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Abstract. We consider the chordal Loewner differential equation for multiple slits in the
upper half-plane and relations between the pointwise Hölder continuity of the driving functions and
the generated hulls. The first result generalizes a result of Lind that gives a sufficient condition for
driving functions to generate simple curves. The second result translates the property that the hulls
locally look like straight lines at their starting points into a condition for the driving functions.

1. Introduction

Suppose γ : [0, E]→ H is a simple curve with

γ(0) ∈ R and Γ := γ(0, E] ⊂ H := {z ∈ C | Im(z) > 0}.
For every t ∈ [0, E] we can consider the slit half-plane Ht := H \ γ[0, t] and the
unique conformal map gt : Ht → H with gt(z) = z + b(t)

z
+O(|z|−2) near infinity. By

changing the parameterization of γ, we can achieve b(t) = 2t. Then γ is said to be
parameterized by half-plane capacity. In this case, gt(z) is the solution of the initial
value problem

(1.1) ġt(z) =
2

gt(z)− U(t)
, g0(z) = z,

where U(t) is a continuous real-valued function with U(t) = limz→γ(t) gt(z).
U(t) is called driving function of Γ and it encodes all geometric and topological

properties of Γ. On the other hand, given a continuous function U : [0, E] → R and
z ∈ H, we can solve the initial value problem (1.1). gt(z) may not exist for all t, so
we define Tz as the supremum of all t such that the solution exists up to time t and
gt(z) ∈ H. Let

Ht := {z ∈ H | Tz > t}.
Then gt is the unique conformal mapping from Ht onto H with

gt(z) = z +
2t

z
+O(|z|−2) for z →∞.

The mapping t 7→ Ht is continuous if we endow unbounded subdomains of H with
the topology that is induced by the Carathéodory kernel convergence with respect to
∞, which will be denoted by Cara−→. If we define Kt := H \Ht, then we obviously have
Kt ⊂ Ks for t ≤ s, so that {Kt}t∈[0,E] is a family of growing subsets of the upper
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half-plane. Generally, a bounded subset A ⊂ H with the property A = H ∩ A such
that H \ A is simply connected will be called a (compact) hull.

If the hulls Kt describe a curve γ(t) that intersects itself, say at t = E, then KE

will be “more” than just a curve: the set H \ γ[0, E] is not simply connected then
and the domain H \ KE will be the unbounded component of H \ γ[0, E]. So one
question nearly suggests itself:

When does Kt describe a growing simple curve?
This general problem is not completely solved yet. However, there are partial results,
like the connection of quasislits to Hölder continuous driving functions.

A slit in H is called quasislit if it is a a quasiarc that approaches R nontangen-
tially, where a quasiarc is just the image of a line segment under a quasiconformal
self-homeomorphism of the plane.

Let Lip(1
2
) denote the set of all 1

2
-Hölder continuous functions U : [0, E] → R,

i.e., there is a c > 0 such that

|U(t)− U(s)| ≤ c
√
|s− t|, s, t ∈ [0, E],

and let ||U || 1
2
be the smallest possible value for c.

Lind, Marshall and Rohde proved the following connection between Lip(1
2
) and

quasislits, see [MR05, Li05].

Theorem 1.1. If KE is a quasislit, then U ∈ Lip(1
2
). Conversely, if U ∈ Lip(1

2
)

with ||U || 1
2
< 4, then KE is a quasislit.

In the following we don’t work with quasislits, but we take a look at the con-
nection between the “left and right Hölder continuity” of the driving function and
the generated hulls. We denote by LipL(1

2
) the set of all “pointwise left 1

2
-Hölder

continuous” functions, so that for every t ∈ (0, E] there is a c > 0 and an ε > 0 such
that

|U(t)− U(s)| ≤ c
√
t− s for all s ∈ [t− ε, t].

The results in [Li05] reveal that U already generates a growing slit if we assume
that U ∈ LipL(1

2
) with

(1.2) lim sup
h↓0

|U(s)− U(s− h)|√
h

< 4

for every s ∈ (0, E]. The curve need not be a quasislit then, of course.
The first aim of the present paper is to extend Lind’s result to the more general

situation of the multiple slit version of Loewner’s differential equation (or multifin-
ger case). This equation is also used in physics in order to study several growth
phenomena, such as viscous fingering in Hele–Shaw cells, see, e.g., [GS08].

Given continuous functions λj, Uj : [0, E] → R, j = 1, . . . , n with λj(t) ≥ 0 and∑
j λj(t) ≡ 1, then the initial value problem of the n-slit version reads

(1.3) ġt(z) =
n∑
j=1

2λj(t)

gt(z)− Uj(t)
, g0(z) = z.

This equation arises if we consider n disjoint simple curves growing from the real line
into the upper half-plane. The images of their tips at time t under gt are exactly the
values of the driving functions Uj(t). Conversely, the solution of (1.3) always gives
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us conformal mappings gt : H \Kt → H, where the compact hulls Kt are defined as
in the case of the one-slit version.

By using techniques of [Li05], we will prove the following statement which gen-
eralizes the sufficient condition (1.2).

Theorem 1.2. If Uj(t) < Uj+1(t) for all t and j = 1, . . . , n − 1 and for every j
and t ∈ (0, E] we have Uj ∈ LipL(1

2
) with

(1.4) lim sup
ε↓0

|Uj(t)− Uj(t− ε)|√
ε

< 4
√
λj(t),

then KE consists of n disjoint simple curves.

Remark. Hence the “pointwise left 1
2
-Hölder continuous” condition (1.4) forces

KE to fall into n disjoint simple curves. The condition Uj(t) < Uj+1(t) is necessary
for this simple-curve problem, but one can also get simple curves by driving func-
tions that do not satisfy (1.4). However, this condition is sharp in some sense, see
Section 3.1 and Proposition 3.1.

As we shall now see, the “right Hölder continuity” of a driving function in
t = 0 determines the way how the connected components of the sets Kt start from
U1(0), . . . , Un(0) into the upper half-plane. In order to make this precise we introduce
the following definition:

Let ϕ ∈ (0, π). We say that Kt approaches R at Uj(0) in ϕ-direction if for every
ε > 0 there is a t0 > 0 such that the connected component of Kt0 having Uj(0) as a
boundary point is contained in the set {z ∈ H | ϕ− ε < arg(z − Uj(0)) < ϕ+ ε}.

Theorem 1.3. Let j ∈ {1, . . . , n} and suppose Uj(0) 6= Uk(0) for all k 6= j and
λj(0) 6= 0. The growing hulls Kt approach R at Uj(0) in ϕ-direction if and only if

lim
h↓0

Uj(h)− Uj(0)√
h

=
2
√
λj(0)(π − 2ϕ)√
ϕ(π − ϕ)

.

We can extend the definition of a straight line approach to R to a “sector ap-
proach”: Kt approaches R at Uj(0) in a sector if there exist angles α, β ∈ (0, π) and
a t0 > 0 such that the connected component of Kt0 near Uj(0) is contained in

{z ∈ H | α < arg(z − Uj(0)) < β}.

Now, Theorem 1.3 suggests the following question:

Do the growing hulls Kt approach R at Uj(0) in a sector if and only if

lim sup
h↓0

|Uj(h)− Uj(0)|√
h

<∞ ?

The remainder of the paper is organized as follows. In Section 2 we look at basic
properties of the n-slit equation (1.1) and prove Theorem 1.3 by an application of
the scaling property. Section 3 discusses the simple-curve problem for the multiple
slit equation. We look at necessary conditions in 3.1 and the proof of Theorem 1.2
is given in Section 3.2, where it is split into three auxiliary lemmas.

Acknowledgement. The author wants to thank the anonymous referee for tak-
ing the time to evaluate the manuscript and providing constructive and valuable
comments.
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2. The scaling property and approach to R

For the rest of this paper, we will confine ourselves to the case n = 2, in order to
simplify notation. This case already carries the main difference between the one-slit
and the multiple slit equation, namely the fact that Kt need not be connected any
longer.

In order to guarantee solutions of (1.3), we will assume that λ1, λ2, U1, U2 are
continuous functions (see Theorem 4.6 in [La05]). Furthermore we require that the
two coefficients λj(t) are positive, i.e., we are dealing with the following initial value
problem:

ġt(z) =
2λ1(t)

gt(z)− U1(t)
+

2λ2(t)

gt(z)− U2(t)
, g0(z) = z,

λ1(t), λ2(t) > 0, λ1(t) + λ2(t) = 1 for all t ∈ [0, E].

(2.1)

Suppose the hull K is generated by U1(t), U2(t), λ1(t), λ2(t). We mention two
simple operations on K which can be translated into transformations of the driving
functions by elementary calculations.

• Scaling: For d > 0, dK can be generated by dUj(t/d2), λj(t/d
2), j = 1, 2.

• Translation: For d ∈ R, K+d can be generated by Uj(t) +d, λj(t), j = 1, 2.

Example 2.1. Suppose the generated hulls Kt consist of two different line seg-
ments starting in zero and assume that we have constant coefficients λj. Then the
scaling property implies Uj(t) = cj

√
t with c1 < c2, provided that U1 belongs to the

left segment. The values of the constant coefficients λj stand for the sizes of the two
segments relative to each other.

From now on we will assume that the time endpoint E = 1, which is no loss of
generality because of the scaling property.

All properties of the growing hulls that are invariant under scaling, e.g., the
question whether they are slits or not, will lead to properties of Uj that are invariant
under the transformation Uj(t) 7→ 1

d
Uj(d

2t). That is why the 1
2
-Hölder continuity of

driving functions enters the game.
Next we use the scaling property to prove Theorem 1.3.

Proof of Theorem 1.3 (with n = 2). First we note that the following Loewner
equation generates a straight line segment starting in 0 with angle ϕ (see [La05],
Example 4.12 and change the time t 7→ λ2(0)t):

ġt(z) =
2λ2(0)

gt(z)− c
√
t

with c :=
2
√
λ2(0)(π − 2ϕ)√
ϕ(π − ϕ)

.

We let j = 2 and by translation we can assume that U2(0) = 0.
Now let d > 0, then the corresponding conformal mappings gt(z, d) for the scaled

hulls dKt satisfy

(2.2) ġt(z, d) =
2λ1(t/d

2)

gt(z, d)− dU1(t/d2)
+

2λ2(t/d
2)

gt(z, d)− dU2(t/d2)
, g0(z, d) = z.

If we choose d large enough, the corresponding hull at t = 1 will always have two
connected components. Let Gd be the one containing 0. We will have to look at the
limit case d→∞.
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First, let ht(z, d) be the solution of the Loewner equation

ḣt(z, d) =
2λ2(0)

ht(z, d)− dU2(t/d2)
, h0(z, d) = z,

and let Hd be the generated hull at t = 1. Choose an R > 0 and let DR := H∩{|z| <
R}. If we denote by g(·, d)

Cara−→ g the Carathéodory convergence for Loewner chains1,
defined in [La05], p. 114, then we have

g(·, d)
Cara−→ g for d→∞ in DR if and only if h(·, d)

Cara−→ g for d→∞ in DR.

This can be shown by using the fact that left summand of (2.2) converges uniformly
to 0 onDR×[0, 1] and that λ2(t/d

2) converges uniformly to λ2(0), again onDR×[0, 1].
Now, the hulls Kt approach R at 0 in ϕ-direction if and only if DR∩Gd converges

to a line segment L starting in 0 with angle ϕ with respect to the Hausdorff topology2

for d→∞, which is, in this special case, equivalent to H \Gd
Cara−→ H \L. Because of

the above relation of g(·, d) to h(·, d), this is equivalent toHd → L or H\Hd
Cara−→ H\L.

We have to show that this corresponds to U2(t) = c
√
t+ O(

√
t) for t ↓ 0.

First, suppose Hd → L. We can apply Theorem 4.3 from [LMR10] which implies
dU(t/d2)→ c

√
t uniformly on [0, 1], and therefore U2(t) = c

√
t+ O(

√
t).

Conversely, if U2(t) = c
√
t + O(

√
t), then dU(t/d2) → c

√
t uniformly. Uniform

convergence of driving functions generally implies kernel convergence of the corre-
sponding domains by Proposition 4.47 in [La05]. Consequently, H\Hd

Cara−→ H\L. �

3. The simple-curve problem

Now we turn to the question:
When does equation (2.1) generate two disjoint simple curves?

First we derive two necessary conditions for this problem and in Section 3.2 we prove
Theorem 1.2.

Again, we assume for the rest of this section that the time endpoint E = 1 and
that λ1(t), λ2(t) > 0 for all t ∈ (0, 1]. Note that this condition is automatically
satisfied in the setting of Theorem 1.2.

3.1. Necessary conditions. If we knew that we had two curves with starting
points U1(0) < U2(0) and a time t with U1(t) = U2(t), then their two tips would
coincide. Thus, as we require continuous driving functions, a necessary condition for
having two curves is U1(t) < U2(t) for all t ∈ [0, 1].

The following, so called backward Loewner equation is very useful for the simple-
curve problem. For T ∈ (0, 1], we consider the initial value problem:

ḟt(z) =
−2λ1(T − t)

ft(z)− U1(T − t)
+

−2λ2(T − t)
ft(z)− U2(T − t)

, f0(z) = z.

1g(·, d) Cara−→ g(·) if for every ε > 0 and every T ∈ [0, 1], gt(z, d) converges to gt(z) uniformly on
[0, T ]× {z ∈ H | dist(z, KT ) ≥ ε}.

2The Hausdorff distance between two compact subsets A, B ⊂ C is

dH(A, B) = max{ sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b| }.



196 Sebastian Schleissinger

ft(z) is defined for all t ∈ [0, T ] and z ∈ H and we have

fT (z) = gT (z)−1.

The scaling and translation property also hold for the backward equation. Next we
give another, non-trivial necessary condition.

Proposition 3.1. Let U1(t) < U2(t) for all t ∈ [0, 1] and assume there is an
s ∈ (0, 1] such that λ2(s) > 0 and

lim inf
h↓0

|U2(s)− U2(s− h)|√
h

≥ 4
√
λ2(s).

Then Ks does not consist of two disjoint simple curves.

Proof. Without loss of generality we assume that s = 1 and U2(1) = 0. First,
suppose that limh↓0 U2(1− h)/

√
h = 4

√
λ2(1). Now consider the backward Loewner

equation with T = 1, scaled by d > 0 :

ḟt(z, d) =
−2λ1(1− t/d2)

ft(z, d)− dU1(1− t/d2)
+

−2λ2(1− t/d2)

ft(z, d)− dU2(1− t/d2)
, f0(z) = z.

Let d → ∞, as in the proof of Theorem 1.3, then for every t ∈ [0, 1] the conformal
mappings ft(z, d) converge in a neighborhood of 0 to the solution of

ḟt(z) =
−2λ2(1)

ft(z)− 4
√
λ2(1)

√
t
, f0(z) = z,

which does not generate a simple curve (see [LMR10], chapter 3 and change the time
t 7→ λ2(1)t). But then, ft(z, d) is not a slit mapping for all d > 0.

Now go back to the general case, where we have |U2(t)| ≥ V (t) for all t ∈ [0, 1]

and a continuous function V with limh↓0 V (1 − t)/
√
h = 4

√
λ2(1). Let us assume

that U2(t) ≥ V (t) for all t ∈ [0, 1]. Next consider the real initial value problem

ẏ(t) =
2λ1(t)

y(t)− U1(t)
+

2λ2(t)

y(t)− V (t)
, y(t0) = y0.

For every ε > 0 there are t0 and y0 < V (t0) such that −ε ≤ y(1) ≤ 0 = V (1). The
corresponding solution x(t) of the original differential equation

ẋ(t) =
2λ1(t)

x(t)− U1(t)
+

2λ2(t)

x(t)− U2(t)
, x(t0) = y0,

satisfies y(t) ≤ x(t) ≤ U2(t). If x(t) does not exist until t = 1, we don’t get simple
curves. Otherwise we have y(1) ≤ x(1) ≤ 0 = U2(1), so that these solutions also
come arbitrarily close to 0 and we don’t get simple curves in this case either. �

Consequently, if K1 consists of two disjoint simple curves, then, for every s ∈
(0, 1], and j ∈ {1, 2}, we have

lim sup
h↓0

|Uj(s)− Uj(s− h)|√
h

< 4
√
λj(s) (“regular case”), or

lim inf
h↓0

|Uj(s)−Uj(s−h)|√
h

< 4
√
λj(s) ≤ lim sup

h↓0

|Uj(s)−Uj(s−h)|√
h

(“irregular case”).

So Theorem 1.2 states that the regular case is a sufficient condition for the simple-
curve problem.
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3.2. Proof of Theorem 1.2. We begin with the following lemma.

Lemma 3.2. Let λ > 0, 0 ≤ τ < 2
√
λ and hn be the following sequence of

functions

h1(x) = x, hn+1(x) = x+ τ − 4λ

hn(x)
for n ≥ 1.

Let xn denote the largest zero of hn. Then (xn)n is an increasing sequence that
converges to 4

√
λ− τ . Furthermore, if hn(c) ≥ 0 for every n ∈ N, then c ≥ 4

√
λ− τ .

Proof. By induction, it can be shown that hn+1 maps (xn,+∞) strictly mono-
tonically onto R. Consequently, (xn)n is an increasing sequence. We prove that it is
bounded above by 4

√
λ− τ by showing hn(4

√
λ− τ) > 2

√
λ for all n ≥ 1 inductively:

First,
h1(4
√
λ− τ) = 4

√
λ− τ > 4

√
λ− 2

√
λ = 2

√
λ,

and for n ≥ 1 we have

hn+1(4
√
λ− τ) = 4

√
λ− τ + τ − 4λ

hn(4
√
λ− τ)

> 4
√
λ− 4λ

2
√
λ

= 2
√
λ.

Hence xn converges to

(3.1) x̃ ≤ 4
√
λ− τ.

Obviously, we have hn(x̃) > 0 for all n. Now suppose hn(x̃) ≤
√
λ, then hn+1(x̃) =

x̃+ τ − 4λ
hn(x̃)

≤ x̃+ τ − 4
√
λ ≤ 0, a contradiction. Hence hn(x̃) >

√
λ. Furthermore,

we get from (3.1)

hn(x̃)− hn+1(x̃) = hn(x̃)− x̃− τ +
4λ

hn(x̃)
≥ hn(x̃)− 4

√
λ+

4λ

hn(x̃)

=
hn(x̃)2 − 4

√
λhn(x̃) + 4λ

hn(x̃)
=

(hn(x̃)− 2
√
λ)2

hn(x̃)
≥ 0.

It follows that the sequence hn(x̃) is decreasing and bounded below by
√
λ. It con-

verges to h̃ with

h̃ = x̃+ τ − 4λ

h̃
.

So h̃ =
x̃+τ±
√

(x̃+τ)2−16λ

2
and hence (x̃+τ)2 ≥ 16λ. As x̃ must be positive, we conclude

x̃ ≥ 4
√
λ− τ and together with (3.1) this implies x̃ = 4

√
λ− τ . �

A great advantage of Lind’s proof in [Li05] is the fact that we don’t have to work
with (2.1) for arbitrary initial values in the upper half-plane, but we can concentrate
on the real initial value problem

(3.2) x(t0) = x0, ẋ(t) =
2λ1(t)

x(t)− U1(t)
+

2λ2(t)

x(t)− U2(t)
.

For the next lemma we define

λs2 := min
t∈[s,1]

λ2(t).
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Lemma 3.3. Let U2(t) ∈ LipL(1
2
) with U1(t) < U2(t). Suppose that x(t) is a

solution of (3.2) with x0 6∈ {U1(t0), U2(t0)} and x(1) = U2(1). Then

lim sup
h↓0

|U2(1)− U2(1− h)|√
h

≥ 4
√
λ2(1).

Proof. We start with the case U1(t0) < x0 < U2(t0), so that for all t < 1 the
solution satisfies U1(t) < x(t) < U2(t). Let T ∈ [0, 1) be so close to 1, that

• x(t) − U1(t) > δ > 1
λT
2

(U2(t) − x(t)) for a δ > 0 and all t ∈ [T, 1] (which can
be achieved because 1

λT
2
is bounded and U2(t)−x(t) goes to zero when t→ 1)

and
• |U2(1)− U2(t)| ≤ c

√
1− t for all t ∈ [T, 1].

Next we define ε := 2
δ

√
1− T and we can assume (possibly by passing on to a larger

T )

(3.3) ε < 2
√
λT2 .

Now x(t) is decreasing in [T, 1], since

ẋ(t) =
2λ1(t)

x(t)− U1(t)
+

2λ2(t)

x(t)− U2(t)
<

2
1
λT
2

(U2(t)− x(t))
+

2λT2
x(t)− U2(t)

= 0.

We will now show by induction that

U2(t)− x(t) ≤ hn(c)
√

1− t for every n ∈ N, t ∈ [T, 1],

where hn is the function from Lemma 3.2 with λ = λT2 and τ = ε. First we have

U2(t)− x(t) ≤ U2(t)− x(1) = U2(t)− U2(1) ≤ c
√

1− t = h1(c)
√

1− t.
Now assume the inequality holds for one n ∈ N. Then we have

ẋ(t) ≤ 2

δ
+

2λT2
x(t)− U2(t)

≤ 2

δ
− 2λT2
hn(c)

√
1− t

.

Integrating yields

x(1)− x(t) ≤ 2

δ
(1− t)− 4λT2

hn(c)

√
1− t ≤ (ε− 4λT2

hn(c)
)
√

1− t.

This implies

U2(t)− x(t) ≤ U2(t)− U2(1) + (ε− 4λT2
hn(c)

)
√

1− t

≤ (c+ ε− 4λT2
hn(c)

)
√

1− t = hn+1(c)
√

1− t.

As U2(t) − x(t) is always positive, we conclude that hn(c) ≥ 0 for every n ∈ N and
Lemma 3.2 tells us that

c ≥ 4
√
λT2 − ε.

Finally, sending T to 1 yields

c ≥ 4
√
λ1

2 − 0 = 4
√
λ2(1).

The case x0 > U2(t0) can be treated in the same way and in the case x0 < U1(t0),
the solution x(t) cannot fulfill x(1) = U2(1). �
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The point 1 in Lemma 3.3 can be replaced by any other time larger than zero
and, of course, the result still holds if we switch the roles of U1 and U2. Thus, if we
have U1, U2 ∈ LipL(1

2
) with U1(t) < U2(t) and

lim sup
h↓0

|Uj(t)− Uj(t− h)|√
h

< 4
√
λj(t), j = 1, 2,

then the solution for any x0 6∈ {U1(t0), U2(t0)} will exist up to time t = 1 and x(1)
cannot equal U1(1) or U2(1). In fact, there are even fixed intervals around U1(1) and
U2(1) which cannot be reached by x(1) for any initial value x0.

Lemma 3.4. Let U1, U2 ∈ LipL(1
2
) with U1(t) < U2(t) and

lim sup
h↓0

|Uj(t)− Uj(t− h)|√
h

< 4
√
λj(t)

for every t ∈ (0, 1] and j = 1, 2. Suppose that x(t) is a solution of (3.2) with
x0 6∈ {U1(t0), U2(t0)}. Then there exists ε > 0 such that

|x(1)− U1(1)| > ε and |x(1)− U2(1)| > ε

for every x0 6∈ {U1(t0), U2(t0)}.
Proof. We prove the statement by contradiction, hence we assume that for every

ε > 0 there is an xε0 6∈ {U1(t0), U2(t0)} such that

|x(1)− U1(1)| ≤ ε or |x(1)− U2(1)| ≤ ε.

Without loss of generality we may assume that U1(t0) < xε0 < U2(t0) and U2(1) −
x(1) ≤ ε. Now there is an ε > 0 such that for every ε ∈ (0, ε), the solution to the
corresponding initial value xε0 is decreasing in an interval [T0, 1] and x(t)−U1(t) > δ
for all t ∈ [T0, 1] and a δ > 0.

From now on we require ε < ε and furthermore we assume that T ∈ [0, 1) is so
close to 1 that

• T ≥ T0,
• τ := 2

δ

√
1− T < 2

√
λT2 and

• |U2(1)− U2(t)| ≤ c
√

1− t with c < 4
√
λT2 − τ for all t ∈ [T, 1].

Again, we denote by hn the sequence

h1(x) = x, hn+1(x) = x+ τ − 4λT2
hn(x)

for n ≥ 1.

Lemma (3.2) implies that there is an N ∈ N such that

(3.4) hN(c) < 0.

We take the smallest such N and assume that hn(c) > 0 for all n < N. (If there is a
n with hn(c) = 0, one can pass on to a slightly greater c.) Next, define en by

e1 = ε,

en+1 = ε+
4λT2 en

(hn(c))2
log

(
1 +

hn(c)

en

)
for 1 ≤ n < N.

Inductively one can easily show that for every n ≤ N we have en > 0 and

(3.5) lim
ε→0

en = 0.
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Now we prove by induction that

x(1)− x(t) ≤ en − ε+ (hn(c)− c)
√

1− t for all t ∈ [T, 1] and n ≤ N.

The case n = 1 states x(1)− x(t) ≤ 0 which is true because x(t) is decreasing. Next
assume that the statement holds for a n < N. Then

−x(t) ≤ −x(1)− ε+ en + (hn(c)− c)
√

1− t for all t ∈ [T, 1].

Consequently,

U2(t)− x(t) ≤ U2(t)− U2(1) + U2(1)− x(1)− ε+ en − (c− hn(c))
√

1− t
≤ en + hn(c)

√
1− t for all t ∈ [T, 1],

which implies

ẋ(t) =
2λ1(t)

x(t)− U1(t)
+

2λ2(t)

x(t)− U2(t)
≤ 2

δ
− 2λT2
en + hn(c)

√
1− t

and integrating gives

x(1)− x(t) ≤ 2

δ
(1− t)− 4λT2

hn(c)

√
1− t+

4λT2 en
(hn(c))2

log(1 +
hn(c)

en

√
1− t)

=

(
2

δ

√
1− t− 4λT2

hn(c)

)√
1− t+

4λT2 en
(hn(c))2

log(1 +
hn(c)

en

√
1− t)

≤ (c+ τ − 4λT2
hn(c)

− c)
√

1− t+
4λT2 en

(hn(c))2
log(1 +

hn(c)

en

√
1− t)

= (hn+1(c)− c)
√

1− t+ ε+
4λT2 en

(hn(c))2
log(1 +

hn(c)

en

√
1− t)− ε.

As hn(c) > 0 and en > 0 we conclude

x(1)− x(t) ≤ (hn+1(c)− c)
√

1− t+ ε+
4λT2 en

(hn(c))2
log(1 +

hn(c)

en
)− ε

= (hn+1(c)− c)
√

1− t+ en+1 − ε.
For n = N we get

x(1)− x(t) ≤ eN − ε+ (hN(c)− c)
√

1− t.
On the other hand,

x(1)− x(t) = x(1)− U2(1) + U2(1)− x(t) ≥ −ε+ U2(1)− U2(t) ≥ −ε− c
√

1− t.
Thus

hN(c)
√

1− T + eN ≥ 0.

Now we can send ε→ 0 and get with (3.5) hN(c) ≥ 0, a contradiction to (3.4). �

Remark. Again, the statement is still true for any time t > 0 other than 1.

If we consider the backward Loewner equation with real initial values, i.e.,

(3.6) ẋ(t) =
−2λ1(T − t)

x(t)− U1(T − t)
+
−2λ2(T − t)

x(t)− U2(T − t)
, x(0) = x0,

then the solution may not exist for all t ∈ [0, T ]. However, if two different solutions
x(t), y(t) with x(0) = x0 > y0 = y(0) meet a singularity after some time, lets say
x(T ) = y(T ) = U2(0), then x0 and y0 lie on different sides with respect to U2(T ), i.e.
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y0 < U2(T ) < x0. Consequently, there are are at most two initial values so that the
corresponding solutions will meet in U1(0) or in U2(0), respectively.

Figure 1. The left slit hits the right one at t = T .

The set of all real initial values whose solutions hit a singularity will be mapped
by fT into H. Figure 1 shows an example of a situation, where we have only one
solution that hits U1(0), because all solutions with initial value in (U1(T ), U2(T )) will
meet U2(t). So the whole interval (U1(T ), U2(T )) “belongs” to the second curve.

Now the hull K1 consists of two disjoint curves, if and only if for each s ∈ (0, 1]
and j = 1, 2 there are two different values x0, y0 such that the corresponding solutions
of the backward equation (3.6) with T = 1 satisfy x(s) = y(s) = Uj(1− s). Another
formulation varies the time T and thus equation (3.6): K1 consists of two disjoint
curves, if and only if for each T ∈ (0, 1] and j = 1, 2 there are two different values
x0, y0 with x(T ) = y(T ) = Uj(0).

Proof of Theorem 1.2 (with n = 2). Let T ∈ (0, 1]. We have to show that for
j ∈ {1, 2}, there are exactly two real numbers x0 and y0 so that the solutions x(t), y(t)
of the backward equation (3.6) satisfy x(T ) = y(T ) = Uj(0). We only consider j = 2,
the same arguments can be applied to j = 1. First, we set an := U2(0) − 1

n
for

all n ∈ N such that an > U1(0). The solution of (3.2) with initial value an exists
up to time T and doesn’t hit U2(T ) because of Lemma 3.3. Hence we can define
xn := gT (an) and Lemma 3.4 implies that there is an ε with U2(T ) − xn > ε. The
sequence xn is increasing and bounded above, and so it has a limit x0 < U2(T ).
Then the solution of (3.6) with x0 as initial value satisfies x(T ) = lim

n→∞
an = U2(0).

The second value y0 can be obtained in the same way by considering the sequence
U2(0) + 1

n
instead of an. �
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