(K, K')-QUASICONFORMAL HARMONIC MAPPINGS OF THE UPPER HALF PLANE ONTO ITSELF

Min Chen and Xingdi Chen*

Huaqiao University, Department of Mathematics Quanzhou, Fujian, 362021, P. R. China; chenmmi@hqu.edu.cn

Huaqiao University, Department of Mathematics Quanzhou, Fujian, 362021, P.R. China; chxtt@hqu.edu.cn

Abstract. In this paper we show that (K, K')-quasiconformal mappings with unbounded image domains are not Hölder continuous, which is different from the case with bounded image domains given by Kalaj and Mateljević. For a (K, K')-quasiconformal harmonic mapping of the upper half plane onto itself, we prove that it is Lipschitz and hyperbolically Lipschitz continuous. Moreover, we get four equivalent conditions for a harmonic mapping of the upper half plane onto itself to be a (K, K')-quasiconformal mapping.

1. Introduction

A function F is called harmonic [4] in a region Ω if its Laplacian vanishes in Ω . By Lewy's theorem [15], a locally univalent harmonic function F has a non-vanishing Jacobian. The real axis, the upper half plane and the unit disk are denoted by \mathbf{R} , \mathbf{H} and \mathbf{D} , respectively. If $w \in L^{\infty}(\mathbf{R})$, then its Poisson extension [6]

(1.1)
$$F(z) = p[w](z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t)w(t) dt,$$

is harmonic on **H**, where

$$p(z,t) = \frac{y}{(x-t)^2 + y^2}, \quad z = x + iy,$$

is called the Poisson kernel of **H**.

A topological mapping f of Ω is said to be (K, K')-quasiconformal if it satisfies

- 1) f is ACL in Ω ;
- 2) $L_f^2 \leq K L_f l_f + K', \ K \geq 1, \ K' \geq 0$ a.e. in Ω , where $L_f = |f_z| + |f_{\bar{z}}|, \ l_f = |f_z| |f_{\bar{z}}|.$

If K' = 0, then f is a K-quasiconformal mapping. If a harmonic mapping is also (K, K')-quasiconformal, then we call it a (K, K')-quasiconformal harmonic mapping. For convenience, quasiconformal mapping and quasiconformal harmonic mapping are abbreviated by qc mapping and qch mapping, respectively.

*Corresponding author.

doi:10.5186/aasfm.2012.3716

²⁰¹⁰ Mathematics Subject Classification: Primary 30C65; Secondary 30C62.

Key words: Harmonic mappings, (K, K')-quasiconformal mappings, Lipschitz continuity, Hilbert transformations.

This work is supported by NNSF of China (11101165) and the Fundamental Research Funds for the Central Universities of Huaqiao university (JB-ZR1136).

The class of K-qch mappings of **D** onto itself was first studied by Martio [16]. Pavlović [20] proved that a K-qch mapping of **D** onto itself is bi-Lipschitz. Its explicit bi-Lipschitz constants were given by Partyka and Sakan [19]. Zhu and Huang [23] used Heinz's inequality to improve the result. Kalaj and Pavlović [13] obtained some characterizations including the bi-Lipschitz continuity of K-qch mappings of H onto iteself. If f is K-qch and ψ is conformal, then $f \circ \psi$ is also K-qch. However, $\psi \circ f$ rarely preserves the harmonicity. Hence, the image domains of K-qch mappings can not be always confined to a canonical domain such as the unit disk or the upper half plane. Kalaj [9–13] did a lot of work on studying the Lipschitz continuity for different image domains from **D**, for example he proved that every K-qch mapping between a Jordan domain with $C^{1,\alpha}$ ($\alpha < 1$) and a Jordan domain with $C^{1,1}$ compact boundary is bi-Lipschitz [9]. The fact that every K-qch mapping of **D** or **H** onto itself is hyperbolically bi-Lipschitz has been showed by Knežević and Mateljević [14]. Chen and Fang [3] generalized the above result to the case of convex image domain and gave the sharp bi-Lipschitz constants. The hyperbolically bi-Lipschitz continuity of some other classes of qc mappings were considered in [17], [18], [22].

Finn and Serrin [5] and Simon [21] obtained a Hölder estimate for (K, K')-qc mappings. Recently, Kalaj and Mateljević [12] studied the class of (K, K')-qc mappings with bounded image domains. They proved the following intrigue results: A (K, K')-qc mapping between two Jordan domains with C^2 boundaries is Hölder continuous. Moreover, if it is also harmonic, then it is Lipschitz continuous. In this paper, we study the class of (K, K')-qc mappings with unbounded image domains.

In Section 2, we first construct a (K, K')-qc mapping of an angular domain onto **H** which is neither Lipschitz nor Hölder continuous (see Example 2.1). A harmonic mapping with unbounded image domain is not necessarily Hölder or Lipschitz continuous (see Example 2.2 in [17]). However, we can construct an example of (K, K')-qch mappings of **H** onto itself which is Lipschitz but not bi-Lipschitz (see Example 2.2). In fact, after estimating the modulus of the gradient of (K, K')-qch mappings of **H** onto itself (see Lemma 2.1), we obtain the Lipschitz and hyperbolically Lipschitz continuity of (K, K')-qch mappings of **H** onto itself and its Lipschitz constants only depend on K and K' (see Theorems 2.1 and 2.2).

In Section 3, combining Theorem 2.1 with the knowledge of a harmonic function and its harmonic conjugate function we get several equivalent conditions for a harmonic mapping of **H** onto itself to be a (K, K')-qc mapping. That is

Theorem 1.1. If f is a harmonic mapping of **H** onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$, then the following assertions are equivalent.

- (1) f is a (K, K')-qc mapping of **H** onto itself;
- (2) There are two positive constants c and M such that $0 < u_x \leq M$ and $|u_y| \leq \sqrt{(K+1)cM+K'}$ for all $z \in H$;
- (3) \dot{f} is a Lipschitz mapping of **H** onto **H**;
- (4) φ is absolutely continuous on \mathbf{R} , $\varphi' \in L^{\infty}(\mathbf{R})$ and $H[\varphi'] \in L^{\infty}(\mathbf{R})$, where φ is the boundary value of f on the real axis \mathbf{R} and φ' is the derivative of φ .

In Section 4, we estimate the Jacobian of (K, K')-qch mappings of **H** onto itself (see Lemma 4.1). As an application of Lemma 4.1, we obtain the euclidean and hyperbolic area distortion of (K, K')-qch mappings of **H** onto itself (see Theorems 4.1 and 4.2).

2. Lipschitz and hyperbolically Lipschitz continuity

We first construct a (K, K')-qc mapping with unbounded image domain which is neither Lipschitz nor Hölder continuous. This is different from the class of (K, K')-qc mappings with bounded image domains given by Kalaj and Mateljević [12].

Example 2.1. Let $f(z) = x(1+y) + e^{-y} \sin x + i\frac{1}{2}(y^2 - x^2), y \ge |x|$. Then f is a (3,4)-qc mapping of the angular domain $\Delta = \{z = x + iy \mid y \ge |x|, x \in \mathbf{R}\}$ onto **H**. Moreover, it is neither Lipschitz nor Hölder continuous.

Proof. If f(z) = u(z) + iv(z) is a topological and ACL mapping in Ω , then we have

$$f_z = \frac{1}{2}(f_x - if_y) = \frac{1}{2}[u_x + v_y + i(v_x - u_y)],$$

and

$$f_{\bar{z}} = \frac{1}{2}(f_x + if_y) = \frac{1}{2}[u_x - v_y + i(v_x + u_y)].$$

Then it follows that

$$|f_z|^2 - |f_{\bar{z}}|^2 = u_x v_y - u_y v_x > 0,$$

and

(2.1)
$$(|f_z| + |f_{\bar{z}}|)^2 \le u_x^2 + v_y^2 + u_y^2 + v_x^2 + u_x v_y - u_y v_x$$

Let $f(z) = x(1+y) + e^{-y} \sin x + i\frac{1}{2}(y^2 - x^2)$. Using the above formulas, we obtain

(2.2)
$$J_f = |f_z|^2 - |f_{\bar{z}}|^2 = x^2 + y^2 + y + ye^{-y}\cos x - xe^{-y}\sin x,$$

and

(2.3)
$$u_x^2 + v_y^2 + u_y^2 + v_x^2 \le 2(x^2 + y^2 + y + ye^{-y}\cos x - xe^{-y}\sin x) + 4.$$

Moreover,

(2.4)
$$\frac{|f_{\bar{z}}|}{|f_z|} = \frac{|1 + e^{-y}\cos x - ie^{-y}\sin x|}{|1 + e^{-y}\cos x + 2y + i(e^{-y}\sin x - 2x)|} \to 1, \text{ as } y \to 0, x \to 0.$$

Combining (2.1) with (2.2) and (2.3), we have

$$(|f_z| + |f_{\bar{z}}|)^2 \le 3J_f + 4.$$

It follows that $f(z) = x(1+y) + e^{-y} \sin x + i\frac{1}{2}(y^2 - x^2), y \ge |x|$, is a (3,4)-qc mapping. By (2.4), f is not a K-qc mapping for any $K \ge 1$.

Choosing two points $z_1 = iy_1, z_2 = iy_2 \in H$, we have

$$\frac{|f(z_1) - f(z_2)|}{|z_1 - z_2|^{\alpha}} = \frac{|y_1^2 - y_2^2|}{2|y_1 - y_2|^{\alpha}} \to +\infty, \text{ as } y_2 \to +\infty,$$

for $0 < \alpha \leq 1$. It concludes that f is neither Lipschitz nor Hölder continuous.

The following Lemma A plays a key role in this paper.

Lemma A. [1] Let f = u + iv be a harmonic 1–1 mapping of **H** onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$ such that $f(\infty) = \infty$. Then $v(z) = c \operatorname{Im} z$, where c is a positive constant. Especially, v has bounded partial derivatives on **H**.

Example 2.2. Let $h(x) = x + \sin x$, $x \in \mathbf{R}$. Then there exists a (K, K')-qch mapping f of \mathbf{H} onto itself with the boundary value h. Moreover, f is a (2,1)-qch mapping but fails to be a K-qch mapping for any $K \ge 1$.

Proof. Define f as

$$f(z) = \int_{-\infty}^{+\infty} \frac{yh(t)}{(x-t)^2 + y^2} \, dt + iy,$$

where the integral is in the sense of Cauchy principle value. We have

$$\int_{-\infty}^{+\infty} \frac{yh(t)}{(x-t)^2 + y^2} dt = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{(u+x)y}{u^2 + y^2} du + \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y\sin(u+x)}{u^2 + y^2} du$$
$$= x + e^{-y}\sin x.$$

So $f(z) = x + e^{-y} \sin x + iy$ is a harmonic mapping of **H** onto itself and $f|_R = x + \sin x = h(x)$. After some concrete calculations, we get

$$f_{z} = \frac{1}{2}(f_{x} - if_{y}) = \frac{1}{2}(2 + e^{-y}\cos x + ie^{-y}\sin x),$$

$$f_{\overline{z}} = \frac{1}{2}(f_{x} + if_{y}) = \frac{1}{2}(e^{-y}\cos x - ie^{-y}\sin x),$$

$$L_{f}l_{f} = 1 + e^{-y}\cos x,$$

$$L_{f}^{2} = \frac{1}{4}(4 + 4e^{-y}\cos x + 2e^{-2y}) + \frac{1}{2}e^{-y}\sqrt{4 + 4e^{-y}\cos x + e^{-2y}}$$

$$\leq \frac{1}{4}(4 + 4e^{-y}\cos x + 2e^{-2y}) + \frac{1}{4}(4 + 4e^{-y}\cos x + 2e^{-2y})$$

$$= 2(1 + e^{-y}\cos x) + e^{-2y}.$$

From the above relations we have

$$L_f^2 \le 2L_f l_f + 1; \quad \frac{|f_{\bar{z}}|}{|f_z|} \to 1 \text{ when } \cos x \to -1, \ y \to 0.$$

It is easy to see that f is not bi-Lipschitz. By the definition of (K, K')-qch mapping we conclude that $f(z) = x + e^{-y} \sin x + iy$ is a (2, 1)-qch mapping but it is not (K, 0)-qch mapping for any $K \ge 1$.

Lemma 2.1. Let f be a harmonic mapping of \mathbf{H} onto itself and continuous up to its boundary with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then f can be represented by f = u + icy and the gradient of f is such that

(2.5)
$$L_f = |f_z| + |f_{\bar{z}}| \le cK + \sqrt{K'},$$

where c is a positive constant.

Proof. By the definition of (K, K')-qc mapping, we have

$$L_f^2 \le K L_f l_f + K'.$$

This implies that

$$L_f \le \frac{K l_f + \sqrt{K^2 l_f^2 + 4K'}}{2},$$

and consequently

$$(2.6) L_f \le K l_f + \sqrt{K'}.$$

According to Lemma A, we can assume that $f = u + ic \operatorname{Im} z = \frac{1}{2}(g(z) + cz + \overline{g(z) - cz})$, where g is a holomorphic function in **H**. Hence

(2.7)
$$|f_z| = \frac{1}{2}|g'(z) + c|, \quad |f_{\bar{z}}| = \frac{1}{2}|g'(z) - c|.$$

Using (2.6) and (2.7) we have

$$(K+1)|f_{\bar{z}}| \le (K-1)|f_{z}| + \sqrt{K'} \le (K-1)(|f_{\bar{z}}| + c) + \sqrt{K'}.$$

So

$$2|f_{\bar{z}}| \le c(K-1) + \sqrt{K'}$$

and

(2.8)
$$|g'(z) - c| \le c(K-1) + \sqrt{K'}.$$

It is easy to get

$$\begin{aligned} |f_{\bar{z}}| &= \frac{1}{2} |g'(z) - c| \le \frac{1}{2} (c(K-1) + \sqrt{K'}), \\ |f_{z}| &= \frac{1}{2} |g'(z) + c| \le \frac{1}{2} (c(K+1) + \sqrt{K'}), \end{aligned}$$

thus we obtain

$$|f_z| + |f_{\bar{z}}| \le cK + \sqrt{K'}.$$

Theorem 2.1. Let f(z) = u(z) + iv(z) be a harmonic mapping of **H** onto itself and continuous up to its boundary with $f(\infty) = \infty$. If f is also a (K, K')-qc mapping, then f is Lipschitz. Moreover,

$$|f(z_1) - f(z_2)| \le (cK + \sqrt{K'})|z_1 - z_2|,$$

where c is a positive constant.

Proof. Let ℓ' be the line segment connecting z_1 and z_2 . By Lemma 2.1 we have

$$|f(z_1) - f(z_2)| = \int_{f(\ell')} |df| \le \int_{\ell'} L_f |dz| \le (cK + \sqrt{K'}) |z_1 - z_2|.$$

Theorem 2.2. Let f be a harmonic mapping of \mathbf{H} onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$ with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then f is hyperbolically Lipschitz. Moreover,

$$\mathcal{H}(f(z_1), f(z_2)) \le (cK + \sqrt{K'})\mathcal{H}(z_1, z_2)$$

where $\mathcal{H}(\cdot, \cdot)$ denotes the hyperbolic distance and c is a positive constant.

Proof. Let ℓ be the hyperbolic geodesic connecting two arbitrary points z_1 and z_2 in **H**. Let ρ represent the hyperbolic metric density of **H**. Since $\rho(f(z)) = \rho(z), z \in$ **H**, we have from Lemma 2.1 that

$$\mathcal{H}(f(z_1), f(z_2)) = \int_{f(\ell)} \rho(f(z)) |df| \leq \int_{\ell} \rho(f(z)) L_f |dz|$$
$$\leq (cK + \sqrt{K'}) \int_{\ell} \rho(z) |dz| = (cK + \sqrt{K'}) \mathcal{H}(z_1, z_2).$$

Remark 2.1. In fact we can extend the above results of the Theorems 2.1 and 2.2 a little. That is, if f = u + iv: $\mathbf{H} \to \mathbf{H}$ is a (K, K')-quasiconformal mapping with the assumption that $f \in C^1$ and v(z) = cy for some constant c > 0, then f is Lipschitz continuous with respect to the euclidean and hyperbolic metric.

Remark 2.2. The results of Theorem 2.1 and 2.2 generalize the results obtained by Knežević and Mateljević [14]. If f(z) = Kx + iy, $z \in \mathbf{H}$, then f is a K-qch mapping of \mathbf{H} onto itself and satisfies the equality $L_f = K$. Hence, the above results are asymptotically sharp as K' tends to 0.

3. Equivalent conditions of (K, K')-qch mappings

In order to prove Theorem 1.1, we would like to introduce some useful knowledge about harmonic conjugate functions [6]. Actually, for every harmonic function F on **H** with a boundary value $w \in L^{\infty}(\mathbf{R})$, there exists a harmonic conjugate function denoted by \widetilde{F} with $\widetilde{F}(i) = 0$ and the representation of \widetilde{F} is given by

$$\widetilde{F}(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left(q(z,t) + \frac{t}{t^2 + 1} \right) w(t) \, dt,$$

where

$$q(z,t) = \frac{x-t}{|z-t|^2}$$

is the conjugate Poisson kernel.

The Hilbert transformation of $w \in L^{\infty}(R)$ is given by the formula

(3.1)
$$H[w](x) = \lim_{\varepsilon \to 0} H_{\varepsilon}w(x) = \lim_{\varepsilon \to 0} \int_{|x-t| > \varepsilon} \frac{1}{\pi} \left(\frac{1}{x-t} + \frac{t}{t^2+1} \right) w(t) dt$$

The connection between H[w](z) and $\widetilde{F}(z)$ is given by the formulas

(3.2)
$$\lim_{y \to 0} H_y[w](z) = \lim_{y \to 0} \widetilde{F}(z),$$

and

(3.3)
$$\widetilde{F}(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t) H[w](t) dt.$$

In fact, if F is a harmonic function in **H**, then $F_y(i) - F_y(z)$ is a harmonic conjugate function of F_x , where F_x and F_y denote the partial derivatives of F.

The following three lemmas are valid for (K, K')-qch mappings of **H** onto itself and extend the results obtained by Kalaj and Pavlović [13] a little. For completeness, we also give their proofs point by point as follows.

For a harmonic mapping f = u + iv on **H**, let

$$f(i) = a + ic, \quad \phi(z) = \frac{\partial u}{\partial z} = \frac{1}{2}(u_x - iu_y).$$

We get from Lemma A that the following holds.

Lemma 3.1. Let f be a harmonic mapping of \mathbf{H} onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$ with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then it has a representation of the from

(3.4)
$$f(z) = 2\Re \int_{i}^{z} \phi(\zeta) \, d\zeta + a + icy,$$

where

- (1) a + ic is a point in **H**,
- (2) ϕ is a holomorphic function on **H** and $\phi(H)$ lies in a bounded subset of the right half plane.

Conversely, if (1) and (2) are satisfied, then the function f defined by (3.4) is a (K, K')-qch mapping defined on **H**.

Proof. Let f = u + iv be a (K, K')-qch mapping of **H** onto itself and continuous up to its boundary. By the definition of (K, K')-qc mapping we have

$$(|f_z| + |f_{\bar{z}}|)^2 \le K(|f_z|^2 - |f_{\bar{z}}|^2) + K',$$

where

$$f_z = \frac{1}{2}(f_x - if_y) = \frac{1}{2}[u_x + v_y + i(v_x - u_y)],$$

$$f_{\bar{z}} = \frac{1}{2}(f_x + if_y) = \frac{1}{2}[u_x - v_y + i(v_x + u_y)].$$

Then from Lemma A we have

$$\frac{1}{2}(u_x^2 + u_y^2 + c^2) + \frac{1}{2}[(u_x^2 + u_y^2 + c^2)^2 - 4c^2 u_x^2]^{\frac{1}{2}} \le K c u_x + K',$$

$$J_f = |f_z|^2 - |f_{\bar{z}}|^2 = u_x v_y - u_y v_x = c u_x.$$

Combining the above relations we obtain

$$u_x^2 + u_y^2 + c^2 \le (K+1)cu_x + K'.$$

Hence there exists a constant M such that

(3.5)
$$0 < u_x \le \frac{(K+1)c + \sqrt{(K+1)^2c^2 - 4(c^2 - K')}}{2} = M$$

and

(3.6)
$$|u_y| \le \sqrt{(K+1)cM + K'}.$$

Let $\phi(z) = u_z = \frac{1}{2}(u_x - iu_y)$. Then $\phi(z)$ is holomorphic on **H**. By Green formula it follows that

$$2\Re \int_{i}^{z} \phi(\zeta) \, d\zeta = u(z) - u(i).$$

Let a = u(i). Then

$$f(z) = 2\Re \int_{i}^{z} \phi(\zeta) \, d\zeta + a + icy,$$

and ϕ satisfies that $\phi(\mathbf{H})$ lies in a bounded subset in the right half plane.

Conversely, if f is represented by (3.4) and satisfies the conditions (1) and (2) in Lemma 3.1, then there exist two positive constants M' and M'' such that

$$0 < u_x \le M', \quad |u_y| \le M''$$

So we conclude that

$$L_f^2 = (|f_z| + |f_{\bar{z}}|)^2 \le u_x^2 + u_y^2 + c^2 \le M'^2 + M''^2 + c^2$$

Hence, f is $(1,M^{\prime 2}+M^{\prime\prime 2}+c^2)\text{-qch}$ mapping of ${\bf H}$ onto itself.

Lemma 3.2. Let f = u + iv be a harmonic mapping of **H** onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$ with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then the restriction φ of f to the real axis **R** is Lipschitz and the relations

(3.7)
$$u_x(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t)\varphi'(t) dt,$$

and

(3.8)
$$u_y(z) - u_y(i) = -\frac{1}{\pi} \int_{-\infty}^{+\infty} (q(z,t) + \frac{t}{t^2 + 1}) \varphi'(t) dt$$

hold.

Proof. Using Lemma A and Theorem 2.1, we have that f is Lipschitz on **H**. So the restriction φ of f to **R** is Lipschitz and $|\varphi'| \in L^{\infty}(\mathbf{R})$. By (3.5) we have that the function u_x is bounded on **H** and according to Fatou's theorem the limit

$$\lim_{y \to 0} u_x(x, y) = w(x)$$

exists for almost all $x \in \mathbf{R}$. Hence, $w(t) \in L^{\infty}(\mathbf{R})$. Furthermore, we have

$$u_x(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t) w(t) \, dt.$$

By (3.5) we easily know that $u_t(t, y)$ is bounded. Then u satisfies the relation

$$u(x,y) - u(0,y) = \int_0^x u_t(t,y) \, dt.$$

By the dominated convergence theorem, we naturally obtain

$$\lim_{y \to 0} \int_0^x u_t(t, y) \, dt = \int_0^x w(t) \, dt.$$

On the other hand,

$$\lim_{y \to 0} (u(x,y) - u(0,y)) = \varphi(x) - \varphi(0),$$

and therefore

$$\varphi(x) - \varphi(0) = \int_0^x w(t) dt.$$

Hence $\varphi'(x) = w(x)$ a.e. Thus (3.7) naturally holds. The validity of (3.8) now follows from (3.7) by the fact that the function $u_y(i) - u_y(z)$ is a harmonic conjugate function of $u_x(z)$.

Lemma 3.3. Let f = u + iv be a harmonic mapping of **H** onto itself and continuous up to its boundary with $f(\infty) = \infty$. If f is a (K, K')-qc mapping and φ is the restriction of f on **R**, then the function $H[\varphi'](z) \in L^{\infty}(\mathbf{R})$ and the equation

(3.9)
$$u_y(z) - u_y(i) = -\frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t) H[\varphi'](t) dt$$

holds.

Proof. By the inequality (3.6) it follows that the function $\tilde{v}(z) = u_y(i) - u_y(z)$ is bounded on **H**. Since \tilde{v} is the harmonic conjugate of $\tilde{u} = u_x$, we have from (3.1), (3.2) and (3.3) that

$$H[\varphi'] = \lim_{y \to 0} H_y[\varphi'](z) = \lim_{y \to 0} (u_y(i) - u_y(z)).$$

Hence, $H[\varphi'](z) \in L^{\infty}(R)$ and

$$u_y(i) - u_y(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t) H[\varphi'](t) dt.$$

Next, using the above three Lemmas we will give the proof of Theorem 1.1.

Proof. By Lemma 3.1, we get $(1) \Rightarrow (2)$. The inequalities (3.5) and (3.6) imply that

$$L_f \le |u_x| + |u_y| + c \le M + c + \sqrt{(K+1)cM + K'}.$$

So L_f is bounded. Hence $(2) \Rightarrow (3)$.

To prove (3) \Rightarrow (1), we note that f(z) is a Lipschitz mapping of **H** onto **H**. So there exists a constant L > 0 such that

$$|f(z') - f(z)| \le L|z' - z|.$$

Let $\zeta = z + re^{i\theta}$. We have

$$\lim_{\zeta \to z} \frac{|f(\zeta) - f(z)|}{|\zeta - z|} = \lim_{r \to 0} \frac{|f(z + re^{i\theta}) - f(z)|}{r} = |f_{\zeta}e^{i\theta} + f_{\bar{\zeta}}e^{-i\theta}|,$$

and

$$|f_{\zeta}| + |f_{\bar{\zeta}}| = \sup_{\theta} |f_{\zeta}e^{i\theta} + f_{\bar{\zeta}}e^{-i\theta}| \le L.$$

Thus we get

$$(|f_{\zeta}| + |f_{\bar{\zeta}}|)^2 \le |f_{\zeta}|^2 - |f_{\bar{\zeta}}|^2 + L^2.$$

Therefore f is $(1, L^2)$ -qc mapping.

That (1) implies (4) follows from Lemma 3.2 and 3.3. To prove (4) implies (1), we assume that φ is the restriction of f to **R**. By the conditions of (4), that is, $\varphi' \in L^{\infty}(\mathbf{R}), \ H[\varphi'] \in L^{\infty}(\mathbf{R})$, we can define a harmonic function \tilde{u} and its harmonic conjugate \tilde{v} on **H** as

(3.10)
$$\widetilde{u}(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t)\varphi'(t) dt,$$

(3.11)
$$\widetilde{v}(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left(q(z,t) + \frac{t}{t^2 + 1} \right) \varphi'(t) dt.$$

Let $\phi(z) = \frac{1}{2}(\widetilde{u}(z) + i\widetilde{v}(z))$. Then ϕ is a holomorphic function on **H**. Define g by

(3.12)
$$g(z) = 2\Re \int_{i}^{z} \phi(\zeta) \, d\zeta + i c y.$$

Since φ is absolutely continuous and $\varphi' \in L^{\infty}(\mathbf{R})$, it follows that $0 \leq \varphi' < \lambda$, where λ is a positive constant. Thus, by (3.10) we get $0 \leq \tilde{u}(z) < \lambda$, $z \in \mathbf{H}$. By (3.11) there exists a positive constant such that $|\tilde{v}(z)| \leq M$. So the function ϕ maps \mathbf{H} into a bounded subset of the right half plane. According to Lemma 3.1 we conclude that g is a (K, K')-qch mapping on \mathbf{H} . By (3.12)

$$(\Re g)_x = \widetilde{u}(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} p(z,t)\varphi'(t) dt$$

holds on **H**. Since \tilde{u} is bounded on **H**, we have that $\Re g$ satisfies the relation

$$\Re g(x,y) - \Re g(0,y) = \int_0^x (\Re g)_x(t,y) \, dt$$

By the dominated convergence theorem, we naturally have

$$\lim_{y \to 0} \int_0^x (\Re g)_x(t,y) \, dt = \int_0^x \varphi'(t) \, dt.$$

By the fact that g is continuous on its boundary, then the restriction $\tilde{\varphi}$ of g to \mathbf{R} is Lipschitz and satisfies that $|\tilde{\varphi}'| \in L^{\infty}(\mathbf{R})$ and

$$\lim_{y \to 0} (\Re g(x, y) - \Re g(0, y)) = \widetilde{\varphi}(x) - \widetilde{\varphi}(0).$$

Min Chen and Xingdi Chen

Therefore

$$\widetilde{\varphi}(x) - \widetilde{\varphi}(0) = \int_0^x \varphi'(t) \, dt.$$

Hence $\varphi' = \widetilde{\varphi}'$ a.e. on **R**. Since φ and $\widetilde{\varphi}$ are absolutely continuous, $\varphi = \widetilde{\varphi} + a'$ for some $a' \in \mathbf{R}$. Thus f = g + a' and $\varphi = f|_{\mathbf{R}}$. So f is also a (K, K')-qc mapping on **H**.

4. Area distortion

In order to estimate the euclidean and hyperbolic area distortion of a (K, K')-qch mapping of **H** onto itself, we first estimate its Jacobian.

Lemma 4.1. Assume that f is a harmonic mapping of \mathbf{H} onto itself and continuous on $\mathbf{H} \cup \mathbf{R}$ with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then $f(z) = \frac{1}{2}(g(z) + cz + \overline{g(z) - cz})$, where g is a holomorphic function in \mathbf{H} and c is a positive constant and the Jacobian of f is such that

(4.1)
$$J_f = |f_z|^2 - |f_{\bar{z}}|^2 \le c^2 K + c\sqrt{K'}.$$

Proof. According to the definition of (K, K')-qc mappings and the inequality (2.7), we get

$$J_f = |f_z|^2 - |f_{\bar{z}}|^2 = \frac{1}{4}(|g'(z) + c|^2 - |g'(z) - c|^2) = \frac{c}{2}(g'(z) + \overline{g'(z)}) \le c|g'(z)|.$$

By (2.8) we obtain

$$||g'(z)| - c| \le |g'(z) - c| \le c(K - 1) + \sqrt{K'},$$

so we conclude that

$$J_f \le c|g'(z)| \le c^2 K + c\sqrt{K'}.$$

Theorem 4.1. Let f = u + iv be a harmonic mapping of **H** onto itself and continuous up to its boundary with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then for any measurable subset $E \subset \mathbf{H}$,

$$A_{\text{euc}}(f(E)) \le (c^2 K + c \sqrt{K'}) A_{\text{euc}}(E),$$

where $A_{\text{euc}}(\cdot)$ denotes the euclidean area and c is a positive constant.

Proof. According to Lemma 4.1, we obtain

$$A_{\text{euc}}(f(z)) = \iint_E J_f(z) |dz|^2 \le (c^2 K + c\sqrt{K'}) A_{\text{euc}}(E).$$

Theorem 4.2. Let f be a harmonic mapping of \mathbf{H} onto itself and continuous up to its boundary with $f(\infty) = \infty$. If f is a (K, K')-qc mapping, then for any measurable subset $E \subset H$, we get

$$A_{\text{hyp}}(f(E)) \le (c^2 K + c\sqrt{K'})A_{\text{hyp}}(E),$$

where A_{hyp} denotes the hyperbolic area and c is a positive constant.

Proof. Let ρ be the hyperbolic metric density of **H**. By the fact that $\rho(f(z)) = \rho(z), z \in \mathbf{H}$, we obtain by Lemma 4.1 that

$$A_{\rm hyp}(f(E)) = \iint_{f(E)} \rho^2(f(z)) |df(z)|^2 = \iint_E \rho^2(z) J_f(z) |dz|^2 \leq (c^2 K + c\sqrt{K'}) A_{\rm hyp}(E).$$

Remark 4.1. When K' = 0, the above results are sharp. If f(z) = Kx + iy, $z \in H$, then f is a K-qch mapping of \mathbf{H} onto itself and satisfies the equalities $J_f = K$, $L_f = K$. The results of Theorem 4.1 and 4.2 generalize the results of Chen [2].

Acknowledgements. The authors would like to thank the referees for their very careful work and helpful suggestions to improve the quality of this paper.

References

- AXLER, S., P. BOURDON, and W. RAMEY: Harmonic function theory. Springer-Verlag, New York, 2001.
- [2] CHEN, X.: Distortion estimates of the hyperbolic Jacobians of harmonic quasiconformal mappings. - J. Huaqiao Univ. Nat. Sci. 31:3, 2010, 351–355.
- [3] CHEN, X., and A. FANG: A Schwarz–Pick inequality for harmonic quasiconformal mappings and its applications. - J. Math. Anal. Appl. 369:1, 2010, 22–28.
- [4] DUREN, P.: Harmonic mappings in the plane. Cambridge Univ. Press, Cambridge, 2004.
- [5] FINN, R., and J. SERRIN: On the Hölder continuity of quasi-conformal and elliptic mappings.
 Trans. Amer. Math. Soc. 89, 1958, 1–15.
- [6] GARNETT, J. B.: Bounded analytic functions. Academic Press, New York, 2007.
- [7] KALAJ, D.: Quasiconformal mapping between Jordan domains. Math. Z. 260:2, 2008, 237– 252.
- [8] KALAJ, D.: On boundary correspondence of q.c. harmonic mappings between smooth Jordan domains. - arXiv:0910.4950, 2009.
- [9] KALAJ, D.: Harmonic mappings and distance function. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) X:5, 2011, 1–13.
- [10] KALAJ, D., and M. MATELJEVIĆ: Inner estimate and quasiconformal harmonic maps between smooth domains. - J. Anal. Math. 100:1, 2006, 117–132.
- [11] KALAJ, D., and M. MATELJEVIĆ: On quasiconformal harmonic surfaces with rectifiable boundary. - Complex Anal. Oper. Theory 5:3, 2011, 633–646.
- [12] KALAJ, D., and M. MATELJEVIĆ: (K, K')-quasiconformal harmonic mappings. Potential Anal., doi:10.1007/s11118-011-9222-4.
- [13] KALAJ, D., and M. PAVLOVIĆ: Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane. - Ann. Acad. Sci. Fenn. Math. 30, 2005, 159–165.
- [14] KNEŽEVIĆ, M., and M. MATELJEVIĆ: On the quasi-isometries of harmonic quasiconformal mappings. - J. Math. Anal. Appl. 334:1, 2007, 404–413.
- [15] LEWY, H.: On the non-vanishing of the Jacobian in certain in one-to-one mappings. Bull. Amer. Math. Soc. 42, 1936, 689–692.
- [16] MARTIO, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 425, 1968, 3–10.
- [17] MATELJEVIĆ, M., and M. VUORINEN: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl., doi:10.1155/2010/178832.
- [18] MARKOVIC, V.: Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces. -J. London Math. Soc. 65:1, 2002, 103–104.
- [19] PARTYKA, D., and K. SAKAN: On bi-Lipschitz type inequalities for quasiconformal hamonic mappings. - Ann. Acad. Sci. Fenn. Math. 32, 2007, 579–594.
- [20] PAVLOVIĆ, M.: Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk. - Ann. Acad. Sci. Fenn. Math. 27, 2002, 365–372.

- [21] SIMON, L.: A Hölder estimate for quasiconformal maps between surfaces in Euclidean space.
 Acta Math. 139:1, 1977, 19–51.
- [22] WAN, T.: Constant mean curvature surface, harmonic maps, and universal Teichmüller spaces.
 J. Differential Geom. 35, 1992, 643–657.
- [23] ZHU, J., and X. HUANG: Estimate for Heinz's inequality in harmonic quasiconformal mappings. - J. Math. Anal. Approx. Theory 2:1, 2007, 52–59.

Received 6 July 2011