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Abstract. In this paper we show that (K, K')-quasiconformal mappings with unbounded
image domains are not Hélder continuous, which is different from the case with bounded image
domains given by Kalaj and Mateljevié. For a (K, K')-quasiconformal harmonic mapping of the
upper half plane onto itself, we prove that it is Lipschitz and hyperbolically Lipschitz continuous.
Moreover, we get four equivalent conditions for a harmonic mapping of the upper half plane onto
itself to be a (K, K')-quasiconformal mapping.

1. Introduction

A function F is called harmonic [4] in a region € if its Laplacian vanishes in €.
By Lewy’s theorem [15], a locally univalent harmonic function F' has a non-vanishing
Jacobian. The real axis, the upper half plane and the unit disk are denoted by R, H
and D, respectively. If w € L>°(R), then its Poisson extension [6]

1 [t
(1) P =plule) = 5 [ pletuo)
is harmonic on H, where
Y .
p(z,t) = CED TN T+,

is called the Poisson kernel of H.
A topological mapping f of €2 is said to be (K, K’)-quasiconformal if it satisfies
1) fis ACL in Q;
2) |[j];f|§ |[](;[|Jflf +K', K> 1, K/ > 0 ae. in Q, where Ly = |f,| + |f:], I} =

If K’ =0, then f is a K-quasiconformal mapping. If a harmonic mapping is also
(K, K')-quasiconformal, then we call it a (K, K’)-quasiconformal harmonic mapping.
For convenience, quasiconformal mapping and quasiconformal harmonic mapping are
abbreviated by qc mapping and qch mapping, respectively.
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The class of K-qch mappings of D onto itself was first studied by Martio [16].
Pavlovié [20] proved that a K-qch mapping of D onto itself is bi-Lipschitz. Its explicit
bi-Lipschitz constants were given by Partyka and Sakan [19]. Zhu and Huang [23|
used Heinz’s inequality to improve the result. Kalaj and Pavlovi¢ [13]| obtained some
characterizations including the bi-Lipschitz continuity of K-qch mappings of H onto
iteself. If f is K-qch and 1 is conformal, then f o is also K-qch. However, ¢ o f
rarely preserves the harmonicity. Hence, the image domains of K-qch mappings can
not be always confined to a canonical domain such as the unit disk or the upper
half plane. Kalaj [9-13] did a lot of work on studying the Lipschitz continuity for
different image domains from D, for example he proved that every K-qch mapping
between a Jordan domain with C*® (a < 1) and a Jordan domain with C''' compact
boundary is bi-Lipschitz [9]. The fact that every K-qch mapping of D or H onto
itself is hyperbolically bi-Lipschitz has been showed by Knezevi¢ and Mateljevié [14].
Chen and Fang [3] generalized the above result to the case of convex image domain
and gave the sharp bi-Lipschitz constants. The hyperbolically bi-Lipschitz continuity
of some other classes of qc mappings were considered in [17], [18], [22].

Finn and Serrin [5] and Simon [21] obtained a Hoélder estimate for (K, K')-qc
mappings. Recently, Kalaj and Mateljevi¢ [12]| studied the class of (K, K’)-qc map-
pings with bounded image domains. They proved the following intrigue results: A
(K, K'")-qc mapping between two Jordan domains with C? boundaries is Holder con-
tinuous. Moreover, if it is also harmonic, then it is Lipschitz continuous. In this
paper, we study the class of (K, K’)-qch mappings with unbounded image domains.

In Section 2, we first construct a (K, K’)-qc mapping of an angular domain onto
H which is neither Lipschitz nor Hélder continuous (see Example 2.1). A harmonic
mapping with unbounded image domain is not necessarily Holder or Lipschitz contin-
uous (see Example 2.2 in [17]). However, we can construct an example of (K, K')-qch
mappings of H onto itself which is Lipschitz but not bi-Lipschitz (see Example 2.2).
In fact, after estimating the modulus of the gradient of (K, K')-qch mappings of H
onto itself (see Lemma 2.1), we obtain the Lipschitz and hyperbolically Lipschitz
continuity of (K, K')-qch mappings of H onto itself and its Lipschitz constants only
depend on K and K’ (see Theorems 2.1 and 2.2).

In Section 3, combining Theorem 2.1 with the knowledge of a harmonic func-
tion and its harmonic conjugate function we get several equivalent conditions for a
harmonic mapping of H onto itself to be a (K, K')-qc mapping. That is

Theorem 1.1. If f is a harmonic mapping of H onto itself and continuous on
H UR, then the following assertions are equivalent.

(1) fis a (K, K')-qc mapping of H onto itself;

(2) There are two positive constants ¢ and M such that 0 < u, < M and |u,| <
V(K +1)eM + K’ for all z € H;

(3) f is a Lipschitz mapping of H onto H;

(4) ¢ is absolutely continuous on R, ¢ € L>®(R) and H|[¢'] € L>*(R), where ¢
is the boundary value of f on the real axis R and ¢’ is the derivative of .

In Section 4, we estimate the Jacobian of (K, K')-qch mappings of H onto itself
(see Lemma 4.1). As an application of Lemma 4.1, we obtain the euclidean and
hyperbolic area distortion of (K, K’)-qch mappings of H onto itself (see Theorems 4.1
and 4.2).
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2. Lipschitz and hyperbolically Lipschitz continuity

We first construct a (K, K')-qc mapping with unbounded image domain which is
neither Lipschitz nor Holder continuous. This is different from the class of (K, K')-qc
mappings with bounded image domains given by Kalaj and Mateljevié¢ [12].

Example 2.1. Let f(z) = z(1+y) +e Ysinz +i3(y* —2?), y > |z|. Then f is
a (3,4)-qc mapping of the angular domain A = {z =z +iy |y > |z|, + € R} onto
H. Moreover, it is neither Lipschitz nor Holder continuous.

Proof. If f(z) = u(z) + iv(z) is a topological and ACL mapping in 2, then we
have

f:= %(fx - ny) = %[uw + vy + i(ve — uy)]>
and
== %(fm + ny) = %[um — Uy + i(ve + “y)]
Then it follows that
| fol? = [ f2* = uavy — uyva >0,

and
(2.1) (I 4 1f2D)? < w402 + ul 4 02 + ugvy — uyv,.
Let f(z) =x(14+y)+e ¥ sina:—i—i%(yQ —x?). Using the above formulas, we obtain
(2.2) Jr=\LP =P =2"+vy"+y+ye Ycosx —xe Ysinz,
and

(2.3) ul + v +ul 4+ 02 < 2(2” + 47 +y +ye Y cosz —ze Vsing) + 4.
Moreover,
_ -y — e Y q]
(2.4) | £ _ |1+ e Ycosx ic s.1nx| 1 asy—0, ©—0.
\f:]  |14+eYcosz+2y+i(e¥sinz — 27|
Combining (2.1) with (2.2) and (2.3), we have
(Il +1f:)* < 3p + 4.

It follows that f(z) = z(1+y)+e Ysinz+ii(y?—2?), y > |z|, is a (3,4)-qc mapping.
By (2.4), f is not a K-qc mapping for any K > 1.
Choosing two points z; = iy, 20 = iyo € H, we have
|f(21) = f(22)] _ v — v3l
|21 — 22| 2[y1 — ol

for 0 < a < 1. It concludes that f is neither Lipschitz nor Hoélder continuous. 0

— +00, as Yz — +00,

The following Lemma A plays a key role in this paper.

Lemma A. [1] Let f = u+ v be a harmonic 1-1 mapping of H onto itself and
continuous on HUR such that f(oco) = oo. Then v(z) = clIm z, where ¢ is a positive
constant. Especially, v has bounded partial derivatives on H.

Example 2.2. Let h(z) = x +sinz, # € R. Then there exists a (K, K’)-qch
mapping f of H onto itself with the boundary value h. Moreover, f is a (2,1)-qch
mapping but fails to be a K-qch mapping for any K > 1.
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Proof. Define f as
+o0o
yh(t) :
= ————dt
6= [ e
where the integral is in the sense of Cauchy principle value. We have
o (T—1)+y? ) Wty ) Uty
=z +e Ysinz.

So f(z) = x + e ¥Ysinx + iy is a harmonic mapping of H onto itself and f|gp =
x + sinz = h(x). After some concrete calculations, we get

fo=3(fs —ify) =32+ e Ycosz+ie Vsinz),
fz=3(fo+if,) =3(e Y cosx —ie Ysinx),

Lly =1+ e Ycosu,

L3 =1(4+4e Y cosw+2e ) + te ¥V +de Y cosw + e
< i(d+4eVeosw+2e7) 4+ 1(4 4 de VY cosa + 2 )
=2(1+e Ycosw)+e .
From the above relations we have
/]
/-]

It is easy to see that f is not bi-Lipschitz. By the definition of (K, K')-qch
mapping we conclude that f(z) = x + e ¥Ysinz + iy is a (2, 1)-qch mapping but it is
not (K,0)-qch mapping for any K > 1. O

L?SQLflf—kl; — 1 when cosz — —1, y — 0.

Lemma 2.1. Let f be a harmonic mapping of H onto itself and continuous
up to its boundary with f(occ) = oo. If f is a (K, K')-qc mapping, then f can be
represented by f = u + icy and the gradient of f is such that

(2.5) Ly=1f|+f:| L cK+ VK,
where c is a positive constant.

Proof. By the definition of (K, K')-qc mapping, we have
L} < KLsly + K'.

Kly+ /K25 + 4K

2 I

This implies that

Ly

IN

and consequently
(2.6) Ly <Kl + VK.

According to Lemma A, we can assume that f = u +icImz = 3(g(z) + ¢z +
g(z) — cz), where g is a holomorphic function in H. Hence

(2.7) ol =35lg'() + el If:l=3519'(2) = cl.
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Using (2.6) and (2.7) we have
(K 4+ D|fz| < (K =DI|f] + VK < (K= 1)(|f:] +¢) + VK"

So

2f:] < (K — 1)+ VK,
and
(2.8) 19'(2) —¢| < e(K — 1)+ VK.

It is easy to get
|fz] = 3lg'(2) — ¢
|f:l = 319'(2) + ¢

VAN VAN
N— N
N
=
|
N
+
8

|
|
thus we obtain

L+ 1ol < K+ VE. O

Theorem 2.1. Let f(z) = u(z) + iv(z) be a harmonic mapping of H onto itself
and continuous up to its boundary with f(co) = oo. If f is also a (K, K')-qc mapping,
then f is Lipschitz. Moreover,

|f(z1) = f(22)| < (cK + VK')|[z1 — 2],
where c is a positive constant.
Proof. Let ¢' be the line segment connecting z; and z,. By Lemma 2.1 we have

£G1) = £l = [

f(

Theorem 2.2. Let f be a harmonic mapping of H onto itself and continuous
on HUR with f(co) = oo. If f is a (K, K')-qc mapping, then f is hyperbolically
Lipschitz. Moreover,

df| < / Lldz| < (cK + VE)|z1 — . 0
o) %

H(f(21), [(22)) < (cK + VE')H(21, 22),
where H(-,-) denotes the hyperbolic distance and c is a positive constant.

Proof. Let ¢ be the hyperbolic geodesic connecting two arbitrary points z; and 2z
in H. Let p represent the hyperbolic metric density of H. Since p(f(2)) = p(z), z €
H, we have from Lemma 2.1 that

H(f(20), () = / o(f(2)df] < / o(f(2))Lyldz]

1)

< (¢cK + VK" /p(z)\dz| = (cK + VEK"YH(z, z). O

Remark 2.1. In fact we can extend the above results of the Theorems 2.1 and
2.2 a little. That is, if f = u+iw: H — H is a (K, K')-quasiconformal mapping
with the assumption that f € C' and v(z) = cy for some constant ¢ > 0, then f is
Lipschitz continuous with respect to the euclidean and hyperbolic metric.

Remark 2.2. The results of Theorem 2.1 and 2.2 generalize the results obtained
by Knezevi¢ and Mateljevi¢ [14]. If f(2) = Kz + iy, z € H, then f is a K-qch
mapping of H onto itself and satisfies the equality Ly = K. Hence, the above results
are asymptotically sharp as K’ tends to 0.
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3. Equivalent conditions of (K, K’)-qch mappings

In order to prove Theorem 1.1, we would like to introduce some useful knowledge
about harmonic conjugate functions [6]. Actually, for every harmonic function F' on
H with a boundary value w € L>*(R), there exists a harmonic conjugate function

denoted by F with F (7) = 0 and the representation of Fis given by

Py =2 [ (s + e Juoa

[e.9]

where

r—t
CI(ZJ):W

is the conjugate Poisson kernel.
The Hilbert transformation of w € L*(R) is given by the formula

(3.1)  Hw|(z) = lim How(z) = lim 1<L+ ! )w(t)dt.

e—0 e—0 |I—t|>£ T r—t t2 + 1

The connection between H[w](z) and F(z) is given by the formulas

(32 tim H,u](2) = lim F(2).
and
(3.3) Fz) = % /_ " (e ) Hw (1) dt.

In fact, if F' is a harmonic function in H, then Fj (i) — F,(z) is a harmonic conjugate
function of F,, where F, and F|, denote the partial derivatives of F'

The following three lemmas are valid for (K, K')-qch mappings of H onto itself
and extend the results obtained by Kalaj and Pavlovi¢ [13] a little. For completeness,
we also give their proofs point by point as follows.

For a harmonic mapping f = u + v on H, let
Ou _ l(uw — Uy).

f)=a+tic, ¢z)=o0 =2
We get from Lemma A that the following holds.

Lemma 3.1. Let f be a harmonic mapping of H onto itself and continuous on
HUR with f(oco) = oco. If f is a (K, K')-qc mapping, then it has a representation
of the from

(3.4) f(z) =2% /Z #(¢) d¢ + a + icy,

where

(1) a+ic is a point in H,
(2) ¢ is a holomorphic function on H and ¢(H) lies in a bounded subset of the
right half plane.

Conversely, if (1) and (2) are satisfied, then the function f defined by (3.4) is a
(K, K')-qch mapping defined on H.
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Proof. Let f = u+iv be a (K, K')-qch mapping of H onto itself and continuous
up to its boundary. By the definition of (K, K’)-qc mapping we have

(Ll + 1007 < K(LP = 1) + K

where
fo= e = i) = gl + vy + e — )],

Jz= %(fa: +ify) = %[uﬂc — vy + (v + uy)].

Then from Lemma A we have
sl +ul + )+ 3l +ul + PP - 402ui]% < Kcu, + K',
Ty =P = | f=F = e, — uyv, = cu,.
Combining the above relations we obtain
ul +ul 4+ < (K +1)cu, + K.
Hence there exists a constant M such that
(K + e+ /(K +1)2c2 —4(c — K')

(3.5) 0<u, < 5 =M,
and
(3.6) luy| < V(K +1)cM + K.

Let ¢(z) = u, = (uy — iuy). Then ¢(2) is holomorphic on H. By Green formula it
follows that

2R [ 0(0)dC = u(z) (i)
Let a = u(i). Then
f) =2R [ o) dc+aticy,

and ¢ satisfies that ¢(H) lies in a bounded subset in the right half plane.
Conversely, if f is represented by (3.4) and satisfies the conditions (1) and (2) in
Lemma 3.1, then there exist two positive constants M’ and M” such that

0<u, <M, J|u,|<M"
So we conclude that
L= (L1 4+ 1) <ul+ul+ < M?+ M7+ 2
Hence, f is (1, M"* + M"? + ¢*)-qch mapping of H onto itself. O
Lemma 3.2. Let f = w + iv be a harmonic mapping of H onto itself and

continuous on HU R with f(oco) = oco. If f is a (K, K')-qc mapping, then the
restriction ¢ of f to the real axis R is Lipschitz and the relations

(3.7) w(2) = = /_ o) () d,

[e.9]

and

(3.8) 1y (2) — (i) = — / e t) - ) @) de
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hold.

Proof. Using Lemma A and Theorem 2.1, we have that f is Lipschitz on H. So
the restriction ¢ of f to R is Lipschitz and |¢’| € L*(R). By (3.5) we have that the
function u, is bounded on H and according to Fatou’s theorem the limit

lim u,(x,y) = w(z)
y—0

exists for almost all z € R. Hence, w(t) € L>(R). Furthermore, we have

uz(2) = l/_ Oop(z,t)w(t) dt.

o0

By (3.5) we easily know that u;(¢,y) is bounded. Then u satisfies the relation

u(x, y) - ’LL(O, y) = /Om ut(tv y) dt.

By the dominated convergence theorem, we naturally obtain

x

lim ut(t,y)dt:/ w(t) dt.
0

y—0 0

On the other hand,
lim(u(z,y) —u(0,y)) = ¢(z) — ¢(0),

y—0

and therefore .
o) = 0(0) = [ wit)ar
0

Hence ¢'(z) = w(z) a.e. Thus (3.7) naturally holds. The validity of (3.8) now follows
from (3.7) by the fact that the function wu, (i) —u,(z) is a harmonic conjugate function
of u,(z). O

Lemma 3.3. Let f = u + 1w be a harmonic mapping of H onto itself and
continuous up to its boundary with f(co) = co. If f is a (K, K')-qc mapping and ¢
is the restriction of f on R, then the function H[¢'|(z) € L*(R) and the equation

+oo
(3.9) uy(2) — (i) = — / Pz, )V H[P)(8) dt

™ (o]
holds.

Proof. By the inequality (3.6) it follows that the function v(z) = u, (i) — u,(2)
is bounded on H. Since v is the harmonic conjugate of u = u,, we have from (3.1),
(3.2) and (3.3) that

Hlp'| = gjli% Hy¢'](2) = i{%(uy(l) — uy(2)).
Hence, H[¢'|(z) € L*(R) and
1 +o00

wli) = ul2) =1 [ pE0HE) O O
Next, using the above three Lemmas we will give the proof of Theorem 1.1.
Proof. By Lemma 3.1, we get (1) = (2). The inequalities (3.5) and (3.6) imply

that

Ly < |ug| + |uy| + ¢ < M +c+ (K +1)cM + K'.
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So Ly is bounded. Hence (2) = (3).
To prove (3) = (1), we note that f(z) is a Lipschitz mapping of H onto H. So
there exists a constant L > 0 such that

f(2) = f(2)] < LI — 2.
Let ¢ = 2z + re'?. We have
Q) = SE _ o Ut re) = f(2)

TR ; = e 4 e
and
[fel 4 1fl = sup|fee” + fee™| < L.
Thus we get

(el +1feD)? < el = [ fel* + L2
Therefore f is (1, L?)-qc mapping.

That (1) implies (4) follows from Lemma 3.2 and 3.3. To prove (4) implies (1),
we assume that ¢ is the restriction of f to R. By the conditions of (4), that is,
¢ € L*(R), H[¢'] € L°(R), we can define a harmonic function @ and its harmonic
conjugate v on H as

+o0
(3.10) i) = [ sl
+o00
(3.11) v(z) = %/ (q(z,t) + oo 1) ¢ (t) dt.

Let ¢(z) = 3(u(z) + i0(2)). Then ¢ is a holomorphic function on H. Define g by

(3.12) g(z) =2R /Z #(¢) d¢ + icy.

Since ¢ is absolutely continuous and ¢’ € L*(R), it follows that 0 < ¢’ < A, where
A is a positive constant. Thus, by (3.10) we get 0 < u(z) < A, z € H. By (3.11)
there exists a positive constant such that [v(z)| < M. So the function ¢ maps H into
a bounded subset of the right half plane. According to Lemma 3.1 we conclude that
g is a (K, K')-qch mapping on H. By (3.12)

R = () = - [ (e )/ (0) de

@ 00

holds on H. Since u is bounded on H, we have that Rg satisfies the relation

Rg(z,y) — Rg(0,y) = /Ox(%g)x(t,y) dt.

By the dominated convergence theorem, we naturally have

(Rg).(t,y) dt = /Ox ¢/ (t) dt.

By the fact that g is continuous on its boundary, then the restriction ¢ of g to R is
Lipschitz and satisfies that |¢'| € L*°(R) and

lim(Rg (2, y) — Rg(0,)) = &(x) — &(0).

X
lim
y—0 0
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Therefore -
B(x) — 3(0) = / o) dt.

Hence ¢/ = ¢’ a.e. on R. Since ¢ and ¢ are absolutely continuous, ¢ = ¢ + d’ for
some @' € R. Thus f = g+ a' and ¢ = f|r. So f is also a (K, K’')-qc mapping on
H. 0

4. Area distortion

In order to estimate the euclidean and hyperbolic area distortion of a (K, K')-qch
mapping of H onto itself, we first estimate its Jacobian.

Lemma 4.1. Assume that f is a harmonic mapping of H onto itself and con-
tinuous on HU R with f(co) = oco. If f is a (K, K')-qc mapping, then f(z) =
+(9(2) + cz + g(2) — cz), where g is a holomorphic function in H and ¢ is a positive
constant and the Jacobian of f is such that

(4.1) Jr=f.P = |f:? <K+ VK’

Proof. According to the definition of (K, K’')-qc mappings and the inequality
(2.7), we get

Jp= 1L = 1 = 1 (2) + e = 19'(2) — ') = §(9'(2) + 9/ () < clg'(2)].
By (2.8) we obtain
lg'(2) =l <1g'(z) =l S (K =1) + VI,

so we conclude that
J; <clg(2)] < K + VK. O

Theorem 4.1. Let f = u + iv be a harmonic mapping of H onto itself and
continuous up to its boundary with f(oo) = oo. If f is a (K, K')-qc mapping, then
for any measurable subset E C H,

Acuc(f(E)) < (c ‘K + VK K') Aeue(E),
where Aeu(+) denotes the euclidean area and c is a positive constant.

Proof. According to Lemma 4.1, we obtain
Ao £(2)) = [[ TN < (@K + VR Aue(E) =
E

Theorem 4.2. Let f be a harmonic mapping of H onto itself and continuous
up to its boundary with f(occ) = oo. If f is a (K, K')-qc mapping, then for any
measurable subset E C H, we get

Anyp(F(E)) < (K + V' K') Ay (E),
where Ay, denotes the hyperbolic area and c is a positive constant.

Proof. Let p be the hyperbolic metric density of H. By the fact that p(f(2)) =
p(z), z € H, we obtain by Lemma 4.1 that

AndE) = [ PR = [[ C st

2K+C\/_)Ahyp( ). 0
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Remark 4.1. When K’ = 0, the above results are sharp. If f(z) = Kz +
1y, z € H, then f is a K-qch mapping of H onto itself and satisfies the equalities
Jy = K, Ly = K. The results of Theorem 4.1 and 4.2 generalize the results of Chen

2].
Acknowledgements. The authors would like to thank the referees for their very
careful work and helpful suggestions to improve the quality of this paper.
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