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Abstract. Using the argument of Geiss, Montgomery-Smith and Saksman [14], and a new
martingale inequality, the Lp-norms of certain Fourier multipliers in Rd, d ≥ 2, are identified.
These include, among others, the second order Riesz transforms R2

j , j = 1, 2, . . . , d, and some of
the Lévy multipliers studied in [2], [3].

1. Introduction

Martingale inequalities have played a fundamental role for many years in ob-
taining bounds for the Lp-norms of many important singular integrals and Fourier
multipliers, both in the real setting and in the Banach space setting. At the root
of these results are the fundamental inequalities of Burkholder on martingale trans-
forms. There is now a huge literature on this subject which would be impossible to
review here. For an overview of this literature, see [1] and [4]. The purpose of this
paper is to show that there are several instances where some of the upper bounds,
and especially those obtained in recent years, are also lower bounds, hereby enlarg-
ing the class of Fourier multipliers where one can compute the norms exactly. These
results are motivated by the paper of Geiss, Montgomery-Smith and Saksman [14],
which has its roots in the work of Bourgain [7]. The Bourgain result itself is also
rooted in the inequalities of Burkholder. While our proof of Theorem 1.4 is a small
modification of the Geiss, Montgomery-Smith, Saksman argument, we believe our
results here will further stimulate interest on these problems and their connections
to the (still open) celebrated conjecture of Iwaniec [15] concerning the norm of the
Beurling–Ahlfors operator. See [1] for some of the history and recent results related
to this conjecture.

Let f = {fn, n ≥ 0} be a martingale on a probability space (Ω,F ,P) with
respect to the sequence of σ-fields Fn ⊂ Fn+1, n ≥ 0, contained in F . The sequence
df = {dfk, k ≥ 0}, where dfk = fk − fk−1 for k ≥ 1 and df0 = f0, is called the
martingale difference sequence of f . Thus fn =

∑n
k=0 dfk for all n ≥ 0. Given a

sequence of random variables {vk, k ≥ 0} uniformly bounded by 1 for all k and with
each vk measurable with respect to F(k−1)∨0 (such sequence is said to be predictable),
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the martingale difference sequence {vkdfk, k ≥ 0} generates a new martingale called
the martingale transform of f and denoted by v ∗ f . Thus (v ∗ f)n =

∑n
k=0 vkdfk for

all n ≥ 0. The maximal function of a martingale is denoted by f ∗ = supn≥0 |fn|. We
also set ‖f‖p = supn≥0 ‖fn‖p for 0 < p < ∞. Burkholder’s 1966 result in [8] asserts
that the operator f → v ∗ f = g is bounded on Lp for all 1 < p < ∞. In his 1984
seminal paper [9] Burkholder determined the norm of this operator. For 1 < p < ∞
we let p∗ denote the maximum of p and q, where 1

p
+ 1

q
= 1. Thus p∗ = max{p, p

p−1
}

and

(1.1) p∗ − 1 =

{
1

p−1
, 1 < p ≤ 2,

p− 1, 2 ≤ p < ∞.

Theorem 1.1. Let f = {fn, n ≥ 0} be a martingale with difference sequence
df = {dfk, k ≥ 0}. Let g = v ∗ f be the martingale transform of f by the real
predictable sequence v = {vk, k ≥ 0} uniformly bounded in absolute value by 1.
Then

(1.2) ‖g‖p ≤ (p∗ − 1)‖f‖p, 1 < p < ∞,

and the constant p∗ − 1 is best possible.

By considering dyadic martingales, inequality (1.2) contains the classical inequal-
ity of Marcinkiewicz [17] and Paley [20] for Paley–Walsh martingales with the optimal
constant.

Corollary 1.1. Let {hk, k ≥ 0} be the Haar system in the Lebesgue unit interval
[0, 1). That is, h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1), h3 = [0, 1/4)− [1/4, 1/2), h4 =
[1/2, 3/4) − (3/4, 1), . . . , where the same notation is used for an interval as for
its indicator function. Then for any sequence {ak, k ≥ 0} of real numbers and any
sequence {εk, k ≥ 0} of signs,

(1.3)
∥∥∥

∞∑

k=0

εkakhk

∥∥∥
p
≤ (p∗ − 1)

∥∥∥
∞∑

k=0

akhk

∥∥∥
p
, 1 < p < ∞.

The constant p∗ − 1 is best possible.

In [12], Choi used the techniques of Burkholder to identify the best constant
in the martingale transforms where the predictable sequence v takes values in [0, 1]
instead of [−1, 1]. While Choi’s constant is not as explicit as the p∗ − 1 constant of
Burkholder, one does have a lot of information about it.

Theorem 1.2. Let f = {fn, n ≥ 0} be a real-valued martingale with difference
sequence df = {dfk, k ≥ 0}. Let g = v ∗ f be the martingale transform of f by a
predictable sequence v = {vk, k ≥ 0} with values in [0, 1]. Then

(1.4) ‖g‖p ≤ cp‖f‖p, 1 < p < ∞,

with the best constant cp satisfying

cp =
p

2
+

1

2
log

(
1 + e−2

2

)
+

α2

p
+ · · ·

where

α2 =

[
log

(
1 + e−2

2

)]2

+
1

2
log

(
1 + e−2

2

)
− 2

(
e−2

1 + e−2

)2

.
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As observed by Choi,

(1.5) cp ≈ p

2
+

1

2
log

(
1 + e−2

2

)
,

with this approximation becoming better for large p. It also follows trivially from
Burkholder’s inequalities that (even without knowing explicitly the best constant cp)

(1.6) max

(
1,

p∗ − 1

2

)
≤ cp ≤ p∗

2
.

As in the case of Burkholder, Choi’s result gives

Corollary 1.2. Let {hk, k ≥ 0} be the Haar system as above. Then for any
sequence {ak, k ≥ 0} of real numbers and any sequence {εk, k ≥ 0} of numbers in
{0, 1},

(1.7)
∥∥∥

∞∑

k=0

εkakhk

∥∥∥
p
≤ cp

∥∥∥
∞∑

k=0

akhk

∥∥∥
p
, 1 < p < ∞,

where cp is the constant in (1.4). The inequality is sharp.

Motivated by Theorems 1.1 and 1.2 we introduce a new constant.

Definition 1.3. Let −∞ < b < B < ∞ and 1 < p < ∞ be given and fixed. We
define Cp,b,B as the least positive number C such that for any real-valued martingale
f and for any transform g = v ∗ f of f by a predictable sequence v = {vk, k ≥ 0}
with values in [b, B], we have

(1.8) ‖g‖p ≤ C‖f‖p.

Thus, for example, Cp,−a,a = a(p∗− 1) by Burkholder’s Theorem 1.1 and Cp,0,a =
a cp by Choi’s Theorem 1.2. It is also the case that for any b, B as above, Cp,b,B ≤
max{B, |b|}(p∗ − 1) and in fact a simple transformation gives that

(1.9) max

{(
B − b

2

)
(p∗ − 1), max{|B|, |b|}

}
≤ Cp,b,B ≤ (B − b)

2
p∗ + b.

We also point out that by a result of Maurey [18], and independently of Burkhol-
der [10], the constant Cp,b,B in this definition remains the same if we consider Paley–
Walsh martingales only. Furthermore, the reasoning presented in the Appendix of
[11] shows that if the transforming sequence is deterministic and takes values in
{b, B}, then the constant in (1.8) does not change either.

A bounded, complex valued function m on Rd \ {0}, d ≥ 1, is called a Fourier
multiplier. We define the operator Tm : L2(Rd) → L2(Rd) associated to m by

(1.10) Tmf = F−1(mF),

where F is a Fourier transform

Ff(ξ) = f̂(ξ) =

ˆ

Rd

e−i〈ξ,x〉f(x) dx.

The multiplier m is said to be homogeneous of order 0 if m(λξ) = m(ξ) for all
ξ ∈ Rd \ {0} and λ > 0, and it is said to be even if m(ξ) = m(−ξ) for all ξ ∈
Rd \ {0}. We will be particularly interested in those m for which the corresponding
Tm is bounded on Lp(Rd), 1 < p < ∞ (more formally, has a bounded extension
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to Lp(Rd)). To shorten the notation, we will usually denote the operator norm
‖Tm : Lp(Rd) → Lp(Rd)‖ just by ‖Tm‖p, when no danger of confusion exists.

As an application of the above martingale inequalities to Fourier multipliers, we
have the following theorem.

Theorem 1.4. Let d ≥ 2 be a given integer. Let m be a real and even multiplier
which is homogeneous of order 0 on Rd. Denote by b and B the minimal and the
maximal term of the sequence

(
m(1, 0, 0, . . . , 0),m(0, 1, 0, . . . , 0), . . . ,m(0, 0, . . . , 0, 1)

)
,

respectively. Then for 1 < p < ∞ and Cp,b,B as in Definition 1.3, we have

(1.11) ‖Tm‖p ≥ Cp,b,B.

Furthermore, since ‖Tm‖p is preserved under rotations and reflections of the multi-
plier, we have

(1.12) ‖Tm‖ ≥ sup
e

Cp,b(e),B(e), 1 < p < ∞,

where the supremum runs over all orthonormal bases e = (ej)
d
j=1 of Rd and b(e),

B(e) stand for the minimal and the maximal term of the sequence m(e1), m(e2), . . .,
m(ed), respectively.

Recall that the Riesz transforms R1, R2, . . ., Rd in Rd, d ≥ 2, are the Fourier
multipliers given by

R̂jf(ξ) = −i
ξj

|ξ| f̂(ξ), ξ ∈ Rd \ {0}, j = 1, 2, . . . , d.

These multipliers do not satisfy the assumptions of the above theorem: they are
neither real nor even. However, they give rise to the second order Riesz transforms,

R̂jRkf(ξ) =
−ξjξk

|ξ|2 f̂(ξ), ξ ∈ Rd \ {0}, j, k = 1, 2, . . . , d,

which have the desired properties. It was proved by Nazarov and Volberg [19] and
Bañuelos and Méndez-Hernández [5] that

(1.13) ‖R2
1 −R2

2‖p = ‖2R1R2‖p ≤ Cp,−1,1 ≤ p∗ − 1.

Geiss, Montgomery-Smith and Saksman [14] showed that the inequality in the reverse
direction is also true and hence

(1.14) ‖R2
1 −R2

2‖p = ‖2R1R2‖p = Cp,−1,1 = p∗ − 1.

We shall establish the following extension of this result.

Theorem 1.5. Let d ≥ 2 and assume that A = (aij)
d
i,j=1 is a d × d symmetric

matrix with real entries and eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λd. Consider the operator
SA =

∑d
i,j=1 aijRiRj with the multiplier m(ξ) = (Aξ,ξ)

|ξ|2 . Then for 1 < p < ∞,

(1.15) ‖SA‖p = Cp,λ1,λd
.

Corollary 1.3. If d ≥ 2 and J ( {1, 2, . . . , d}, then

(1.16) ‖
∑
j∈J

R2
j‖p = Cp,0,1 = cp, 1 < p < ∞,
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where cp is the Choi constant in (1.4).

The lower bound in (1.15) follows from (1.12) applied to the basis of eigenvectors
(e1, e2, . . . , ed) corresponding to λ1 ≤ λ2 ≤ . . . ≤ λd. The upper bound follows
from the stochastic integral representation for these operators first introduced in
Bañuelos and Méndez-Hernández [5] and the Burkholder-type inequality (1.19) below
for continuous time martingales under a more general (not necessarily symmetric)
subordination condition. This result is of independent interest and can be applied to
the Lévy multipliers studied in [2] and [3], as we shall see momentarily.

To introduce the necessary notions in the continuous-time setting, suppose that
(Ω,F ,P) is a complete probability space, filtered by (Ft)t≥0, a nondecreasing and
right-continuous family of sub-σ-fields of F . Assume, as usual, that F0 contains all
the events of probability 0. Let X, Y be adapted, real valued martingales which
have right-continuous paths with left-limits (r.c.l.l.). Denote by [X,X] the quadratic
variation process of X: we refer the reader to Dellacherie and Meyer [13] for details.
Following Bañuelos and Wang [6] and Wang [22], we say that Y is differentially
subordinate to X if the process ([X,X]t−[Y, Y ]t)t≥0 is nondecreasing and nonnegative
as a function of t. We have the following extension of Theorem 1.1, proved by
Bañuelos and Wang [6] for continuous-path martingales and by Wang [22] in the
general case. Namely, if Y is differentially subordinate to X, then

(1.17) ‖Y ‖p ≤ (p∗ − 1)‖X‖p, 1 < p < ∞,

and the inequality is sharp. Here ‖X‖p, the p-th moment of X, is defined analogously
as in the discrete time: ‖X‖p = supt≥0 ‖Xt‖, 0 < p < ∞. The following theorem
extends this result and can be regarded as a continuous-time version of the inequality
for non-symmetric martingale transforms.

Theorem 1.6. Let −∞ < b < B < ∞ and suppose that X, Y are real valued
martingales satisfying the non–symmetric subordination condition

(1.18) d

[
Y − b + B

2
X,Y − b + B

2
X

]

t

≤ d

[
B − b

2
X,

B − b

2
X

]

t

,

for all t ≥ 0. Then

(1.19) ‖Y ‖p ≤ Cp,b,B‖X‖p, 1 < p < ∞,

and the inequality is sharp.

Let us clarify that for t = 0, the condition (1.18) means that
(

Y0 − B + b

2
X0

)2

≤
(

B − b

2
X0

)2

,

or (Y0 − bX0)(Y0 − BX0) ≤ 0. Theorem 1.6 combined with the techniques from [2]
and [3] yields new results for multipliers arising from Lévy processes. Consider a
measure ν ≥ 0 on Rd satisfying ν({0}) = 0 and

(1.20)
ˆ

Rd

|x|2
1 + |x|2 dν(x) < ∞.

A measure with these properties is called a Lévy measure. For any finite Borel
measure µ ≥ 0 on the unit sphere S ⊂ Rd and any functions ϕ : Rd → C, ψ : S → C
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with ‖φ‖∞ ≤ 1 and ‖ψ‖∞ ≤ 1, we consider the multiplier

(1.21) m (ξ) =

´
Rd

(
1− cos〈ξ, x〉

)
ϕ (x) dν(x) + 1

2

´
S
|〈ξ, θ〉|2ψ (θ) dµ(θ)

´
Rd

(
1− cos〈ξ, x〉

)
dν(x) + 1

2

´
S
|〈ξ, θ〉|2 dµ(θ)

.

It is proved in [2] and [3] that (1.17) implies

(1.22) ‖Tmf‖p ≤ (p∗ − 1)‖f‖p, 1 < p < ∞.

This inequality is sharp as these multipliers include R2
2 − R2

1 and 2R1R2. Using
Theorem 1.6 we obtain the following related result.

Theorem 1.7. Let ν, µ be as above and suppose that ϕ, ψ take values in [b, B]
for some −∞ < b < B < ∞. Then the operator Tm with the symbol (1.21) satisfies

(1.23) ‖Tmf‖p ≤ Cp,b,B‖f‖p, 1 < p < ∞.

Putting µ = 0 and using the Lévy measure ν of a non-zero symmetric α-stable
Lévy process in Rd, with α ∈ (0, 2) (see [2] and [3]), one obtains the multiplier with
the symbol

(1.24) m(ξ) =

´
S
|〈ξ, θ〉|αφ(θ)σ(dθ)´
S
|〈ξ, θ〉|ασ(dθ)

,

where the so-called spectral measure σ is finite and non-zero on S. By the appro-
priate choice of σ and the use of Theorems 1.4 and 1.7, we get the following for
Marcinkiewicz-type multipliers (see [21, pp. 109–110]).

Corollary 1.4. Let 0 < α < 2, d ≥ 2 and recall that cp is the Choi constant in
(1.4).

(i) For any J ( {1, 2, . . . , d}, set

(1.25) mJ,α(ξ) =

∑
j∈J |ξj|α∑d
j=1 |ξj|α

.

Then for 1 < p < ∞,

(1.26) ‖TmJ,α
‖p = Cp,0,1 = cp.

(ii) Suppose that d is even: d = 2n, and set

(1.27) m(ξ) =
|ξ2

1 + ξ2
2 + . . . + ξ2

n|α/2

|ξ2
1 + ξ2

2 + . . . + ξ2
n|α/2 + |ξ2

n+1 + ξ2
n+2 + . . . + ξ2

2n|α/2
.

Then for 1 < p < ∞,

(1.28) ‖Tm‖p = Cp,0,1 = cp.

Theorem 1.4 also gives the lower bound for the norms of the Marcinkiewicz
multipliers

m(ξ) =
|ξ1|α1|ξ2|α2 . . . |ξd|αd

|ξ|α ,

where α1, α2, . . . , αd are positive numbers and α = α1 +α2 + . . .+αd, treated in [21,
pp. 109–110]. Namely, we have ‖Tm‖p ≥ Cp,0,1 = cp, for 1 < p < ∞. On the other
hand, we have not been able to obtain the reverse bound.
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It is also interesting to note here that if J ( {1, 2, . . . , d} and

(1.29) mlog
J (ξ) =

∑
j∈J ln(1 + ξ−2

j )
∑d

j=1 ln(1 + ξ−2
j )

,

then

(1.30) ‖Tmlog
J
‖p ≤ Cp,0,1 = cp.

Unfortunately these “logarithmic” multipliers, which arise naturally from the so called
tempered stable Lévy processes (see [2]), are not homogeneous of order 0 and hence
the opposite inequality, while still could hold, does not follow from Theorem 1.4.

We organize the rest of the paper as follows. In §2 we give the proof of the lower
Lp bound for multipliers, Theorem 1.4. This proof is a modification of the arguments
used by Geiss, Montgomery-Smith and Saksman in [14]. §3 is devoted to the proof
of Theorem 1.6: we show there how to deduce (1.19) from the discrete martingale
inequality (1.8). Finally, in §4 we sketch the proof of the upper bound of Theorem
1.5 using the now well known arguments from [5].

2. Proof of Theorem 1.4

With no loss of generality, we may assume that we have m(1, 0, 0, . . . , 0) = b and
m(0, 1, 0, . . . , 0) = B, rotating and reflecting the multiplier if the equalities do not
hold. For the sake of convenience and clarity, we split the proof into several steps.

Step 1. The passage from Rd to the torus Td = (−π, π]d. Given a smooth and
homogeneous multiplier m on Rd \ {0}, denote by m̃ the corresponding multiplier
acting on functions given on Td. That is, let

(2.1) Tm̃f(θ) =
∑

k∈Zd

f̂(k)ei〈k,θ〉m(k), θ ∈ Td,

where, as usual, f̂(k) = (2π)−d
´
Td e−i〈k,θ〉f(θ) dθ and m(0) = ω−1

d−1

´
Sd−1 m(x) dx is

the average over the unit sphere in Rd.
A remarkable fact is that for 1 < p < ∞, the Lp norms of the multipliers m and

m̃ coincide. We have the following result due to de Leeuw [16].

Theorem 2.1. For any m as above and any 1 < p < ∞,

(2.2) ‖Tm : Lp(Rd) → Lp(Rd)‖ = ‖Tm̃ : Lp(Td) → Lp(Td)‖.
Thus it suffices to establish the appropriate lower bound for the norm on the

right.

Step 2. Picking a dyadic martingale and its transform. Let f = (fn)N
n=1 be a

finite, real-valued Paley–Walsh martingale. That is, for n = 1, 2, . . . , N , we have

dfn = εndn(ε1, ε2, . . . , εn−1),

where ε1, ε2, . . ., εN is a sequence of independent Rademacher random variables,
dn : {−1, 1}n−1 → R are fixed functions, n = 2, 3, . . . , N , and d1 is a constant.
Suppose that α = (αk)

N
k=1 is a deterministic sequence with each term taking values

in {b, B} and let g = (gn)N
n=1 be the transform of f by α.

Step 3. Representing f and g as functions on (Td)N . Consider two functions a−,
a+ on Td, defined by a−(θ) = sgn θ1 and a+(θ) = sgn θ2. It is not difficult to see that
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Tm̃a− = ba− and Tm̃a+ = Ba+. Indeed, we easily check that â−(k) = 0 if k1 = 0 or
kj 6= 0 for some j > 1. Consequently, by (2.1),

Tm̃a−(θ) =
∑

k1∈Z\{0}
â−((k1, 0, 0, . . . , 0))eik1θ1m((k1, 0, 0, . . . , 0))

= m(1, 0, 0, . . .)
∑

k1∈Z\{0}
â−((k1, 0, 0, . . . , 0))eik1θ1 = b

∑

k∈Z

â−(k)ei〈k,θ〉 = ba−(θ).

The equality Tm̃a+ = Ba+ is proved in the same manner. Now, introduce the
sequence ψ = (ψk)

N
k=1 of functions on Td by

ψk =

{
a− if αk = b,

a+ if αk = B,

so that

(2.3) Tm̃ψk = αkψk for k = 1, 2, . . . , N.

We have that (ψ1(θ
1), ψ2(θ

2), . . . , ψN(θN)) has the same distribution (as a function
of (θ1, θ2, . . . , θN) ∈ (Td)N with normalized measure) as (ε1, ε2, . . . , εN). Therefore,

(
n∑

k=1

ψk(θ
k)dk

(
ψ1(θ

1), ψ2(θ
2), . . . , ψk−1(θ

k−1)
)
)N

n=1

has the same distribution as the initial martingale f . Furthermore, the transform g
can be represented in the form

(
n∑

k=1

[Tm̃ψk](θ
k)dk

(
ψ1(θ

1), ψ2(θ
2), . . . , ψk−1(θ

k−1)
)
)N

n=1

,

in virtue of (2.3).

Step 4. Applying the result of Geiss, Montgomery-Smith and Saksman. We
shall need the following fact. A stronger, Banach-space-valued version appears as
Lemma 3.3 in [14].

Theorem 2.2. Let 1 < p < ∞ and assume that the multiplier m is real and
even. For k ≥ 1, let Ek be the closure in Lp((Td)k) of the finite real trigonometric
polynomials

Φk(θ
1, . . . , θk) =

∑

`1∈Zd

. . .
∑

`k∈Zd

ei〈`1,θ1〉 . . . ei〈`k,θk〉c`1,...,`k ,

such that c`1,...,`k = 0, whenever `k = 0 (so that
´
Td Φk(θ

1, . . . , θk)dθk = 0). Let T k
m̃

be an operator on Ek, defined on the above polynomials by

(T k
m̃Φk)(θ

1, . . . , θk) =
∑

`1∈Zd

. . .
∑

`k∈Zd

m(`k)ei〈`1,θ1〉 . . . ei〈`k,θk〉c`1,...,`k ,

for all θ1, . . . , θk ∈ Td. Then one has∥∥∥∥∥
N∑

k=1

[T k
m̃Φk](θ

1, ..., θk)

∥∥∥∥∥
Lp((Td)N )

≤ ‖Tm̃ : Lp(Td)→Lp(Td)‖
∥∥∥∥∥

N∑

k=1

Φk(θ
1, ..., θk)

∥∥∥∥∥
Lp((Td)N )

for all Φ1 ∈ E1, . . ., ΦN ∈ EN .
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Let us apply this result to the representations of f and g, setting

Φk(θ
1, . . . , θk) = ψk(θ

k)dk

(
ψ1(θ

1), ψ2(θ
2), . . . , ψk−1(θ

k−1)
)

for all k = 1, 2, . . . , N and all θ1, θ2, . . . , θN ∈ Td. Then Φk ∈ Ek for all k: the
equality

´
Td Φk dθk = 0 is guaranteed by the martingale property. We obtain

‖gN‖p ≤ ‖Tm̃ : Lp(Td) → Lp(Td)‖ ‖fN‖p.

Since N , f and the transforming sequence α were arbitrary, we get, by (2.2),

‖Tm : Lp(Rd) → Lp(Rd)‖ = ‖Tm̃ : Lp(Td) → Lp(Td)‖ ≥ Cp,b,B.

This completes the proof.

3. Proof of Theorem 1.6

First let us first check that the non-symmetric version (1.18) of differential sub-
ordination generalizes the martingale transforms by a predictable sequences taking
values in [b, B]. To do this, let f be a discrete-time martingale and assume that
g is its transform by an appropriate sequence v = (vn)n≥0. Let us treat f , g as
continuous-time martingales X, Y via the identification Xt = fbtc and Yt = gbtc,
t ≥ 0. Then both sides of (1.18) are zero for non-integer t, and

d

[
Y − b + B

2
X,Y − b + B

2
X

]

n

− d

[
B − b

2
X,

B − b

2
X

]

n

= dg2
n − (b + B)dfndgn +

(b + B)2

4
df2

n −
(B − b)2

4
df 2

n = (vn −B)(vn − b)df 2
n,

which is nonpositive when vn ∈ [b, B]. Thus (1.18) is satisfied and, in particular, the
sharpness in (1.19) follows immediately from the passage to discrete-time martingale
transforms.

To prove (1.19), fix 1 < p < ∞ and note that we may restrict ourselves to
X ∈ Lp, since otherwise there is nothing to prove. Then, by Burkholder’s inequality
(1.2), we also have Y ∈ Lp, because Y is differentially subordinate to (|b| + |B|)X.
Let V : R×R → R be the function given by

V (x, y) = |y|p − Cp
p,b,B|x|p.

For any x, y ∈ R, let M(x, y) denote the class of all simple martingale pairs (f, g)
starting from (x, y) such that dgn = vndfn, n ≥ 1, for some deterministic sequence v
with terms in {b, B}. Introduce the function U : R×R → R by

U(x, y) = sup{EV (fn, gn)},
where the supremum is taken over all n and all (f, g) ∈ M(x, y). Of course, V ≤ U ,
since the constant pair (f, g) ≡ (x, y) belongs to M(x, y). Furthermore,

(3.1) if y = wx for some w ∈ [b, B], then U(x, y) ≤ 0.

This follows from the definition of U and the fact that for such x, y, the condition
(f, g) ∈ M(x, y) implies that g is the transform of f by a predictable sequence with
values in [b, B]. Next, using the splicing argument of Burkholder (see e.g. [11]) we
see that

(3.2) U is concave along all lines of slope b or B.



260 Rodrigo Bañuelos and Adam Osȩkowski

Furthermore, as we shall prove now,

(3.3) for any fixed x, the function U(x, ·) is convex.

To show this, take any λ ∈ (0, 1), y−, y+ ∈ R and let y = λy− + (1−λ)y+. Pick any
pair (f, g) ∈ M(x, y) and observe that (f, g+(y−−y)) ∈ M(x, y−), (f, g+(y+−y)) ∈
M(x, y+). Consequently,

EV (fn, gn) = E
[|gn|p − Cp

p,b,B|fn|p
]

= E
[|λ(gn + (y− − y)) + (1− λ)(gn + (y+ − y))|p − Cp

p,b,B|fn|p
]

≤ λE
[|gn + (y− − y)|p − Cp

p,b,B|fn|p
]
+ (1− λ)E

[|gn + (y+ − y)|p − Cp
p,b,B|fn|p

]

≤ λU(x, y−) + (1− λ)U(x, y+)

and it suffices to take supremum over n and (f, g) to get the convexity of U(x, ·).
Define now U, V : R2 → R by

U(x, y) = U

(
2

B − b
x,

B + b

B − b
x + y

)

and

V (x, y) = V

(
2

B − b
x,

B + b

B − b
x + y

)
.

We easily check that (3.2) means that U is concave along all lines of slope ±1 and
that (3.3) carries over to U . Let ψ : R ×R → [0,∞) be a C∞ function, supported
on the unit ball of R2, satisfying

´
R2 ψ = 1. For any δ > 0, define U δ, V δ : R2 → R

by the convolutions

U δ(x, y) =

ˆ

R2

U(x + δr, y + δs)ψ(r, s) dr ds

and
V δ(x, y) =

ˆ

R2

V (x + δr, y + δs)ψ(r, s) dr ds.

Since V ≤ U , we have V ≤ U and hence also V δ ≤ U δ. Furthermore, the function
U δ is of class C∞ and inherits the concavity and the convexity properties of U .
Therefore, we have that

(3.4) U δ
xx ± 2U δ

xy + U δ
yy ≤ 0 and U δ

yy ≥ 0 on R2.

These estimates imply that for all x, y, h, k ∈ R we have

U δ
xx(x, y)h2 + 2U δ

xy(x, y)hk + U δ
yy(x, y)k2 ≤ U δ

xx(x, y)− U δ
yy(x, y)

2
(h2 − k2).

To see this, we transform the inequality into

(U δ
xx(x, y) + U δ

yy(x, y))
h2 + k2

2
+ 2U δ

xy(x, y)hk ≤ 0,

and this bound follows easily from (3.4) and the trivial estimate 2|hk| ≤ h2+k2. Pick
two real martingales X ′, Y ′ bounded in Lp such that Y ′ is differentially subordinate
to X ′. Then there is a nondecreasing sequence (τn)n≥0 of stopping times, which
converges to +∞ almost surely and τn depends only on X ′, Y ′ and n, such that

EU δ(X ′
τn∧t, Y

′
τn∧t) ≤ EU δ(X ′

0, Y
′
0).
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We refer the reader to Wang [22] for details. Since V δ ≤ U δ, we get

EV δ(X ′
τn∧t, Y

′
τn∧t) ≤ EU δ(X ′

0, Y
′
0).

Let δ → 0 and use Lebesgue’s dominated convergence theorem to obtain

EV (X ′
τn∧t, Y

′
τn∧t) ≤ EU(X ′

0, Y
′
0)

(we note here that the required majorants are of the form c[(X ′)∗ + (Y ′)∗]p and their
integrability is guaranteed by Doob’s maximal inequality). Apply this bound to the
pair

X ′ =
B − b

2
X and Y ′ = Y − B + b

2
X,

and observe that the differential subordination of Y ′ to X ′ is equivalent to (1.18).
As the result, we get

EV (Xτn∧t, Yτn∧t) ≤ EU(X0, Y0).

However, U(X0, Y0) ≤ 0: use (3.1) and the remark below Theorem 1.6. Therefore,

E|Yτn∧t|p ≤ Cp
p,b,BE|Xτn∧t|p

and it suffices to first let n →∞ and then t →∞ to obtain the desired bound.

4. The Upper Bound in Theorem 1.5

The upper bound in Theorem 1.5 follows immediately from Theorem 1.6 and
the stochastic representation for the Riesz transforms as presented in [5]. We also
refer the reader to [1], §3.4, for a detailed extension of this argument to a wider
collection of operators. Here we only explain how the subordination condition (1.18)
of Theorem 1.6 enters into the picture. Let (W, t) be the space-time Brownian motion
in Rd× [0,∞). For any sufficiently regular f on Rd, we represent it as the stochastic
integral

f ∼ X =

ˆ T

0

∇Uf (Ws, T − s) · dWs,

where Uf stands for the heat extension of f to the half–space Rd× [0,∞) and T is a
large positive number. For a detailed description of what we mean here by the symbol
“ ∼ ”, see [5] or [1]. Then SA can be represented as the conditional expectation of
the martingale transform of X by A. That is,

SAf(x) ∼ E
[
Y

∣∣WT = (x, 0)
]
,

where

Y =

ˆ T

0

A∇Uf (Ws, T − s) · dWs.

Now, if we set ξ = ∇Uf (Wt, T − t), then

d

[
Y − b + B

2
X,Y − b + B

2
X

]

t

− d

[
B − b

2
X,

B − b

2
X

]

t

=

(∣∣∣∣Aξ − b + B

2
ξ

∣∣∣∣
2

−
∣∣∣∣
B − b

2
ξ

∣∣∣∣
2
)
dt =

(|Aξ|2 − (b + B)(Aξ, ξ) + bB|ξ|2) dt

=
〈
(A−BI)(A− bI)ξ, ξ

〉
dt,
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where I stands for the identity matrix of dimension d. However, A−BI is nonpositive-
definite, A− bI is nonnegative-definite and the two matrices commute. Hence their
product is nonpositive-definite and hence (1.18) is satisfied. Consequently, by (1.19),

‖Y ‖p ≤ Cp,b,B‖X‖p,

which, by the “transference method”, as explained in [5] and [1], yields

‖SAf‖p ≤ Cp,b,B‖f‖p

and hence ‖SA : Lp(Rd) → Lp(Rd)‖ ≤ Cp,b,B.

Remark 4.1. It is worth observing here that, as the proof of the upper bound
of Theorem 1.5 shows, if we take a real variable coefficient d × d symmetric matrix
A(x, t), x ∈ Rd, t > 0, with the property that for all ξ ∈ Rd,

b|ξ|2 ≤ 〈A(x, t)ξ, ξ〉 ≤ B|ξ|2,
for all (x, t), and define the operator

SAf(x) ∼ E
[
Y

∣∣WT = (x, 0)
]
,

where this time

Y =

ˆ T

0

A(Ws, T − s)∇Uf (Ws, T − s) · dWs,

we get
‖SAf‖p ≤ Cp,b,B‖f‖p, 1 < p < ∞.

For more on these variable coefficient “projections of martingale transforms”, see [1]
and especially Remark 3.4.2 there.
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