a disc. This can be verified by showing that
the hyperbolic length of the semicircle between ε and −ε goes to 0 as ε → 0, using
the formula ρ∆∗(z) = 1

2|z| log(1/|z|) (see [4]).
Let us contrast this with the generalized Kobayashi metric KΩ

X(a, b), which is
defined to be

(5.5) KΩ
X(a, b) = inf

ˆ

γ

KΩ
X(γ(t))|dγ|

where the infimum is taken over all curves connecting a and b. For ε very small we
have

(5.6) KΩ
X(0, ε) ≈ ρΩ(0)

ˆ ε

0

1

nr(n−1)/n
dr = ρΩ(0)ε1/n

whereas, by considering the curve γ(t) = εeit, t ∈ [0, π], we have

(5.7) KΩ
X(−ε, ε) ≤ (1 + δ)ρΩ(0)

ˆ π

0

1

nε(n−1)/n
ε dt = (1 + δ)

π

n
ρΩ(0)ε1/n

for some δ > 0 which can be made arbitrarily small as ε → 0. We see that for n ≥ 4
and ε sufficiently small, we have KΩ

X(0, ε) > KΩ
X(−ε, ε). This shows that we may

find a sequence of balls with radii measured in KΩ
X which are centered at the points

1
n
, whose radii approach 0, and each of which are not homeomorphic to a disc. This

is similar to what we observed in the hyperbolic case, but there is a difference. The
sequence of hyperbolic balls in ∆∗ approaches the boundary point 0, and this turns
out to be indicative of the general behavior of the hyperbolic density in this context.
It is not hard to show that for any compact set K in a hyperbolic domain V there
is a β > 0 such that any hyperbolic ball centered in K with radius less than β is
homeomorphic to a disc. To put it informally, sufficiently small hyperbolic balls away
from the boundary of a domain are simply connected. Our example shows that this
fails to hold for KΩ

X , since the given balls approach 0, which is an interior point of
X. We therefore obtain

Proposition 7. It is possible for a sequence of balls in the metric KΩ
X which are

not homeomorphic images of discs to stay within a compact set in X and have radii
which approach 0.
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Now let us consider CΩ
X with the same choices of Ω and X. As H = {zn} we find

(5.8) CΩ
X(z) = ρX(zn)n|z|n−1.

Again it is known that the set {CΩ
X(z) = 0} is closed, and this set of degeneracy may

be all of Ω. Our example shows, however, that

Proposition 8. It is possible for CΩ
X to be nondegenerate on Ω but degenerate

at certain points of Ω.

It is known that ρΩ(w) ≥ CΩ
X(w). Again we see from our example that

Proposition 9. ρΩ(w) and CΩ
X(w) are not equivalent, in general, even when

CΩ
X(w) is nondegenerate. That is, there is no constant M such that ρΩ(w) ≤

MCΩ
X(w).

Finally, we have

(5.9)
ρΩ(w, w′)
|w − w′| → ρΩ(w) as w′ → w.

If CΩ
X(a, b) is the generalized Kobayashi metric on Ω, defined analogously to (5.5),

then we have for w′ close to 0

(5.10) CΩ
X(0, w′) ≈ ρX(0)

ˆ |w′|

0

nrn−1 dr = ρX(0)|w′|n.

This leads to

Proposition 10.

(5.11)
CΩ

X(0, w′)
|w′|m → 0 as w′ → 0

for m < n, and

(5.12)
CΩ

X(0, w′)
|w′|n → ρX(0) as w′ → 0.

6. Further questions

The technique given in Section 3 seems not to extend directly to arbitrary rational
functions. This is because the key lay in showing that any map in Hf (U) must be of
a specific kind, and this seems more difficult to do with arbitrary maps. Nevertheless,
we venture the following conjecture.

Conjecture. If f is a rational function of degree d, there is a domain U where
U c has 2d + 1 points and Hf (U) = {f}.

The reason for guessing that 2d + 1 points suffice is that this is enough points to
rule out all maps of degree greater than d, as is shown in the beginning of the proof
of Theorem 1. The examples given in Section 4 make do with only d + 2 points,
whereas the remarks in Section 2 show that at least 5 points are required in all cases.
It may be interesting to find the optimal domains which work for a given f , where
optimality is measured in terms of the size of the boundaries.

Another potentially interesting problem is to find a domain U withHf (U) = {f},
where f is now a non-rational entire function. Picard’s Big Theorem (see [1]) shows
that if U c has three or more points then V c must be infinite, complicating matters.
The results for rational functions were deduced by first eliminating all but a relatively



284 Greg Markowsky

small number of potential maps between domains. Perhaps something similar could
be done with entire functions satisfying certain conditions, for instance for functions
of finite order (see [2]).
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