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Abstract. In this paper we show that (K, K ′)-quasiconformal mappings with unbounded
image domains are not Hölder continuous, which is different from the case with bounded image
domains given by Kalaj and Mateljević. For a (K, K ′)-quasiconformal harmonic mapping of the
upper half plane onto itself, we prove that it is Lipschitz and hyperbolically Lipschitz continuous.
Moreover, we get four equivalent conditions for a harmonic mapping of the upper half plane onto
itself to be a (K, K ′)-quasiconformal mapping.

1. Introduction

A function F is called harmonic [4] in a region Ω if its Laplacian vanishes in Ω.
By Lewy’s theorem [15], a locally univalent harmonic function F has a non-vanishing
Jacobian. The real axis, the upper half plane and the unit disk are denoted by R, H
and D, respectively. If w ∈ L∞(R), then its Poisson extension [6]

(1.1) F (z) = p[w](z) =
1

π

ˆ +∞

−∞
p(z, t)w(t) dt,

is harmonic on H, where

p(z, t) =
y

(x− t)2 + y2
, z = x + iy,

is called the Poisson kernel of H.
A topological mapping f of Ω is said to be (K,K ′)-quasiconformal if it satisfies
1) f is ACL in Ω;
2) L2

f ≤ KLf lf + K ′, K ≥ 1, K ′ ≥ 0 a.e. in Ω, where Lf = |fz| + |fz̄|, lf =
|fz| − |fz̄|.

If K ′ = 0, then f is a K-quasiconformal mapping. If a harmonic mapping is also
(K,K ′)-quasiconformal, then we call it a (K, K ′)-quasiconformal harmonic mapping.
For convenience, quasiconformal mapping and quasiconformal harmonic mapping are
abbreviated by qc mapping and qch mapping, respectively.
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The class of K-qch mappings of D onto itself was first studied by Martio [16].
Pavlović [20] proved that a K-qch mapping of D onto itself is bi-Lipschitz. Its explicit
bi-Lipschitz constants were given by Partyka and Sakan [19]. Zhu and Huang [23]
used Heinz’s inequality to improve the result. Kalaj and Pavlović [13] obtained some
characterizations including the bi-Lipschitz continuity of K-qch mappings of H onto
iteself. If f is K-qch and ψ is conformal, then f ◦ ψ is also K-qch. However, ψ ◦ f
rarely preserves the harmonicity. Hence, the image domains of K-qch mappings can
not be always confined to a canonical domain such as the unit disk or the upper
half plane. Kalaj [9–13] did a lot of work on studying the Lipschitz continuity for
different image domains from D, for example he proved that every K-qch mapping
between a Jordan domain with C1,α (α < 1) and a Jordan domain with C1,1 compact
boundary is bi-Lipschitz [9]. The fact that every K-qch mapping of D or H onto
itself is hyperbolically bi-Lipschitz has been showed by Knežević and Mateljević [14].
Chen and Fang [3] generalized the above result to the case of convex image domain
and gave the sharp bi-Lipschitz constants. The hyperbolically bi-Lipschitz continuity
of some other classes of qc mappings were considered in [17], [18], [22].

Finn and Serrin [5] and Simon [21] obtained a Hölder estimate for (K, K ′)-qc
mappings. Recently, Kalaj and Mateljević [12] studied the class of (K,K ′)-qc map-
pings with bounded image domains. They proved the following intrigue results: A
(K,K ′)-qc mapping between two Jordan domains with C2 boundaries is Hölder con-
tinuous. Moreover, if it is also harmonic, then it is Lipschitz continuous. In this
paper, we study the class of (K, K ′)-qch mappings with unbounded image domains.

In Section 2, we first construct a (K, K ′)-qc mapping of an angular domain onto
H which is neither Lipschitz nor Hölder continuous (see Example 2.1). A harmonic
mapping with unbounded image domain is not necessarily Hölder or Lipschitz contin-
uous (see Example 2.2 in [17]). However, we can construct an example of (K, K ′)-qch
mappings of H onto itself which is Lipschitz but not bi-Lipschitz (see Example 2.2).
In fact, after estimating the modulus of the gradient of (K,K ′)-qch mappings of H
onto itself (see Lemma 2.1), we obtain the Lipschitz and hyperbolically Lipschitz
continuity of (K, K ′)-qch mappings of H onto itself and its Lipschitz constants only
depend on K and K ′ (see Theorems 2.1 and 2.2).

In Section 3, combining Theorem 2.1 with the knowledge of a harmonic func-
tion and its harmonic conjugate function we get several equivalent conditions for a
harmonic mapping of H onto itself to be a (K, K ′)-qc mapping. That is

Theorem 1.1. If f is a harmonic mapping of H onto itself and continuous on
H ∪R, then the following assertions are equivalent.

(1) f is a (K,K ′)-qc mapping of H onto itself;
(2) There are two positive constants c and M such that 0 < ux ≤ M and |uy| ≤√

(K + 1)cM + K ′ for all z ∈ H;
(3) f is a Lipschitz mapping of H onto H;
(4) ϕ is absolutely continuous on R, ϕ′ ∈ L∞(R) and H[ϕ′] ∈ L∞(R), where ϕ

is the boundary value of f on the real axis R and ϕ′ is the derivative of ϕ.

In Section 4, we estimate the Jacobian of (K,K ′)-qch mappings of H onto itself
(see Lemma 4.1). As an application of Lemma 4.1, we obtain the euclidean and
hyperbolic area distortion of (K,K ′)-qch mappings of H onto itself (see Theorems 4.1
and 4.2).
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2. Lipschitz and hyperbolically Lipschitz continuity

We first construct a (K,K ′)-qc mapping with unbounded image domain which is
neither Lipschitz nor Hölder continuous. This is different from the class of (K, K ′)-qc
mappings with bounded image domains given by Kalaj and Mateljević [12].

Example 2.1. Let f(z) = x(1 + y) + e−y sin x + i1
2
(y2 − x2), y ≥ |x|. Then f is

a (3, 4)-qc mapping of the angular domain ∆ = {z = x + iy | y ≥ |x|, x ∈ R} onto
H. Moreover, it is neither Lipschitz nor Hölder continuous.

Proof. If f(z) = u(z) + iv(z) is a topological and ACL mapping in Ω, then we
have

fz = 1
2
(fx − ify) = 1

2
[ux + vy + i(vx − uy)],

and
fz̄ = 1

2
(fx + ify) = 1

2
[ux − vy + i(vx + uy)].

Then it follows that
|fz|2 − |fz̄|2 = uxvy − uyvx > 0,

and

(2.1) (|fz|+ |fz̄|)2 ≤ u2
x + v2

y + u2
y + v2

x + uxvy − uyvx.

Let f(z) = x(1+y)+e−y sin x+ i1
2
(y2−x2). Using the above formulas, we obtain

(2.2) Jf = |fz|2 − |fz̄|2 = x2 + y2 + y + ye−y cos x− xe−y sin x,

and

(2.3) u2
x + v2

y + u2
y + v2

x ≤ 2(x2 + y2 + y + ye−y cos x− xe−y sin x) + 4.

Moreover,

(2.4)
|fz̄|
|fz| =

|1 + e−y cos x− ie−y sin x|
|1 + e−y cos x + 2y + i(e−y sin x− 2x)| → 1, as y → 0, x → 0.

Combining (2.1) with (2.2) and (2.3), we have

(|fz|+ |fz̄|)2 ≤ 3Jf + 4.

It follows that f(z) = x(1+y)+e−y sin x+i1
2
(y2−x2), y ≥ |x|, is a (3,4)-qc mapping.

By (2.4), f is not a K-qc mapping for any K ≥ 1.
Choosing two points z1 = iy1, z2 = iy2 ∈ H, we have

|f(z1)− f(z2)|
|z1 − z2|α =

|y2
1 − y2

2|
2|y1 − y2|α → +∞, as y2 → +∞,

for 0 < α ≤ 1. It concludes that f is neither Lipschitz nor Hölder continuous. ¤
The following Lemma A plays a key role in this paper.

Lemma A. [1] Let f = u + iv be a harmonic 1–1 mapping of H onto itself and
continuous on H∪R such that f(∞) = ∞. Then v(z) = c Im z, where c is a positive
constant. Especially, v has bounded partial derivatives on H.

Example 2.2. Let h(x) = x + sin x, x ∈ R. Then there exists a (K, K ′)-qch
mapping f of H onto itself with the boundary value h. Moreover, f is a (2,1)-qch
mapping but fails to be a K-qch mapping for any K ≥ 1.
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Proof. Define f as

f(z) =

ˆ +∞

−∞

yh(t)

(x− t)2 + y2
dt + iy,

where the integral is in the sense of Cauchy principle value. We have
ˆ +∞

−∞

yh(t)

(x− t)2 + y2
dt =

1

π

ˆ +∞

−∞

(u + x)y

u2 + y2
du +

1

π

ˆ +∞

−∞

y sin(u + x)

u2 + y2
du

= x + e−y sin x.

So f(z) = x + e−y sin x + iy is a harmonic mapping of H onto itself and f |R =
x + sin x = h(x). After some concrete calculations, we get

fz = 1
2
(fx − ify) = 1

2
(2 + e−y cos x + ie−y sin x),

fz̄ = 1
2
(fx + ify) = 1

2
(e−y cos x− ie−y sin x),

Lf lf = 1 + e−y cos x,

L2
f = 1

4
(4 + 4e−y cos x + 2e−2y) + 1

2
e−y

√
4 + 4e−y cos x + e−2y

≤ 1
4
(4 + 4e−y cos x + 2e−2y) + 1

4
(4 + 4e−y cos x + 2e−2y)

= 2(1 + e−y cos x) + e−2y.

From the above relations we have

L2
f ≤ 2Lf lf + 1;

|fz̄|
|fz| → 1 when cos x → −1, y → 0.

It is easy to see that f is not bi-Lipschitz. By the definition of (K, K ′)-qch
mapping we conclude that f(z) = x + e−y sin x + iy is a (2, 1)-qch mapping but it is
not (K, 0)-qch mapping for any K ≥ 1. ¤

Lemma 2.1. Let f be a harmonic mapping of H onto itself and continuous
up to its boundary with f(∞) = ∞. If f is a (K,K ′)-qc mapping, then f can be
represented by f = u + icy and the gradient of f is such that

(2.5) Lf = |fz|+ |fz̄| ≤ cK +
√

K ′,

where c is a positive constant.

Proof. By the definition of (K, K ′)-qc mapping, we have

L2
f ≤ KLf lf + K ′.

This implies that

Lf ≤
Klf +

√
K2l2f + 4K ′

2
,

and consequently

(2.6) Lf ≤ Klf +
√

K ′.

According to Lemma A, we can assume that f = u + ic Im z = 1
2
(g(z) + cz +

g(z)− cz), where g is a holomorphic function in H. Hence

(2.7) |fz| = 1
2
|g′(z) + c|, |fz̄| = 1

2
|g′(z)− c|.
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Using (2.6) and (2.7) we have

(K + 1)|fz̄| ≤ (K − 1)|fz|+
√

K ′ ≤ (K − 1)(|fz̄|+ c) +
√

K ′.

So
2|fz̄| ≤ c(K − 1) +

√
K ′,

and

(2.8) |g′(z)− c| ≤ c(K − 1) +
√

K ′.

It is easy to get

|fz̄| = 1
2
|g′(z)− c| ≤ 1

2
(c(K − 1) +

√
K ′),

|fz| = 1
2
|g′(z) + c| ≤ 1

2
(c(K + 1) +

√
K ′),

thus we obtain
|fz|+ |fz̄| ≤ cK +

√
K ′. ¤

Theorem 2.1. Let f(z) = u(z) + iv(z) be a harmonic mapping of H onto itself
and continuous up to its boundary with f(∞) = ∞. If f is also a (K, K ′)-qc mapping,
then f is Lipschitz. Moreover,

|f(z1)− f(z2)| ≤ (cK +
√

K ′)|z1 − z2|,
where c is a positive constant.

Proof. Let `′ be the line segment connecting z1 and z2. By Lemma 2.1 we have

|f(z1)− f(z2)| =
ˆ

f(`′)
|df | ≤

ˆ

`′
Lf |dz| ≤ (cK +

√
K ′)|z1 − z2|. ¤

Theorem 2.2. Let f be a harmonic mapping of H onto itself and continuous
on H ∪ R with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then f is hyperbolically
Lipschitz. Moreover,

H(f(z1), f(z2)) ≤ (cK +
√

K ′)H(z1, z2),

where H(·, ·) denotes the hyperbolic distance and c is a positive constant.

Proof. Let ` be the hyperbolic geodesic connecting two arbitrary points z1 and z2

in H. Let ρ represent the hyperbolic metric density of H. Since ρ(f(z)) = ρ(z), z ∈
H, we have from Lemma 2.1 that

H(f(z1), f(z2)) =

ˆ

f(`)

ρ(f(z))|df | ≤
ˆ

`

ρ(f(z))Lf |dz|

≤ (cK +
√

K ′)
ˆ

`

ρ(z)|dz| = (cK +
√

K ′)H(z1, z2). ¤

Remark 2.1. In fact we can extend the above results of the Theorems 2.1 and
2.2 a little. That is, if f = u + iv : H → H is a (K, K ′)-quasiconformal mapping
with the assumption that f ∈ C1 and v(z) = cy for some constant c > 0, then f is
Lipschitz continuous with respect to the euclidean and hyperbolic metric.

Remark 2.2. The results of Theorem 2.1 and 2.2 generalize the results obtained
by Knežević and Mateljević [14]. If f(z) = Kx + iy, z ∈ H, then f is a K-qch
mapping of H onto itself and satisfies the equality Lf = K. Hence, the above results
are asymptotically sharp as K ′ tends to 0.
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3. Equivalent conditions of (K, K′)-qch mappings

In order to prove Theorem 1.1, we would like to introduce some useful knowledge
about harmonic conjugate functions [6]. Actually, for every harmonic function F on
H with a boundary value w ∈ L∞(R), there exists a harmonic conjugate function
denoted by F̃ with F̃ (i) = 0 and the representation of F̃ is given by

F̃ (z) =
1

π

ˆ +∞

−∞

(
q(z, t) +

t

t2 + 1

)
w(t) dt,

where

q(z, t) =
x− t

|z − t|2
is the conjugate Poisson kernel.

The Hilbert transformation of w ∈ L∞(R) is given by the formula

(3.1) H[w](x) = lim
ε→0

Hεw(x) = lim
ε→0

ˆ

|x−t|>ε

1

π

(
1

x− t
+

t

t2 + 1

)
w(t) dt.

The connection between H[w](z) and F̃ (z) is given by the formulas

(3.2) lim
y→0

Hy[w](z) = lim
y→0

F̃ (z),

and

(3.3) F̃ (z) =
1

π

ˆ +∞

−∞
p(z, t)H[w](t) dt.

In fact, if F is a harmonic function in H, then Fy(i)−Fy(z) is a harmonic conjugate
function of Fx, where Fx and Fy denote the partial derivatives of F .

The following three lemmas are valid for (K, K ′)-qch mappings of H onto itself
and extend the results obtained by Kalaj and Pavlović [13] a little. For completeness,
we also give their proofs point by point as follows.

For a harmonic mapping f = u + iv on H, let

f(i) = a + ic, φ(z) =
∂u

∂z
=

1

2
(ux − iuy).

We get from Lemma A that the following holds.

Lemma 3.1. Let f be a harmonic mapping of H onto itself and continuous on
H ∪R with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then it has a representation
of the from

(3.4) f(z) = 2<
ˆ z

i

φ(ζ) dζ + a + icy,

where
(1) a + ic is a point in H,
(2) φ is a holomorphic function on H and φ(H) lies in a bounded subset of the

right half plane.
Conversely, if (1) and (2) are satisfied, then the function f defined by (3.4) is a
(K,K ′)-qch mapping defined on H.
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Proof. Let f = u + iv be a (K,K ′)-qch mapping of H onto itself and continuous
up to its boundary. By the definition of (K, K ′)-qc mapping we have

(|fz|+ |fz̄|)2 ≤ K(|fz|2 − |fz̄|2) + K ′,

where

fz = 1
2
(fx − ify) =

1

2
[ux + vy + i(vx − uy)],

fz̄ = 1
2
(fx + ify) =

1

2
[ux − vy + i(vx + uy)].

Then from Lemma A we have
1
2
(u2

x + u2
y + c2) + 1

2
[(u2

x + u2
y + c2)2 − 4c2u2

x]
1
2 ≤ Kcux + K ′,

Jf = |fz|2 − |fz̄|2 = uxvy − uyvx = cux.

Combining the above relations we obtain

u2
x + u2

y + c2 ≤ (K + 1)cux + K ′.

Hence there exists a constant M such that

(3.5) 0 < ux ≤ (K + 1)c +
√

(K + 1)2c2 − 4(c2 −K ′)
2

= M,

and

(3.6) |uy| ≤
√

(K + 1)cM + K ′.

Let φ(z) = uz = 1
2
(ux − iuy). Then φ(z) is holomorphic on H. By Green formula it

follows that
2<

ˆ z

i

φ(ζ) dζ = u(z)− u(i).

Let a = u(i). Then

f(z) = 2<
ˆ z

i

φ(ζ) dζ + a + icy,

and φ satisfies that φ(H) lies in a bounded subset in the right half plane.
Conversely, if f is represented by (3.4) and satisfies the conditions (1) and (2) in

Lemma 3.1, then there exist two positive constants M ′ and M ′′ such that

0 < ux ≤ M ′, |uy| ≤ M ′′.

So we conclude that

L2
f = (|fz|+ |fz̄|)2 ≤ u2

x + u2
y + c2 ≤ M ′2 + M ′′2 + c2.

Hence, f is (1,M ′2 + M ′′2 + c2)-qch mapping of H onto itself. ¤

Lemma 3.2. Let f = u + iv be a harmonic mapping of H onto itself and
continuous on H ∪ R with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then the
restriction ϕ of f to the real axis R is Lipschitz and the relations

(3.7) ux(z) =
1

π

ˆ +∞

−∞
p(z, t)ϕ′(t) dt,

and

(3.8) uy(z)− uy(i) = − 1

π

ˆ +∞

−∞
(q(z, t) +

t

t2 + 1
)ϕ′(t) dt
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hold.

Proof. Using Lemma A and Theorem 2.1, we have that f is Lipschitz on H. So
the restriction ϕ of f to R is Lipschitz and |ϕ′| ∈ L∞(R). By (3.5) we have that the
function ux is bounded on H and according to Fatou’s theorem the limit

lim
y→0

ux(x, y) = w(x)

exists for almost all x ∈ R. Hence, w(t) ∈ L∞(R). Furthermore, we have

ux(z) =
1

π

ˆ +∞

−∞
p(z, t)w(t) dt.

By (3.5) we easily know that ut(t, y) is bounded. Then u satisfies the relation

u(x, y)− u(0, y) =

ˆ x

0

ut(t, y) dt.

By the dominated convergence theorem, we naturally obtain

lim
y→0

ˆ x

0

ut(t, y) dt =

ˆ x

0

w(t) dt.

On the other hand,

lim
y→0

(u(x, y)− u(0, y)) = ϕ(x)− ϕ(0),

and therefore
ϕ(x)− ϕ(0) =

ˆ x

0

w(t) dt.

Hence ϕ′(x) = w(x) a.e. Thus (3.7) naturally holds. The validity of (3.8) now follows
from (3.7) by the fact that the function uy(i)−uy(z) is a harmonic conjugate function
of ux(z). ¤

Lemma 3.3. Let f = u + iv be a harmonic mapping of H onto itself and
continuous up to its boundary with f(∞) = ∞. If f is a (K, K ′)-qc mapping and ϕ
is the restriction of f on R, then the function H[ϕ′](z) ∈ L∞(R) and the equation

(3.9) uy(z)− uy(i) = − 1

π

ˆ +∞

−∞
p(z, t)H[ϕ′](t) dt

holds.

Proof. By the inequality (3.6) it follows that the function ṽ(z) = uy(i) − uy(z)
is bounded on H. Since ṽ is the harmonic conjugate of ũ = ux, we have from (3.1),
(3.2) and (3.3) that

H[ϕ′] = lim
y→0

Hy[ϕ
′](z) = lim

y→0
(uy(i)− uy(z)).

Hence, H[ϕ′](z) ∈ L∞(R) and

uy(i)− uy(z) =
1

π

ˆ +∞

−∞
p(z, t)H[ϕ′](t) dt. ¤

Next, using the above three Lemmas we will give the proof of Theorem 1.1.

Proof. By Lemma 3.1, we get (1) ⇒ (2). The inequalities (3.5) and (3.6) imply
that

Lf ≤ |ux|+ |uy|+ c ≤ M + c +
√

(K + 1)cM + K ′.
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So Lf is bounded. Hence (2) ⇒ (3).
To prove (3) ⇒ (1), we note that f(z) is a Lipschitz mapping of H onto H. So

there exists a constant L > 0 such that

|f(z′)− f(z)| ≤ L|z′ − z|.
Let ζ = z + reiθ. We have

lim
ζ→z

|f(ζ)− f(z)|
|ζ − z| = lim

r→0

|f(z + reiθ)− f(z)|
r

= |fζe
iθ + fζ̄e

−iθ|,

and
|fζ |+ |fζ̄ | = sup

θ
|fζe

iθ + fζ̄e
−iθ| ≤ L.

Thus we get
(|fζ |+ |fζ̄ |)2 ≤ |fζ |2 − |fζ̄ |2 + L2.

Therefore f is (1, L2)-qc mapping.
That (1) implies (4) follows from Lemma 3.2 and 3.3. To prove (4) implies (1),

we assume that ϕ is the restriction of f to R. By the conditions of (4), that is,
ϕ′ ∈ L∞(R), H[ϕ′] ∈ L∞(R), we can define a harmonic function ũ and its harmonic
conjugate ṽ on H as

ũ(z) =
1

π

ˆ +∞

−∞
p(z, t)ϕ′(t) dt,(3.10)

ṽ(z) =
1

π

ˆ +∞

−∞

(
q(z, t) +

t

t2 + 1

)
ϕ′(t) dt.(3.11)

Let φ(z) = 1
2
(ũ(z) + iṽ(z)). Then φ is a holomorphic function on H. Define g by

(3.12) g(z) = 2<
ˆ z

i

φ(ζ) dζ + icy.

Since ϕ is absolutely continuous and ϕ′ ∈ L∞(R), it follows that 0 ≤ ϕ′ < λ, where
λ is a positive constant. Thus, by (3.10) we get 0 ≤ ũ(z) < λ, z ∈ H. By (3.11)
there exists a positive constant such that |ṽ(z)| ≤ M . So the function φ maps H into
a bounded subset of the right half plane. According to Lemma 3.1 we conclude that
g is a (K, K ′)-qch mapping on H. By (3.12)

(<g)x = ũ(z) =
1

π

ˆ +∞

−∞
p(z, t)ϕ′(t) dt

holds on H. Since ũ is bounded on H, we have that <g satisfies the relation

<g(x, y)−<g(0, y) =

ˆ x

0

(<g)x(t, y) dt.

By the dominated convergence theorem, we naturally have

lim
y→0

ˆ x

0

(<g)x(t, y) dt =

ˆ x

0

ϕ′(t) dt.

By the fact that g is continuous on its boundary, then the restriction ϕ̃ of g to R is
Lipschitz and satisfies that |ϕ̃′| ∈ L∞(R) and

lim
y→0

(<g(x, y)−<g(0, y)) = ϕ̃(x)− ϕ̃(0).
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Therefore
ϕ̃(x)− ϕ̃(0) =

ˆ x

0

ϕ′(t) dt.

Hence ϕ′ = ϕ̃′ a.e. on R. Since ϕ and ϕ̃ are absolutely continuous, ϕ = ϕ̃ + a′ for
some a′ ∈ R. Thus f = g + a′ and ϕ = f |R. So f is also a (K,K ′)-qc mapping on
H. ¤

4. Area distortion

In order to estimate the euclidean and hyperbolic area distortion of a (K, K ′)-qch
mapping of H onto itself, we first estimate its Jacobian.

Lemma 4.1. Assume that f is a harmonic mapping of H onto itself and con-
tinuous on H ∪ R with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then f(z) =
1
2
(g(z) + cz + g(z)− cz), where g is a holomorphic function in H and c is a positive

constant and the Jacobian of f is such that

(4.1) Jf = |fz|2 − |fz̄|2 ≤ c2K + c
√

K ′.

Proof. According to the definition of (K, K ′)-qc mappings and the inequality
(2.7), we get

Jf = |fz|2 − |fz̄|2 = 1
4
(|g′(z) + c|2 − |g′(z)− c|2) = c

2
(g′(z) + g′(z)) ≤ c|g′(z)|.

By (2.8) we obtain

||g′(z)| − c| ≤ |g′(z)− c| ≤ c(K − 1) +
√

K ′,

so we conclude that
Jf ≤ c|g′(z)| ≤ c2K + c

√
K ′. ¤

Theorem 4.1. Let f = u + iv be a harmonic mapping of H onto itself and
continuous up to its boundary with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then
for any measurable subset E ⊂ H,

Aeuc(f(E)) ≤ (c2K + c
√

K ′)Aeuc(E),

where Aeuc(·) denotes the euclidean area and c is a positive constant.

Proof. According to Lemma 4.1, we obtain

Aeuc(f(z)) =

¨

E

Jf (z)|dz|2 ≤ (c2K + c
√

K ′)Aeuc(E). ¤

Theorem 4.2. Let f be a harmonic mapping of H onto itself and continuous
up to its boundary with f(∞) = ∞. If f is a (K, K ′)-qc mapping, then for any
measurable subset E ⊂ H, we get

Ahyp(f(E)) ≤ (c2K + c
√

K ′)Ahyp(E),

where Ahyp denotes the hyperbolic area and c is a positive constant.

Proof. Let ρ be the hyperbolic metric density of H. By the fact that ρ(f(z)) =
ρ(z), z ∈ H, we obtain by Lemma 4.1 that

Ahyp(f(E)) =

¨

f(E)

ρ2(f(z))|df(z)|2 =

¨

E

ρ2(z)Jf (z)|dz|2

≤ (c2K + c
√

K ′)Ahyp(E). ¤
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Remark 4.1. When K ′ = 0, the above results are sharp. If f(z) = Kx +
iy, z ∈ H, then f is a K-qch mapping of H onto itself and satisfies the equalities
Jf = K, Lf = K. The results of Theorem 4.1 and 4.2 generalize the results of Chen
[2].
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