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Abstract. In this paper we prove the existence of nonnegative renormalized solutions for the
initial-boundary value problem of a non-uniformly parabolic equation. Some well-known parabolic
equations are the special cases of this equation.

1. Introduction

Suppose that Ω is a bounded domain of RN (N ≥ 2) with Lipschitz boundary
∂Ω, and T is a positive number. Denote ΩT = Ω × (0, T ], Σ = ∂Ω × (0, T ]. In this
paper we study the following non-uniformly parabolic initial-boundary value problem

(1.1)





ut − div
(
DξΦ(∇u)

)
= f in ΩT ,

u(x, t) = 0 on Σ,

u(x, 0) = u0(x) on Ω,

where Φ: RN 7→ R+ is a C1 nonnegative, strictly convex function, DξΦ: RN → R
represents the gradient of Φ(ξ) with respect to ξ and ∇u represents the gradient with
respect to the spatial variables x. Without loss of generality we may assume that
Φ(0) = 0.

Our main assumptions are that Φ(ξ) satisfies the super-linear condition (or 1-
coercive condition, see [23, Chapter E])

(1.2) lim
|ξ|→∞

Φ(ξ)

|ξ| = ∞,

and the symmetric condition: there exists a positive number C > 0 such that

(1.3) Φ(−ξ) ≤ CΦ(ξ), ξ ∈ RN .

In this paper we assume

(1.4) u0 ∈ L1(Ω) and f ∈ L1(ΩT )

with

(1.5) u0 ≥ 0 and f ≥ 0.

There are numerous examples of Φ(ξ) satisfying structure assumptions (1.2) and
(1.3). The well-known are listed as follows.
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Example 1.1.

Φ(ξ) =
1

p
|ξ|p, p > 1.

In this case, equation (1.1) is the parabolic counterpart of the p-Laplacian.

Example 1.2.

Φ(ξ) =
1

p1

|ξ1|p1 +
1

p2

|ξ2|p2 + · · ·+ 1

pN

|ξN |pN , pi > 1, i = 1, 2, . . . , N,

where ξ = (ξ1, ξ2, . . . , ξN). In this case, equation (1.1) is the parabolic counterpart
of the anisotropic p-Laplacian. (See [25, Chapter 2].)

Example 1.3.
Φ(ξ) = |ξ| log(1 + |ξ|).

(See [12, Chapter 4] and [20].)

Example 1.4.
Φ(ξ) = |ξ|Lk(|ξ|),

where Li(s) = log(1+Li−1(s)) (i = 1, 2, . . . , k) and L0(s) = log(1+ s) for s ≥ 0. (See
[22].)

Example 1.5.

Φ(ξ) = e
|ξ|2
2 − 1.

(See [17], [24] and [28].)

Recently, Cai and Zhou [10] considered problem (1.1) without the right hand side
f under structure assumptions (1.2), (1.3) and integrability condition u0 ∈ L2(Ω) and
proved the existence and uniqueness of weak solutions. This paper is a continuation
of [10]. We are interested in the study of the well-posedness of problem (1.1) with
L1 data. The existence techniques akin to the techniques of this paper were used in
the elliptic case by Boccardo and Gallouët in [7] and [8]. The first paper [7] also con-
tained parabolic results, further developed in [6]. However, the counterexamples by
Serrin, [32], indicated that with nontrivial right hand side uniqueness might fail when
n ≥ 3 with the usual definition. Thus some extra conditions on the distributional
solutions were needed in order to ensure both existence and uniqueness. The three
different definitions for this purpose were independently introduced by Bénilan et
al. [2] (entropy solutions), by Dall’Aglio [16] (SOLA, Solutions Obtained as Limit of
Approximations) and by Lions and Murat [27] (renormalized solutions, see also [20]).
In the parabolic case, one should consult [16] (SOLA), [3] (renormalized solutions)
and [29] (entropy solutions).

One result on this topic can be found in [34] where via the introduction of the
notion of entropy solutions. We proved that there exists an entropy solution for
problem (1.1) under assumptions (1.2), (1.3) and (1.4). Besides, in [33] we studied
the following nonlinear parabolic problem

(1.6)





ut − div
(|∇u|p(x)−2∇u

)
= f in ΩT ,

u = 0 on Σ,

u(x, 0) = u0(x) on Ω,
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where the variable exponent p : Ω → (1, +∞) is a continuous function, f ∈ L1(ΩT )
and u0 ∈ L1(Ω). We proved the existence and uniqueness of both renormalized so-
lutions and entropy solutions for problem (1.6) and discovered the equivalence of
renormalized solutions and entropy solutions. This motivates us to study problem
(1.1) in the framework of renormalized solutions. The notion of renormalized so-
lutions was first introduced by DiPerna and Lions [20] for the study of Boltamann
equation. It was then adapted to the study of some nonlinear elliptic and parabolic
problems and evolution problems in fluid mechanics ([3, 4, 5, 9, 15, 26]). We hope
that the renormalized solution is still existent and unique, and it is equivalent to
the entropy solution of problem (1.1). However, so far we can only get the existence
of renormalized solutions for problem (1.1) under (1.2), (1.3), (1.4) and additional
(1.5). The uniqueness of renormalized solutions and the equivalence of renormalized
solutions and entropy solutions remain open. The main difficulty lies on that there
is no growth condition for function Φ(ξ). To our knowledge, growth conditions such
as polynomial growth or exponential growth for function Φ(ξ) played an extremely
important role, for example in [1, 11, 24], when parabolic problems or variational
problems related to (1.1) were studied. If some condition such as ∆2-condition, i.e.,
there exists a positive constant K such that for every ξ > 0 such that

Φ(2ξ) ≤ KΦ(ξ),

is further assumed on function Φ(ξ), it is possible to prove the uniqueness result of
the renormalized solutions, and the equivalence of renormalized solutions and entropy
solutions for problem (1.1) without the nonnegativity assumption (1.5).

Let Tk denote the truncation function at height k ≥ 0:

Tk(r) = min{k, max{r,−k}} =





k if r ≥ k,

r if |r| < k,

−k if r ≤ −k,

and its primitive Θk : R → R+ by

(1.7) Θk(r) =

ˆ r

0

Tk(s) ds =

{
r2

2
if |r| ≤ k,

k|r| − k2

2
if |r| ≥ k.

It is obvious that Θk(r) ≥ 0 and Θk(r) ≤ k|r|.
Next we define the very weak gradient of a measurable function u with Tk(u) ∈

L1(0, T ; W 1,1
0 (Ω)). As a matter of the fact, working as in Lemma 2.1 of [2] we can

prove the following result:

Proposition 1.6. For every measurable function u on ΩT such that Tk(u) be-
longs to L1(0, T ; W 1,1

0 (Ω)) for every k > 0, there exists a unique measurable function
v : ΩT → RN , such that

∇Tk(u) = vχ{|u|<k} almost everywhere in ΩT and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if u
belongs to L1(0, T ; W 1,1

0 (Ω)), then v coincides with the weak gradient of u.

From Proposition 1.6, we denote v = ∇u, which is called the very weak gradient
of u. The notion of the very weak gradient allows us to give the following definition
of renormalized solutions for problem (1.1). Denote z = (x, t), dz = dx dt.
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Definition 1.7. A nonnegative function u ∈ C([0, T ]; L1(Ω)) such that Tk(u) ∈
L1(0, T ; W 1,1

0 (Ω)) is called a renormalized solution to problem (1.1) if the following
conditions are satisfied:

(i) lim
n→∞

ˆ

{(x,t)∈ΩT : n≤|u(x,t)|≤n+1}
DξΦ(∇u) · ∇u dz = 0;

(ii) For every nonnegative function ϕ ∈ C1(ΩT ) with ϕ(·, T ) = 0 and S ∈
C∞(R+) satisfying that S ′ has a compact support and S ′′ is non-positive,

−
ˆ

Ω

S(u0)ϕ(x, 0) dx−
ˆ T

0

ˆ

Ω

S(u)
∂ϕ

∂t
dz

+

ˆ T

0

ˆ

Ω

[S ′(u)DξΦ(∇u) · ∇ϕ + S ′′(u)DξΦ(∇u) · ∇uϕ] dz

≥
ˆ T

0

ˆ

Ω

fS ′(u)ϕdz

(1.8)

holds.

Now we state our main result.

Theorem 1.8. Under structure assumptions (1.2), (1.3), integrability condi-
tion (1.4) and nonnegativity condition (1.5), there exists a renormalized solution for
problem (1.1).

The rest of this paper is organized as follows. In Section 2, we state some basic
results that will be used later. We will prove the main result in Section 3. In the
following sections C will represent a generic constant that may change from line to
line even if in the same inequality.

2. Preliminaries

Let Φ(ξ) be a nonnegative convex function. We define the polar function of Φ(ξ)
as

(2.1) Ψ(η) = sup
ξ∈RN

{η · ξ − Φ(ξ)},

which is also known as the Legendre transform of Φ(ξ). It is obvious that Ψ(η) is a
convex function. In the following we will list several lemmas.

Definition 2.1. [23, Definition 4.1.3] Let C ⊂ RN be convex. The mapping
F : C → RN is said to be monotone [resp. strictly monotone] on C when, for all x
and x′ in C,

〈F (x)− F (x′), x− x′〉 ≥ 0,

[resp. 〈F (x)− F (x′), x− x′〉 > 0 whenever x 6= x′].

Lemma 2.2. [23, Theorem 4.1.4] Let f be a function differentiable on an open
set Ω ⊂ RN and let C be a convex subset of Ω. Then, f is convex [resp. strictly
convex] on C if and only if its gradient ∇f is monotone [resp. strictly monotone] on
C.
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Lemma 2.3. Suppose that Φ(ξ) is a convex C1 function with Φ(0) = 0. Then
we have for all ξ, ζ ∈ RN ,

Φ(ξ) ≤ ξ ·DΦ(ξ),(2.2)
(DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ 0.(2.3)

Lemma 2.4. [10, Lemma 2.2] Suppose that Φ(ξ) is a nonnegative convex C1

function and Ψ(η) is its polar function. Then we have for ξ, η, ζ ∈ RN ,

ξ · η ≤ Φ(ξ) + Ψ(η),(2.4)
Ψ(DΦ(ζ)) + Φ(ζ) = DΦ(ζ) · ζ.(2.5)

Lemma 2.5. [21, Chapter 3] Suppose that Φ(ξ) is a nonnegative convex function
with Φ(0) = 0, which satisfies (1.2). Then its polar function Ψ(η) in (2.1) is a well-
defined, nonnegative function in RN , which also satisfies (1.2).

Lemma 2.6. [30, Chapter 4] Let D ⊂ RN be measurable with finite Lebesgue
measure and fk ∈ L1(D) and gk ∈ L1(D) (k = 1, 2, . . . ), and

|fk(x)| ≤ gk(x) a.e. x ∈ D, k = 1, 2, . . . .

If
lim
k→∞

fk(x) = f(x), lim
k→∞

gk(x) = g(x) a.e. x ∈ D,

and

lim
k→∞

ˆ

D

gk(x) dx =

ˆ

D

g(x) dx < +∞,

then we have

lim
k→∞

ˆ

D

fk(x) dx =

ˆ

D

f(x) dx.

Lemma 2.7. [19, Proposition 9.1c] or [34, Lemma 2.7] Let D ⊂ RN be mea-
surable with finite Lebesgue measure, and let {fn} be a sequence of functions in
Lp(D)(p ≥ 1) such that

fn ⇀ f weakly in Lp(D),

fn → g a.e. in D.

Then f = g a.e. in D.

Lemma 2.8. Let D ⊂ RN be measurable with finite Lebesgue measure. Suppose
that {an(x)} ⊂ L∞(D) and {gn(x)} ⊂ L1(D) are two sequences such that

an → a a.e. in D and an ⇀ a weakly-* in L∞(D)

and
gn ⇀ g weakly in L1(D).

Then
angn ⇀ ag weakly in L1(D).

Proof. By assumptions, we can know that there exist two positive numbers
M1,M2 such that

‖an‖L∞(D), ‖a‖L∞(D) ≤ M1, ‖gn‖L1(D), ‖g‖L1(D) ≤ M2.
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According to Egorov theorem, for every δ > 0, there exists a measurable set Eδ ⊂ D
such that |D\Eδ| ≤ δ and

an → a uniformly in Eδ.

Then for every ε > 0, there exists N1 > 0 such that when n > N1,

sup
Eδ

|an − a| < ε

3M2M3

,

where M3 is a positive number determined later.
For fixed ψ ∈ L∞(D), we can writeˆ

D

(angn − ag)ψ dx =

ˆ

D

(angn − agn)ψ dx +

ˆ

D

(gn − g)aψ dx := I1 + I2.

Since gn ⇀ g weakly in L1(D) and aψ ∈ L∞(D), it is easy to see that there exists
N2 > 0 such that

|I2| < ε

3
when n > N2.

Next we estimate I1 as follows. Set

‖ψ‖L∞(D) ≤ M3.

For all n > N0 = max{N1, N2}, we have

I1 ≤
ˆ

D

|(angn − agn)ψ| dx =

ˆ

Eδ

|(an − a)gnψ| dx +

ˆ

D\Eδ

|(an − a)gnψ| dx

≤ sup
Eδ

|an−a|·‖ψ‖L∞(D)‖gn‖L1(D)+(‖an‖L∞(D)+ ‖a‖L∞(D))‖ψ‖L∞(D)

ˆ

D\Eδ

|gn| dx

≤ ε

3
+ 2M1M3

ˆ

D\Eδ

|gn| dx.

We recall that Dunford–Pettis theorem ensures that a sequence in L1(D) is weakly
convergent in L1(D) if and only if it is equi-integrable. Thus by Dunford–Pettis
theorem, for ε0 = ε/(6M1M3), there exists a positive number δ0 = δ0(ε) such thatˆ

A

|gn| dx < ε0

for every subset A ⊂ D with |A| < δ0. Choosing δ = δ0 it follows that |D\Eδ| < δ0

and
2M1M3

ˆ

D\Eδ

|gn| dx <
ε

3
.

Therefore, combining the above estimates, we obtain

|I1| < 2ε

3
.

Hence, we conclude that∣∣∣∣
ˆ

D

(angn − ag)ψ dx

∣∣∣∣ < ε for all n > N0,

which implies that

lim
n→∞

ˆ

D

(angn − ag)ψ dx = 0 for all ψ ∈ L∞(D).
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This finishes the proof. ¤

Lemma 2.9. [14, Chapter 3] and [31] Suppose that Φ(ξ) is a nonnegative convex
function satisfying (1.2). Let D ⊂ RN be a measurable with finite Lebesgue measure
|D| and let {fk} ⊂ L1(D;RN) be a sequence satisfying that

(2.6)
ˆ

D

Φ(fk) dx ≤ C,

where C is a positive constant. Then there exist a subsequence {fkj
} ⊂ {fk} and a

function f ∈ L1(D;RN) such that

(2.7) fkj
⇀ f weakly in L1(D;RN) as j →∞

and

(2.8)
ˆ

D

Φ(f) dx ≤ lim inf
j→∞

ˆ

D

Φ(fkj
) dx ≤ C.

For the convenience of the readers, let us recall the definition of weak solutions
for problem (1.1) and the main results in [10].

Definition 2.10. A function u : Ω × [0, T ] → R is a weak solution of prob-
lem (1.1) if the following conditions are satisfied:

(i) u ∈ C([0, T ]; L2(Ω)) ∩ L1(0, T ; W 1,1
0 (Ω)) with

ˆ

ΩT

DξΦ(∇u) · ∇u dz < ∞;

(ii) For any ϕ ∈ C1(ΩT ) with ϕ(·, T ) = 0 and ϕ(·, t)|∂Ω = 0, we have

(2.9) −
ˆ

Ω

u0(x)ϕ(x, 0) dx +

ˆ

ΩT

[− uϕt + DξΦ(∇u) · ∇ϕ
]
dz =

ˆ

ΩT

fϕ dz.

Lemma 2.11. [10, Theorem 1.2] Let the structure assumptions (1.2) and (1.3)
be satisfied. If u0 ∈ L2(Ω) and f = 0, then there exists a unique weak solution for
the initial-boundary value problem (1.1).

Corollary 2.12. If we assume f ∈ L2(ΩT ) the existence and uniqueness of weak
solutions of problem (1.1) can be obtained working as in the proof of Lemma 2.11.

Remark 2.13. Let u be a weak solution in Definition 2.10. By using the ap-
proximation technique (see [13, Chapter 3] or [18, Chapter 2]) we have for every
ϕ ∈ C1(ΩT ) with ϕ(·, t)|∂Ω = 0, each t ∈ [0, T ],

(2.10)
ˆ

Ω

uϕdx
∣∣∣
t

0
+

ˆ t

0

ˆ

Ω

[− uϕt + DξΦ(∇u) · ∇ϕ
]
dx dτ =

ˆ t

0

ˆ

Ω

fϕ dx dτ.

Remark 2.14. Let u be a weak solution in Definition 2.10 with f = 0. We
can formally choose u as a test function in (2.10) to obtain an energy type estimate.
That is, for a.e. t ∈ [0, T ],

1

2
‖u(t)‖2

L2(Ω) +

ˆ t

0

ˆ

Ω

DξΦ(∇u) · ∇u dxdτ =
1

2
‖u0‖2

L2(Ω).
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3. The proof of main result

Now we are ready to prove our main result: the existence of renormalized solu-
tions of problem (1.1). Our proof follows rather standard (but nontrivial) procedure.
First f and u0 are estimated by smooth functions for which the existence of weak
solutions is known. Then, by using the definition of a weak solution, we show that
the sequence of solutions forms a Cauchy sequence in a suitable norm (passing to
a subsequence if necessary). However, this is not enough to pass to a limit under
the integral sign but more information is needed on the gradients. The next step is
to show by a compactness argument that the gradients converge almost everywhere.
This can be done without the growth bounds for function Φ. The final step is to
validate that the limit is a renormalized solution. Some of the reasoning is based on
the ideas developed in [2], [7], [8] and [29].

Proof of Theorem 1.8. We first introduce the approximate problems. Let
{fn} ⊂ C∞

0 (ΩT ) and {u0n} ⊂ C∞
0 (Ω) be two nonnegative sequences of functions

strongly convergent respectively to f in L1(ΩT ) and to u0 in L1(Ω) with f, u0 ≥ 0,
such that

‖fn‖L1(ΩT ) ≤ ‖f‖L1(ΩT ), ‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω).(3.1)

Let us consider the approximate problems



(un)t − div
(
DξΦ(∇un)

)
= fn in ΩT ,

un = 0 on Σ,

un(x, 0) = u0n on Ω.

(3.2)

By virtue of Lemma 2.11 (see also Corollary 2.12) we can find nonnegative un ∈
C([0, T ]; L2(Ω)) ∩ L1(0, T ; W 1,1

0 (Ω)), that is a weak solution of problem (3.2) in the
sense of Definition 2.10. It follows from fn ∈ C∞

0 (ΩT ) ⊂ L2(ΩT ), DξΦ(∇un) ∈
L1(ΩT )(see [10] for details) and the equation (3.2) that (un)t ∈ L1(0, T ; W−1,1(Ω)) +
L2(ΩT ) and

(3.3)
ˆ

ΩT

DξΦ(∇un) · ∇un dz < ∞.

Our aim is to prove that a subsequence of these approximate solutions {un} converges
to a nonnegative measurable function u, which is an renormalized solution of problem
(1.1). We will divide the proof into several steps. Although some of the arguments
are not new, we present a self-contained proof for the sake of clarity and readability.

Using an approximation argument as in Remark 2.13 and Remark 2.14, we can
choose Tk(un)χ(0,t) as a test function in (3.2) to have

ˆ

Ω

Θk(un)(t) dx−
ˆ

Ω

Θk(u0n) dx +

ˆ t

0

ˆ

Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dx ds

=

ˆ t

0

ˆ

Ω

fnTk(un) dx ds.

(3.4)

It follows from the definition (1.7) of Θk(r) and (3.1) that
ˆ t

0

ˆ

Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dx ds +

ˆ

Ω

Θk(un)(t) dx

≤ k
(‖fn‖L1(ΩT ) + ‖u0n‖L1(Ω)

) ≤ k
(‖f‖L1(ΩT ) + ‖u0‖L1(Ω)

)
.

(3.5)
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Recalling (2.2), we have

(3.6)
ˆ

ΩT

Φ(∇Tk(un)) dz ≤
ˆ

ΩT

DξΦ(Tk(∇un)) · ∇Tk(un) dz ≤ Ck,

which implies from (1.2) that

(3.7)
ˆ

ΩT

|∇Tk(un)| dz ≤ C(k + 1),

that is Tk(un) is bounded in L1
(
0, T ; W 1,1

0 (Ω)
)
.

If we choose k = 1 in the inequality (3.5), then for a.e. t ∈ [0, T ],
ˆ

Ω

Θ1(un(t)) dx ≤ ‖f‖L1(ΩT ) + ‖u0‖L1(Ω).

Moreover,
ˆ

Ω

|un(t)| dx ≤meas(Ω) + ‖f‖L1(ΩT ) + ‖u0‖L1(Ω).

Thus we obtain

(3.8) ‖un‖L∞(0,T ;L1(Ω)) ≤ C.

Step 1. We shall prove that {un} converges in C([0, T ]; L1(Ω)) and we shall find
a subsequence which is almost everywhere convergent in ΩT .

Let m and n be two integers, then from (3.2) we can write the weak form as
ˆ T

0

〈(un − um)t, φ〉 dt +

ˆ

ΩT

[DξΦ(∇un)−DξΦ(∇um)] · ∇φ dz

=

ˆ

ΩT

(fn − fm)φ dz,

(3.9)

for all φ ∈ C1
0(ΩT ). Recalling (2.4), (2.5), (1.3) and (3.3), we observe that

|DξΦ(∇un) · ∇um| ≤ Φ(∇um) + Φ(−∇um) + Ψ(DξΦ(∇un))

≤ (C + 1)Φ(∇um) + DξΦ(∇un) · ∇un

≤ (C + 1)DξΦ(∇um) · ∇um + DξΦ(∇un) · ∇un ∈ L1(ΩT ).

Denote

(3.10) αn,m =

ˆ

ΩT

|fn − fm| dz +

ˆ

Ω

|u0n − u0m| dx.

We know that
lim

n,m→∞
αn,m = 0.

Using an approximation argument as above, we conclude that w = T1(un − um)χ(0,t)

with t ≤ T can be a test function in (3.9). From (2.3), discarding the positive term
we get

ˆ

Ω

Θ1(un − um)(t) dx ≤
ˆ

Ω

Θ1(u0n − u0m) dx + ‖fn − fm‖L1(ΩT )

≤ ‖u0n − u0m‖L1(Ω) + ‖fn − fm‖L1(ΩT ) = αn,m.
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Therefore, we conclude from the definition (1.7) of Θk(r) that
ˆ

{|un−um|<1}

|un − um|2(t)
2

dx +

ˆ

{|un−um|≥1}

|un − um|(t)
2

dx

≤
ˆ

Ω

[Θ1(un − um)](t) dx ≤ αn,m.

It follows from Hölder’s inequality thatˆ

Ω

|un − um|(t) dx =

ˆ

{|un−um|<1}
|un − um|(t) dx +

ˆ

{|un−um|≥1}
|un − um|(t) dx

≤
(ˆ

{|un−um|<1}
|un − um|2(t) dx

) 1
2

meas(Ω)
1
2 + 2αn,m

≤ (2meas(Ω))
1
2 α

1
2
n,m + 2αn,m.

Thus we get
‖un − um‖C([0,T ];L1(Ω)) → 0 as n,m →∞,

i.e., {un} is a Cauchy sequence in C([0, T ]; L1(Ω)). Then un converges to u in
C([0, T ]; L1(Ω)). We find an a.e. convergent subsequence (still denoted by {un})
in ΩT such that

(3.11) un → u a.e. in ΩT .

Recalling (3.6) and Lemma 2.9, we may draw a subsequence (we also denote it
by the original sequence for simplicity) such that

(3.12) ∇Tk(un) ⇀ ηk weakly in L1(ΩT )

and ˆ

ΩT

Φ(ηk) dz ≤ Ck.

In view of (3.11), we conclude that ηk = ∇Tk(u) a.e. in ΩT .

Step 2. We shall prove that the sequence {∇un} converges almost everywhere in
ΩT to ∇u (up to a subsequence).

We first claim that {∇un} is a Cauchy sequence in measure. Let δ > 0, and
denote

E1 := {(x, t) ∈ ΩT : |∇un| > h} ∪ {(x, t) ∈ ΩT : |∇um| > h},
E2 := {(x, t) ∈ ΩT : |un − um| > 1}

and

E3 := {(x, t) ∈ ΩT : |∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ 1, |∇un −∇um| > δ},
where h will be chosen later. It is obvious that

{(x, t) ∈ ΩT : |∇un −∇um| > δ} ⊂ E1 ∪ E2 ∪ E3.

For k ≥ 0, we can write

{(x, t) ∈ ΩT : |∇un| ≥ h} ⊂ {(x, t) ∈ ΩT : |un| ≥ k} ∪ {(x, t) ∈ ΩT : |∇Tk(un)| ≥ h}.
Thus, applying (3.8), (1.2) and (3.7), there exist constants C > 0 such that

meas{(x, t) ∈ ΩT : |∇un| ≥ h} ≤ C

k
+

Ck

h
,
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when h is large appropriately. By choosing k = Ch
1
2 , we deduce that

meas{(x, t) ∈ ΩT : |∇un| ≥ h} ≤ Ch−
1
2 .

Let ε > 0. We may let h = h(ε) large enough such that

(3.13) meas(E1) ≤ ε/3 for all n,m ≥ 0.

On the other hand, by Step 1, we know that {un} is a Cauchy sequence in L1(ΩT ).
Then there exists N1(ε) ∈ N such that

(3.14) meas(E2) ≤ ε/3 for all n, m ≥ N1(ε).

Moreover, since Φ is C1 and strictly convex, then from Lemma 2.2 and Defini-
tion 2.1, there exists a real valued function m(h, δ) > 0 such that

(3.15) (DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ m(h, δ) > 0

for all ξ, ζ ∈ RN with |ξ|, |ζ| ≤ h, |ξ − ζ| ≥ δ. By taking T1(un − um) as a test
function in (3.9), we obtain

m(h, δ)meas(E3) ≤
ˆ

E3

[DξΦ(∇un)−DξΦ(∇um)] · (∇un −∇um) dz

≤
ˆ

ΩT

[DξΦ(∇un)−DξΦ(∇um)] · ∇T1(un − um) dz

≤
ˆ

ΩT

|fn − fm| dz +

ˆ

Ω

|u0n − u0m| dx = αn,m,

which implies that

meas(E3) ≤ αn,m

m(h, δ)
≤ ε/3,

for all n,m ≥ N2(ε, δ). It follows from (3.13) and (3.14) that

meas{(x, t) ∈ ΩT : |∇un −∇um| > δ} ≤ ε for all n,m ≥ max{N1, N2},
that is {∇un} is a Cauchy sequence in measure. Then we may choose a subsequence
(denote it by the original sequence) such that

∇un → v a.e. in ΩT .

Thus, from Proposition 1.6 and ∇Tk(un) ⇀ ∇Tk(u) weakly in L1(ΩT ), we deduce
from Lemma 2.7 that v coincides with the very weak gradient of u. Therefore, we
have

(3.16) ∇un → ∇u a.e. in ΩT .

Step 3. We shall prove that u is a renormalized solution.
For given a, k > 0, define the function Tk,a(s) = Ta(s− Tk(s)) as

Tk,a(s) =





s− k sign(s) if k ≤ |s| < k + a,

a sign(s) if |s| ≥ k + a,

0 if |s| ≤ k.
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Using Tk,a(un) with un ≥ 0 as a test function in (3.2), we find
ˆ

{|un|>k}
Θa(un − k)(T ) dx−

ˆ

{|u0n|>k}
Θa(u0n − k) dx

+

ˆ

{k≤|un|≤k+a}
DξΦ(∇un) · ∇un dz ≤

ˆ

Ω

fnTk,a(un) dz,

which yields that
ˆ

{k≤|un|≤k+a}
DξΦ(∇un) · ∇un dz ≤ a

(ˆ

{|un|>k}
|fn| dz +

ˆ

{|u0n|>k}
|u0n| dx

)
.

Recalling the fact that u belongs to C([0, T ]; L1(Ω)), we have

(3.17) lim
k→∞

meas{(x, t) ∈ ΩT : |u| > k} = 0.

Since DξΦ(∇un) · ∇un ≥ 0, by Fatou’s lemma, (3.11) and (3.16), we get
ˆ

{k≤|u|≤k+a}
DξΦ(∇u) · ∇u dz =

ˆ

ΩT

DξΦ(∇u) · ∇uχ{k≤|u|≤k+a} dz

=

ˆ

ΩT

lim inf
n→∞

DξΦ(∇un) · ∇unχ{k≤|un|≤k+a} dz

≤ lim inf
n→∞

ˆ

{k≤|un|≤k+a}
DξΦ(∇un) · ∇un dz.

Furthermore, since
ˆ

{|un|>k}
|fn| dz =

ˆ

{|un|>k}
|fn − f | dz +

ˆ

{|un|>k}
|f | dz

≤
ˆ

ΩT

|fn − f | dz +

ˆ

{|un|>k}
|f | dz,

from (3.17) we have

lim
k→∞

lim
n→∞

ˆ

{|un|>k}
|fn| dz = 0.

Similarly, we know

lim
k→∞

lim
n→∞

ˆ

{|u0n|>k}
|u0n| dx = 0.

Therefore, passing to the limit first in n then in k, we conclude that

lim
k→∞

ˆ

{(x,t)∈ΩT :k≤|u(x,t)|≤k+a}
DξΦ(∇u) · ∇u dz = 0.

Choosing a = 1, we obtain the renormalized condition, i.e.,

lim
k→∞

ˆ

{(x,t)∈ΩT :k≤|u(x,t)|≤k+1}
DξΦ(∇u) · ∇u dz = 0.

Let S ∈ C∞(R+) be such that suppS ′ ⊂ [0,M ] for some M > 0. For every
nonnegative function ϕ ∈ C∞(ΩT ) with ϕ(x, T ) = 0, S ′(un)ϕ is a test function in
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(3.2). It yields
ˆ

ΩT

∂S(un)

∂t
ϕ dz +

ˆ

ΩT

[S ′(un)DξΦ(∇un) · ∇ϕ

+ S ′′(un)DξΦ(∇un) · ∇unϕ] dz =

ˆ

ΩT

fnS
′(un)ϕdz.

(3.18)

First we consider the first term on the left-hand side of (3.18). Since S is bounded
and continuous, (3.11) implies that S(un) converges to S(u) a.e. in ΩT and weakly-*
in L∞(ΩT ) . Then ∂S(un)

∂t
converges to ∂S(u)

∂t
in D′(ΩT ) as n →∞, that is

ˆ

ΩT

∂S(un)

∂t
ϕ dz →

ˆ

ΩT

∂S(u)

∂t
ϕ dz.

For the other terms on the left-hand side of (3.18), because of suppS ′ ⊂ [0,M ]
we know

S ′(un)DξΦ(∇un) = S ′(un)DξΦ(∇TM(un)).

Using (3.11) and S ∈ C∞(R+), we have

(3.19) S ′(un) → S ′(u) a.e. in ΩT .

In view of (3.5) and (2.5), we know that
ˆ

ΩT

Ψ(DξΦ(∇TM(un))) dz ≤ C.

Applying Lemma 2.5, Lemma 2.9 and (3.12), we conclude that (up to a subsequence)

(3.20) DξΦ(∇TM(un)) ⇀ DξΦ(∇TM(u)) weakly in L1(ΩT ).

Then (3.19), (3.20), the boundedness of S ′ and Lemma 2.8 yield that

S ′(un)DξΦ(∇Tm(un)) ⇀ S ′(u)DξΦ(∇TM(u)) weakly in L1(ΩT ).

Noting that
S ′(u)DξΦ(∇u) = S ′(u)DξΦ(∇TM(u)),

we deduce thatˆ

ΩT

S ′(un)DξΦ(∇un) · ∇ϕdz →
ˆ

ΩT

S ′(u)DξΦ(∇u) · ∇ϕdz,

as n →∞.
Moreover, since S ′′(un) ≤ 0, ϕ ≥ 0 and

DξΦ(∇un) · ∇un ≥ 0,

then
−S ′′(un)DξΦ(∇un) · ∇unϕ ≥ 0.

Thus from Fatou’s lemma, (3.11) and (3.16), we obtain that

−
ˆ

ΩT

S ′′(u)DξΦ(∇u) · ∇uϕdz ≤ − lim inf
n→∞

ˆ

ΩT

S ′′(un)DξΦ(∇un) · ∇unϕdz.
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Using the strong convergence of fn, (3.11) and the Lebesgue dominated conver-
gence theorem, we can pass to the limits as n →∞ for the right-hand side of (3.18)
to conclude that

−
ˆ

Ω

S(u0)ϕ(x, 0) dx−
ˆ T

0

ˆ

Ω

S(u)
∂ϕ

∂t
dz

+

ˆ T

0

ˆ

Ω

[S ′(u)DξΦ(∇u) · ∇ϕ + S ′′(u)DξΦ(∇u) · ∇uϕ] dz

≥
ˆ T

0

ˆ

Ω

fS ′(u)ϕdz

for all k > 0 and ϕ ∈ C1(ΩT ) with ϕ ≥ 0 and ϕ|Σ = 0. This finishes the proof. ¤
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