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Abstract. We study the convexity and starlikeness of metric balls on Banach spaces when the
metric is the quasihyperbolic metric or the distance ratio metric. In particular, problems related to
these metrics on convex domains, and on punctured Banach spaces, are considered.

1. Introduction

In this paper we deal with Banach manifolds, which are obtained by defining a
conformal metric on non-trivial subdomains of a given Banach space. An example
of such metric is the quasihyperbolic metric on a domain of a Banach space. It is
obtained from the norm-induced metric by adding a weight, which depends only on
distance to the boundary of the domain. The quasihyperbolic metric of domains
in Rn was first studied by Gehring and his students Palka [6] and Osgood [5] in
1970’s. It has turned out to be a useful tool in, e.g., the theory of quasiconformal
mappings. In particular, quasihyperbolic metric plays a crucial role in the theory
of quasiconformal mappings in Banach spaces, developed by Väisälä in the series of
articles [12, 13, 14, 15, 16]. This is due to the fact that many of the tools used in the
Euclidean space are not available in the infinite-dimensional setting (see [16]).

We mainly study the question of how the geometry of the Banach space norm
translates into the properties of the quasihyperbolic metric. In particular, we consider
convexity and starlikeness of quasihyperbolic balls in domains of Banach spaces, for
example the punctured space Ω = X\{0}. This problem was posed in Rn by Vuorinen
[22], and studied by Klén in [7, 8] and Väisälä in [18]. Some of the techniques used
there are specific to Rn. In the general Banach space setting a very different approach
is required.

Our main results are the following. In Theorem 3.1 we show that each ball in the
distance ratio metric (the j-metric) defined on a proper subdomain of a Banach space
is starlike for radii r ≤ log 2, partly generalizing a result of Klén [8, Theorem 3.1]. In
Theorem 4.1, which improves a result of Martio and Väisälä [11, 2.13], we show that
the j-balls and the quasihyperbolic balls defined on a convex domain of a Banach
space are convex. Then, in Theorem 4.3, we show that all j-balls and quasihyperbolic
balls are starlike if the domain is starlike with respect to the center of the ball. We
also give a counterexample, which settles a question posed by Martio and Väisälä
[11, 2.14] concerning quasihyperbolic geodesics on uniformly convex Banach spaces.
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Related problems involving quasihyperbolic geodesics have been studied in Rn by
Martin [9] in the 1980’s, and several authors thereafter. Finally, we discuss the issue
of convexity of quasihyperbolic balls on punctured Banach spaces.

2. Preliminaries

First, let us recall a few basic results and definitions. Unless otherwise stated, we
will assume that X is a Banach space with dim X ≥ 2, and that Ω ( X is a domain.
Open and closed balls in X are

U(x, r) := U‖·‖(x, r) := {y ∈ X: ‖x− y‖ < r}
B(x, r) := B‖·‖(x, r) := {y ∈ X: ‖x− y‖ ≤ r} and S(x, r) := ∂B(x, r).

A set Ω ⊂ X is called convex if the line segment

[x, y] := {tx + (1− t)y : t ∈ [0, 1]} ⊂ Ω for all x, y ∈ Ω,

and starlike with respect to x0 ∈ Ω if

[x0, y] := {tx0 + (1− t)y : t ∈ [0, 1]} ⊂ Ω for all y ∈ Ω.

Observe that the use of notation [x, y] here is different from some texts dealing with
Banach spaces. Obviously a set Ω is convex if and only if it is starlike with respect
to every point x0 ∈ Ω.

2.1. Paths and line integrals. In what follows a path in a metric space (X, d)
is a continuous mapping γ of the unit interval I = [0, 1] into X. If J = [a, b] ⊂ I is a
closed subinterval, then the length of a path γ : I → X restricted to J is

(2.1) `d(γ, a, b) = sup
n∑

i=1

d
(
γ(ti), γ(ti+1)

)
,

where the supremum is taken over all sequences a = t1 ≤ t2 ≤ . . . ≤ tn ≤ tn+1 = b.
The (total) length of γ is `d(γ) = `d(γ, 0, 1). A path γ is rectifiable if its length is
finite.

Given a rectifiable path γ : I → X such that `d(γ, 0, s) is absolutely continuous
with respect to s, we denote the length element of γ by

(2.2) ‖Dγ‖ = ‖Dγ(s)‖ =
d

ds
`(γ, 0, s) for a.e. s ∈ I.

Recall that an increasing absolutely continuous function is a.e. differentiable and can
be recovered by integrating its derivative. Thus

`(γ, 0, t) =

ˆ t

0

‖Dγ‖ ds =

ˆ t

0

‖dγ‖,

where the last integral can be interpreted as the Stieltjes integral with respect to inte-
grator `d(γ, 0, t), or equivalently, the Lebesgue integral, under the formal convention
that

(2.3) ‖dγ‖ = ‖Dγ‖ ds,

bearing (2.2) in mind. In this paper both interpretations for the integrals are use-
ful. Note that for instance the parameterization with respect to the arc length is
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absolutely continuous. Obviously, any rectifiable path in a Banach space can be ap-
proximated uniformly by an absolutely continuous path, e.g., a broken line. If γ is a
path in a Banach space X, we will denote its derivative by

(2.4) Dγ(t) := lim
h→0

γ(t + h)− γ(t)

h
,

provided that it exists. We note that differentiation of Banach space valued functions
can also be studied by means of the Bochner integral. This approach is effective
especially in Banach spaces with the so-called Radon–Nikodým property (RNP),
which means that any rectifiable, absolutely continuous path starting from the origin
can be recovered by Bochner integrating its derivative. For basic information about
these concepts we refer to [1] and [2], see also [3].

2.2. Quasihyperbolic metric. Let X be a Banach space with dim X ≥ 2, and
suppose that Ω ( X is a domain. For x ∈ Ω, let d(x) denote the distance d(x, ∂Ω).
We define the quasihyperbolic length of γ by

`k(γ) :=

ˆ

I

‖dγ‖
d(γ(t))

.

Then the quasihyperbolic distance of points x, y ∈ Ω is the number

k(x, y) := kΩ(x, y) := inf
γ

`k(γ),

where the infimum is taken over all rectifiable arcs γ joining x and y in Ω. Quasihy-
perbolic balls are

Uk(x, r) := {y ∈ Ω: kΩ(x, y) < r},
Bk(x, r) := {y ∈ Ω: kΩ(x, y) ≤ r}.

It is well known [5, Lemma 1] that in the finite-dimensional case there is a
quasihyperbolic geodesic between any two points. By [17, Theorem 2.5], for a reflexive
Banach space X and a convex subdomain Ω ( X there always exists a quasihyperbolic
geodesic connecting x, y ∈ Ω. One of the peculiarities of this topic is that it is not
known whether this holds for general Banach spaces (see also [17, Section 6]). It is
easy to check that multiplication by a constant C 6= 0 is a quasihyperbolic isometry
on Ω = X \ {0}.

2.3. Distance-ratio metric. The quasihyperbolic distance is often difficult
to compute in practice. For this reason, we consider another related quantity, the
distance-ratio metric. This metric was originally introduced by Gehring and Palka
in [6]. We use a version that is due to Vuorinen [20]. Let X be a Banach space with
dim X ≥ 2, and suppose that Ω ( X is a domain. Write

a ∨ b := max{a, b}, a ∧ b := min{a, b}.
The distance-ratio metric, or j-metric, on Ω is defined by

(2.5) j(x, y) := jΩ(x, y) := log

(
1 +

‖x− y‖
d(x) ∧ d(y)

)
, x, y ∈ Ω.

Again, the balls with respect to the j-metric are
Uj(x, r) := {y ∈ Ω: jΩ(x, y) < r},
Bj(x, r) := {y ∈ Ω: jΩ(x, y) ≤ r}.
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It is well known that the norm metric, the quasihyperbolic metric and the distance-
ratio metric define the same topology on Ω. In fact, the j-metric is an inner metric
of the quasihyperbolic metric.

2.4. Geometric control of Banach spaces. Next, we will recall for conve-
nience two essential moduli related to the geometry of Banach spaces. The modulus
of convexity δX(ε), 0 < ε ≤ 2, is defined by

δX(ε) := inf{1− ‖x + y‖/2: x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε},
and the modulus of smoothness ρX(τ), τ > 0 is defined by

ρX(τ) := sup{(‖x + y‖+ ‖x− y‖)/2− 1: x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.
The Banach space X is called uniformly convex if δX(ε) > 0 for all ε > 0, and
uniformly smooth if

lim
τ→0+

ρX(τ)

τ
= 0.

Moreover, a space X is uniformly convex (resp. uniformly smooth) of power type
p ∈ [1,∞) if δX(ε) ≥ Kεp (resp. ρX(τ) ≤ Kτ p) for some K > 0. Note that the
modulus δX measures the convexity of the unit ball. A set C is strictly convex if it
is convex and d(sx + (1− s)y, ∂C) > 0 for all x, y ∈ ∂C, x 6= y, and 0 < s < 1.

3. Starlikeness of j-balls

Next, we show that j-metric balls are starlike for radii r ≤ log 2.

Theorem 3.1. Let X be a Banach space, Ω ( X a domain, and let j be as in
(2.5). Then each j-ball Bj(x0, r), x0 ∈ Ω, is starlike for radii r ≤ log 2.

Proof. Let x0, y ∈ Ω such that j(x0, y) ≤ log 2. This is to say that
‖x0 − y‖

d(x0) ∧ d(y)
≤ 1.

By using simple calculations and the triangle inequality we get

j(x0, ty + (1− t)x0) = log

(
1 +

‖x0 − (ty + (1− t)x0)‖
d(x0) ∧ d(ty + (1− t)x0)

)

≤ log

(
1 +

(1− t)‖x0 − y‖
d(x0) ∧ (d(y)− t‖x0 − y‖)

)
≤ log 2,

where we applied the fact d(x0), d(y) ≥ ‖x0 − y‖ in the last inequality. ¤

Proposition 3.2. Let X be a Banach space and Ω ⊂ X a domain with ∂Ω 6= ∅.
Then BjΩ(x, r) =

⋂
z∈X\Ω BjX\{z}(x, r). Moreover, if X is reflexive and Ω is weakly

open, then
UjΩ(x, r) =

⋂

z∈X\Ω
UjX\{z}(x, r).

Proof. Denote by C the norm closed set X \Ω. First, note that X \C ⊂ X \ {z}
and that jX\{z}(x, y) ≤ jΩ(x, y) for each z ∈ C and x, y ∈ Ω. Thus BjΩ(x, r) ⊂⋂

z∈C BjX\{z}(x, r) and UjΩ(x, r) ⊂ ⋂
z∈C UjX\{z}(x, r). Pick y ∈ Ω such that

j(x, y) = log

(
1 +

‖x− y‖
d(x) ∧ d(y)

)
> r.
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Then there is z ∈ C such that

log

(
1 +

‖x− y‖
‖x− z‖ ∧ ‖y − z‖

)
> r.

This means that y /∈ ⋂
z∈C BjX\{z}(x, r), and so we have the first part of the statement.

Now, assume that X is reflexive and Ω is weakly open. Pick y ∈ Ω with j(x, y) =
r0 ≥ r. Let v ∈ {x, y} be such that d(v) = d(x) ∧ d(t), and set s0 = d(v). Then

r0 = log

(
1 +

‖x− y‖
s0

)
.

Note that C is weakly closed and thus by a well-known characterization of reflexivity
of Banach spaces (see e.g. [3, 3.31] or [4, 3.111]), we get that B‖·‖(v, s0 + 1) ∩ C is
weakly compact. Thus ⋂

ε>0

B‖·‖(v, s0 + ε) ∩ C 6= ∅,

so let us select a point z from this set. Note that ‖v− z‖ = s0, since d(v) = s0. This
means that

jX\{z}(x, y) ≥ log

(
1 +

‖x− y‖
‖v − z‖

)
= r0 ≥ r.

Consequently, UjΩ(x, r) ⊃ ⋂
z∈C UjX\{z}(x, r). ¤

Remark 3.3. The quasihyperbolic metric on X\{0} is conformal in the following
sense: for each C > 1 there is r > 0 such that

C−1k(x, y) ≤ ‖x− y‖
‖x‖ ≤ Ck(x, y)

for k(x, y) < r. The same is true for the distance ratio metric. Note that we did not
assume anything about the geometry of X. The proof follows the arguments in [21,
p. 35], and is left to the reader.

Remark 3.4. Klén’s main results in [7] and [8] involving Rn can be adapted to
general (finite-dimensional, separable, non-separable, real or complex) Hilbert spaces
H. This is due to the fact that the core of the arguments is, roughly speaking, based
on calculations in R2 and then these observations extend to Rn by elegant reasoning.
Essentially the same extension carries further to Hilbert spaces.

4. Convexity of quasihyperbolic and j-balls on convex domains

In this section, we study convexity of quasihyperbolic and j-metric balls. We
present a generalization of a result of Martio and Väisälä [11, 2.13].

Theorem 4.1. Let X be a Banach space and Ω ( X a convex domain. Then
all quasihyperbolic balls and j-balls on Ω are convex. Moreover, if X is reflexive and
strictly convex, then these balls are strictly convex.

Fact 4.2. Let a, b, c, d > 0 be constants such that a/c = b/d. Then

ta + (1− t)b

tc + (1− t)d
=

a

c
for t ∈ [0, 1].
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Proof of Theorem 4.1. We will prove the case with the quasihyperbolic metric,
which is more complicated. Fix x ∈ Ω and r > 0. Let y, z ∈ Bk(x, r). Our aim
is to verify that sy + (1 − s)z ∈ Bk(x, r) for s ∈ [0, 1]. Thus, we may assume that
k(x, y) = k(x, z) = r in the first place. By using suitable translations, we may assume
that x = 0 as well. It suffices to show that

(4.1) k(x, sy + (1− s)z) ≤ r, for s ∈ [0, 1].

We use the following short-hand notation

`k(γ, t1, t2) =

ˆ t2

t1

‖dγ(t)‖
d(γ(t))

,

where γ : I → Ω is a rectifiable path and 0 ≤ t1 ≤ t2 ≤ 1. We will also write `k(γ)
instead of `k(γ, 0, 1).

Let ε > 0 and let γ0, γ1 : I → Ω be rectifiable paths such that γ0(0) = γ1(0) = 0,
γ0(1) = z, γ1(1) = y, `k(γ0) ≤ r+ε and `k(γ1) ≤ r+ε. We may assume by symmetry
that `k(γ0) ≤ `k(γ1). Moreover, by suitably modifying and then re-parameterizing
γ0, we may assume that `k(γ0) = `k(γ1) and `k(γ0, 0, t) = `k(γ1, 0, t) = t`k(γ0) for
t ∈ [0, 1]. Thus we have that

(4.2)
‖Dγ0(t)‖
d(γ0(t))

=
‖Dγ1(t)‖
d(γ1(t))

= `k(γ0) = `k(γ1) for a.e. t ∈ [0, 1].

Observe that the above numerators need not be continuous, so that these terms do
not coincide, at least a priori, for every t.

γ
γs

γ0

1

z
y

0

Figure 1. The average path γs.

Define an average path γs (see Figure 1) for s ∈ [0, 1] by γs = sγ1 + (1 − s)γ0.
Clearly, γs(0) = 0 and γs(1) = sy + (1− s)z for s ∈ [0, 1]. We claim that

(4.3) `k(γs) ≤ s`k(γ1) + (1− s)`k(γ0) = `k(γ0) = `k(γ1).

Because ε was arbitrary, this estimate yields (4.1), which provides the required result.
To obtain the estimate (4.3), observe that the inequality

(4.4) ‖Dγs‖ ≤ s‖Dγ1‖+ (1− s)‖Dγ0‖, for s ∈ I

holds pointwise for a.e. t ∈ I in the sense of (2.2). Indeed, here we recall the
definition of the norm length ` and apply the triangle inequality. Given v, u ∈ Ω, it
holds that

U‖·‖(v, d(v)) ∪U‖·‖(u, d(u)) ⊂ Ω,

and by the convexity of Ω, it holds that

{sa + (1− s)b : a ∈ U‖·‖(v, d(v)), b ∈ U‖·‖(u, d(u)), s ∈ [0, 1]} ⊂ Ω.
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Moreover, the above set contains U‖·‖(sv+(1−s)u, sd(v)+(1−s)d(u)), see Figure 2.
See also [17, 3.4].

v
Ω

u

Figure 2. The ball U‖·‖(sv + (1− s)u, sd(v) + (1− s)d(u)).

This means that

(4.5) d(su + (1− s)v) ≥ sd(u) + (1− s)d(v).

Now, by combining (4.4), (4.5), (4.2) and Fact 4.2 we obtain

`k(γs) =

ˆ 1

0

‖dγs(t)‖
d(γs(t))

≤
ˆ 1

0

s‖dγ1(t)‖+ (1− s)‖dγ0(t)‖
d(γs(t))

≤
ˆ 1

0

s‖dγ1(t)‖+ (1− s)‖dγ0(t)‖
sd(γ1(t)) + (1− s)d(γ0(t))

=

ˆ 1

0

`k(γ0) dt = `k(γ0).

(4.6)

This completes the proof for the first part of the statement.
In the latter part of the statement, suppose that γ0 6= γ1. Then γs(t), 0 < s < 1

satisfies (4.4) strictly for a set of values of t having positive measure if X is strictly
convex and reflexive. Indeed, by the reflexivity (and hence the RNP), we may write
γs(t) =

´ t

0
γ′s(r) dr as a Bochner integral for s ∈ [0, 1]. If γ0 6= γ1, then the set

(4.7) {t ∈ [0, 1] : γ′0(t)− γ′1(t) 6= 0}
has a strictly positive measure. On the other hand, note that by the strict convexity
of the norm, we have∥∥∥∥s

Dγ0(t)

d(γ0(t))
+ (1− s)

Dγ1(t)

d(γ1(t))

∥∥∥∥ < s

∥∥∥∥
Dγ0(t)

d(γ0(t))

∥∥∥∥ + (1− s)

∥∥∥∥
Dγ1(t)

d(γ1(t))

∥∥∥∥
for all t in the set in (4.7) and 0 < s < 1. Observe that by (4.2)

∥∥∥∥
Dγ0(t)

d(γ0(t))

∥∥∥∥ =

∥∥∥∥
Dγ1(t)

d(γ1(t))

∥∥∥∥ = `k(γ1).

Thus the estimate (4.6) holds as a strict inequality. Next we invoke the fact from [17,
2.1] that the quasihyperbolic metric on a convex domain of a reflexive Banach space
is geodesic. Thus, we may assume that γ0 and γ1 are actually geodesics, so that their
quasihyperbolic lengths are equal to r. This means that k(0, sx + (1− s)y) < r.

The strict convexity of the quasihyperbolic balls follows. The proof for the j-
metric is similar. ¤

4.1. Starlike domains. Next we show that if Ω is starlike with respect to
x0 ∈ Ω, then all quasihyperbolic and j-metric balls centered at x0 are starlike as
well.
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Theorem 4.3. Let X be Banach space, x0 ∈ X and let Ω ⊂ X be a domain
which is starlike with respect to x0. Then all balls Bj(x0, r) and Bk(x0, r) of Ω are
starlike.

Proof. We will only consider the case with the quasihyperbolic metric, since the
other case is similar but easier. Fix a path γ : I → Ω with γ(0) = x0 and `k(γ) < ∞.
Our aim is to show that the path γs defined by γs(t) = sγ(t) + (1 − s)x0 satisfies
`k(γs) ≤ `k(γ) for every s ∈ I. This suffices for the claim, as it follows easily that
the k-ball centered at x0 will be starlike.

Similarly as in the proof of Theorem 4.1 we observe that

{sy + (1− s)x0 : y ∈ B‖·‖(x, r)} = B‖·‖(sx + (1− s)x0, sr)

for x ∈ X, r > 0 and by using the starlikeness of Ω we get

(4.8) d(sx + (1− s)x0) ≥ sd(x) for x ∈ Ω.

On the other hand, it is clear that

(4.9) ‖Dγs‖ = s‖Dγ‖ for a.e. t ∈ I

in the sense of (2.2). Thus, it follows that

`k(γs) =

ˆ

I

‖dγs‖
d(γs)

=

ˆ

I

s‖dγ‖
d(γs)

≤
ˆ

I

s‖dγ‖
sd(γ)

= `k(γ). ¤

5. Examples

It is a natural question, if for each Banach space X and domain Ω ⊂ X there is
a critical radius RΩ > 0 such that j and k balls on Ω with radius at most RΩ are
convex. The next example shows that this is not the case for j-balls. This example
also suggests that the similar result holds for k-balls. In fact, this has been recently
proved by Väisälä [19].

-2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

Figure 3. There is no critical radius R > 0 such that the ball Bj(x, r) is convex for all
x ∈ Ω = `∞(2) \ {0} and 0 < r < R.

This observation can be used further to obtain that there exists a reflexive, strictly
convex and smooth space X such that the punctured space Ω = X \ {0} admits no
critical radius of convexity for j-balls. Namely, this kind of space X is obtained by
putting

X = `2(2)⊕2 `3(2)⊕2 `4(2)⊕2 . . .
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This is a standard example of a Banach space, which is reflexive but not uniformly
convex and not uniformly smooth.

In [11, 2.14] Martio and Väisälä asked whether the quasihyperbolic balls of convex
domains of uniformly convex Banach spaces are quasihyperbolically convex. More
precisely, given two points a and b of the quasihyperbolic ball B ⊂ Ω, does there exist
a geodesic γ joining a and b, which is contained in the ball B. Here the domain Ω
was assumed to be convex and the length of the geodesic is measured with respect to
the quasihyperbolic metric. It turns out the the answer is negative, as the following
counterexample shows.

Example 5.1. Let Ω = {(x, y) ∈ R2 : y < 0} and we will first consider Ω as a
subset of `∞(2) = (R2, ‖ · ‖∞). Let x = (0,−1),

r = ln(2) =

ˆ 2

1

t−1 dt.

We will study the ball Bk(x, r). Put a = (−1,−2), b = (1,−2) and observe that
{ta + (1 − t)b : t ∈ [0, 1]} is included in ∂Bk(x, r). An intuition, which helps in
computing the quasihyperbolic lengths of paths, is that one can move to the directions
(−1,−1), (0,−1) and (1,−1) at the same cost because of the choice of the norm.
Note that z2 ≥ −2 for any (z1, z2) ∈ Bk(x, r).

Now, an easy computation shows that any path γ ⊂ Bk(x, r), which joins a and
b must have quasihyperbolic length at least

ˆ 1

−1

1

2
dt = 1.

However, the broken line γ0 connecting a, b through the point c = (0,−3) has length

2

ˆ 1

0

1

3− t
dt = ln

(9

4

)
< 1,

see Figure 4. The existence of geodesics is clear in this choice of space. Thus Bk(x, r)
is not quasiconvex.

0

a b

0
B (z ,r)0k

c

z.

Figure 4. The path γ0 consists of line segments [a, c] and [c, b].

This example does not change considerably if one considers the domain Ω =
(−6, 6)× (0, 6) instead. Observe that the space `∞(2) is certainly not uniformly con-
vex, see Figure 3. However, because the quasihyperbolic metric depends continuously
on the selection of the norm, we could apply the space `p(2) for large p < ∞ in place
of `∞(2) to produce similar examples, in which case we are dealing with uniformly
convex spaces.
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6. Discussion: Convexity of quasihyperbolic balls
in a punctured Banach space

In the the work of Klén [7] critical radii are provided for the convexity of quasi-
hyperbolic and j-balls on punctured Rn. Again, it is a natural question whether the
existence of such radii can be established, mutatis mutandis, in the Banach space
setting. We already noted in Remark 3.4 that the same approach is applicable in
general Hilbert spaces. On the other hand, as pointed out in the Examples section,
there is a concrete reflexive, strictly convex and smooth Banach space such that
when punctured, it has non-convex j-balls of arbitrary small j-radius. Presumably
the similar result holds for k-balls on the same space.

In order to check the convexity of a k-ball in a punctured space it would seem
natural to exploit an averaging argument similar to the proof of Theorem 4.1. We
have the following partial result which comes very close to providing such a device.

Theorem 6.1. Let X be a Banach space, which is uniformly convex and uni-
formly smooth, both moduli being of power type 2. We consider the quasihyper-
bolic metric k on Ω = X \ {0}. Then there exists R > 0 as follows. Assume that
γ1, γ2 : [0, t2] → Ω are rectifiable paths satisfying the following conditions:

(i) γ1, γ2 and (γ1 + γ2)/2 are contained in B‖·‖(0, 2) \B‖·‖(0, 1),
(ii) γ1(0) = γ2(0),
(iii) `k(γ1) ∨ `k(γ2) ≤ R,
(iv) `‖·‖(γ1) = t1 ≤ t2 = `‖·‖(γ2),
(v) the paths are parameterized with respect to `‖·‖, except that

γ1(t) = γ1(t1) for t ∈ [t1, t2].
Then the following estimate holds:

`k(γ1) + `k(γ2)

2
+

ˆ t2

t1

‖dγ2‖
2d(γ2)

≥ `k

(
γ1 + γ2

2

)
+

ˆ t1

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.

Before giving the proof we will make some comments. If it were the case that
t1 = t2, then this auxiliary fact would provide the required inequality, similar as
applied in the proof of Theorem 4.1, to prove the existence of a critical radius of
convexity of k-balls in a punctured Banach space.

Note that, because of the term
ˆ t2

t1

‖dγ2‖
2d(γ2)

,

we do not obtain a critical radius for convexity in punctured Banach spaces. However,
the above result yields that if γ1 and γ2 have both coinciding norm-lengths and
k-lengths, then either the point-wise average path has strictly smaller k-length or
D(γ1 − γ2) = 0 almost everywhere. In fact, the latter means that γ1 = γ2. Thus
we obtain partial information related to the strict convexity of the k-balls and the
uniqueness of geodesics. In particular, if t1 = t2 then either

`k(γ1) + `k(γ2)

2
> `k

(
γ1 + γ2

2

)
, or γ1 = γ2.

To comment on the assumptions, the postulates (i)–(v) are not restrictive for
the purposes under discussion. Namely, one may apply suitable scalings which are
isometries with respect to the k-metric. Any Hilbert space has the best possible
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power types of uniform convexity and uniform smoothness, namely p = 2, and, in
fact, the optimal modulus functions. It is known that any Banach space has the
uniform convexity power type at least 2 and the uniform smoothness power type at
most 2. Our method in the proof of Theorem 6.1 requires that the asymptotics of the
moduli should be essentially the same, and this is why we assumed that the power
types of the moduli should coincide, i.e., p = 2 for both accounts. It is perhaps
worthwhile to pay close attention to how Lemma 6.2 is applied at the end of the
proof. We note that any Banach space with the coinciding power types of the moduli
must be linearly homeomorphic to a Hilbert space.

In the proof of the next lemma we shall use the expectation operator on Lp([0, t]),
defined as follows. Let

F ∈ Lp([0, t])∗, F (x) =

ˆ t

0

x(s) ds.

Here ‖F‖Lp([0,t])∗ = 1. Observe that
∥∥∥1

t
· 1[0,t]

∥∥∥
Lp([0,t])

= 1.

Then the expectation operator

1⊗ 1/t : Lp([1, t]) → Lp([1, t])

is defined by

f 7→ 1

t

ˆ t

0

f(s) ds · 1[0,t] = F (f) · 1

t
· 1[0,t].

Lemma 6.2. Let f ∈ Lp, 1 ≤ p < ∞, such that f > 0 a.e. and let F (t) =´ t

0
f(s) ds, 0 ≤ t ≤ 1. Then

´ t

0
F (s)p ds´ t

0
f(s)p ds

≤ tp for 0 ≤ t ≤ 1.

Proof. We will apply the well-known fact that the expectation operator on
Lp([0, t]) is contractive, which is easiest to see by writing it like 1 ⊗ 1/t. Then
we have ´ t

0
F (s)p ds´ t

0
f(s)p ds

≤ tF (t)p

´ t

0
(F (t)/t)p ds

=
tF (t)p

F (t)p/tp−1
= tp. ¤

In the above lemma it is essential that the exponents appearing in the numerator
and the denominator are the same. This can be seen by multiplying f with suitable
positive constants, as F depends linearly on f .

Proof of Theorem 6.1. We note that the assumption about the parameterization
yields that

‖Dγ1(t)‖ = ‖Dγ2(t)‖ = 1 for a.e. t ∈ [0, t1].

Recall that we denote the derivative of a path γ by Dγ. Since X has the RNP,
being a reflexive space, it follows that each path of finite quasihyperbolic length,
with absolutely continuous parameterization, is differentiable almost everywhere and
can be recovered from its derivative by Bochner integration.
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By using assumption (i) we observe that

`k

(
γ1 + γ2

2
, t1, t2

)
=

ˆ t2

t1

‖D(γ1+γ2

2
)‖

‖γ1+γ2

2
‖ ds =

ˆ t2

t1

‖Dγ2‖
2‖γ1(t1)+γ2

2
‖

ds

≤
ˆ t2

t1

‖Dγ2‖
2

ds ≤
ˆ t2

t1

‖Dγ2‖
‖γ2‖ ds = `k(γ2, t1, t2).

Thus our task reduces to verifying that

(6.1)
`k(γ1, 0, t1) + `k(γ2, 0, t1)

2
≥ `k

(
γ1 + γ2

2
, 0, t1

)
+

ˆ t1

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.

Without loss of generality we may assume, possibly by re-defining the paths, that
‖D(γ1 − γ2)(t)‖ is not zero in any open neighborhood of 0.

Let us evaluate by using the convexity of the mapping t 7→ t−1 and the moduli
of smoothness and convexity in the following manner:

1

2

(‖Dγ1‖
‖γ1‖ +

‖Dγ2‖
‖γ2‖

)
=

1

2

(
1

‖γ1‖ +
1

‖γ2‖
)

≥ 2

‖γ1‖+ ‖γ2‖ ≥
‖D(γ1 + γ2)‖
‖γ1‖+ ‖γ2‖ +

2δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖

≥ ‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1 + ρX

(‖γ1−γ2‖
‖γ1+γ2‖

)) +
2δX(‖D(γ1 − γ2)‖)

‖γ1‖+ ‖γ2‖ .

In order to check (6.1), we will verify that there exists R > 0 such that
ˆ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1 + ρX

(‖γ1−γ2‖
‖γ1+γ2‖

)) +
2δX(‖D(γ1 − γ2)‖)

‖γ1‖+ ‖γ2‖ ds

≥
ˆ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖ +

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds

for all 0 ≤ t ≤ R. Recall that 2 ≤ ‖γ1 + γ2‖ ≤ 4 by assumption (i). Let us analyze
the terms of the above inequality:

ˆ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖ ds−

ˆ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1 + ρX

(‖γ1−γ2‖
‖γ1+γ2‖

)) ds

=

ˆ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1− 1

1 + ρX

(‖γ1−γ2‖
‖γ1+γ2‖

)
)

ds

≤
ˆ t

0

(
1− 1

1 + ρX(‖γ1 − γ2‖/2)

)
ds ≤

ˆ t

0

ρX(‖γ1 − γ2‖/2) ds

and, by (i),
ˆ t

0

δX(‖D(γ1 − γ2)‖)/4 ds ≤
ˆ t

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.

To justify the existence of the claimed constant R > 0 it suffices to check that

(6.2)
´ t

0
ρX(‖γ1 − γ2‖/2) ds´ t

0
δX(‖D(γ1 − γ2)‖)/4 ds

−→ 0
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uniformly, regardless of the selection of paths, as t → 0.
Define f(s) = ‖D(γ1 − γ2)(s)‖ for a.e. s ∈ [0, r] and put

F (t) =

ˆ t

0

f(s) ds ≥ ‖γ1(t)− γ2(t)‖.

Recall that ρX(τ) ≤ Kτ 2 and δX(ε) ≥ Mε2. Then the above ratio in (6.2) can be
evaluated from above by

(6.3)
´ t

0
ρX(F (s)/2) ds´ t

0
δX(f(s))/4 ds

≤ K

M

´ t

0
F (s)2 ds´ t

0
f(s)2 ds

≤ K

M
t2.

Above we applied Lemma 6.2, and we note that the right-hand side tends to 0 as
t → 0, independently of the choice of f . Thus we have the claim. ¤
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